/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL #include "HAL_AVR.h" #include "AP_HAL_AVR_SITL.h" #include "Scheduler.h" #include #include using namespace AVR_SITL; extern const AP_HAL::HAL& hal; AP_HAL::TimedProc SITLScheduler::_failsafe = NULL; volatile bool SITLScheduler::_timer_suspended = false; AP_HAL::TimedProc SITLScheduler::_timer_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {NULL}; AP_HAL::TimedProc SITLScheduler::_defered_timer_proc = NULL; uint8_t SITLScheduler::_num_timer_procs = 0; bool SITLScheduler::_in_timer_proc = false; struct timeval SITLScheduler::_sketch_start_time; SITLScheduler::SITLScheduler() {} void SITLScheduler::init(void *unused) { gettimeofday(&_sketch_start_time,NULL); } uint32_t SITLScheduler::_micros() { struct timeval tp; gettimeofday(&tp,NULL); return 1.0e6*((tp.tv_sec + (tp.tv_usec*1.0e-6)) - (_sketch_start_time.tv_sec + (_sketch_start_time.tv_usec*1.0e-6))); } uint32_t SITLScheduler::micros() { return _micros(); } uint32_t SITLScheduler::millis() { struct timeval tp; gettimeofday(&tp,NULL); return 1.0e3*((tp.tv_sec + (tp.tv_usec*1.0e-6)) - (_sketch_start_time.tv_sec + (_sketch_start_time.tv_usec*1.0e-6))); } void SITLScheduler::delay_microseconds(uint16_t usec) { uint32_t start = micros(); while (micros() - start < usec) { usleep(usec - (micros() - start)); } } void SITLScheduler::delay(uint32_t ms) { uint32_t start = micros(); while (ms > 0) { while ((micros() - start) >= 1000) { ms--; if (ms == 0) break; start += 1000; } if (_min_delay_cb_ms <= ms) { if (_delay_cb) { _delay_cb(); } } } } void SITLScheduler::register_delay_callback(AP_HAL::Proc proc, uint16_t min_time_ms) { _delay_cb = proc; _min_delay_cb_ms = min_time_ms; } void SITLScheduler::register_timer_process(AP_HAL::TimedProc proc) { for (uint8_t i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i] == proc) { return; } } if (_num_timer_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) { _timer_proc[_num_timer_procs] = proc; _num_timer_procs++; } } bool SITLScheduler::defer_timer_process(AP_HAL::TimedProc proc) { if ( _in_timer_proc || _timer_suspended ) { _defered_timer_proc = proc; return false; } else { _timer_suspended = true; proc(micros()); _timer_suspended = false; return true; } } void SITLScheduler::register_timer_failsafe(AP_HAL::TimedProc failsafe, uint32_t period_us) { _failsafe = failsafe; } void SITLScheduler::suspend_timer_procs() { _timer_suspended = true; } void SITLScheduler::resume_timer_procs() { _timer_suspended = false; } void SITLScheduler::begin_atomic() { _nested_atomic_ctr++; } void SITLScheduler::end_atomic() { if (_nested_atomic_ctr == 0) { hal.uartA->println_P(PSTR("ATOMIC NESTING ERROR")); return; } _nested_atomic_ctr--; } void SITLScheduler::reboot() { hal.uartA->println_P(PSTR("REBOOT NOT IMPLEMENTED\r\n")); } void SITLScheduler::timer_event() { uint32_t tnow = _micros(); if (_in_timer_proc) { // the timer calls took longer than the period of the // timer. This is bad, and may indicate a serious // driver failure. We can't just call the drivers // again, as we could run out of stack. So we only // call the _failsafe call. It's job is to detect if // the drivers or the main loop are indeed dead and to // activate whatever failsafe it thinks may help if // need be. We assume the failsafe code can't // block. If it does then we will recurse and die when // we run out of stack if (_failsafe != NULL) { _failsafe(tnow); } return; } _in_timer_proc = true; if (!_timer_suspended) { // now call the timer based drivers for (int i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i] != NULL) { _timer_proc[i](tnow); } } } /* Run any defered procedures, if they exist.*/ /* Atomic read and clear: */ AP_HAL::TimedProc defered = _defered_timer_proc; _defered_timer_proc = NULL; if (defered != NULL) { _timer_suspended = true; defered(tnow); _timer_suspended = false; } // and the failsafe, if one is setup if (_failsafe != NULL) { _failsafe(tnow); } _in_timer_proc = false; } #endif