/* SITL handling This simulates a GPS on a serial port Andrew Tridgell November 2011 */ #include "SIM_GPS.h" #if HAL_SIM_GPS_ENABLED #include #include #include #include #include #include #include #include // the number of GPS leap seconds - copied from AP_GPS.h #define GPS_LEAPSECONDS_MILLIS 18000ULL extern const AP_HAL::HAL& hal; using namespace SITL; struct GPS_TOW { // Number of weeks since midnight 5-6 January 1980 uint16_t week; // Time since start of the GPS week [mS] uint32_t ms; }; // ensure the backend we have allocated matches the one that's configured: GPS_Backend::GPS_Backend(GPS &_front, uint8_t _instance) : front{_front}, instance{_instance} { } ssize_t GPS_Backend::write_to_autopilot(const char *p, size_t size) const { return front.write_to_autopilot(p, size); } ssize_t GPS_Backend::read_from_autopilot(char *buffer, size_t size) const { return front.read_from_autopilot(buffer, size); } void GPS_Backend::update(const GPS_Data &d) { if (_sitl == nullptr) { _sitl = AP::sitl(); if (_sitl == nullptr) { return; } } update_read(&d); update_write(&d); } GPS::GPS(uint8_t _instance) : SerialDevice(8192, 2048), instance{_instance} { } uint32_t GPS::device_baud() const { if (backend == nullptr) { return 0; } return backend->device_baud(); } /* write some bytes from the simulated GPS */ ssize_t GPS::write_to_autopilot(const char *p, size_t size) const { // the second GPS instance fails in a different way to the first; // the first will start sending back 3 satellites, the second just // stops responding when disabled. This is not necessarily a good // thing. if (instance == 1 && _sitl->gps_disable[instance]) { return -1; } const float byteloss = _sitl->gps_byteloss[instance]; // shortcut if we're not doing byteloss: if (!is_positive(byteloss)) { return SerialDevice::write_to_autopilot(p, size); } size_t ret = 0; while (size--) { float r = ((((unsigned)random()) % 1000000)) / 1.0e4; if (r < byteloss) { // lose the byte p++; continue; } const ssize_t pret = SerialDevice::write_to_autopilot(p, 1); if (pret == 0) { // no space? return ret; } if (pret != 1) { // error has occured? return pret; } ret++; p++; } return ret; } /* get timeval using simulation time */ static void simulation_timeval(struct timeval *tv) { uint64_t now = AP_HAL::micros64(); static uint64_t first_usec; static struct timeval first_tv; if (first_usec == 0) { first_usec = now; first_tv.tv_sec = AP::sitl()->start_time_UTC; } *tv = first_tv; tv->tv_sec += now / 1000000ULL; uint64_t new_usec = tv->tv_usec + (now % 1000000ULL); tv->tv_sec += new_usec / 1000000ULL; tv->tv_usec = new_usec % 1000000ULL; } /* send a UBLOX GPS message */ void GPS_UBlox::send_ubx(uint8_t msgid, uint8_t *buf, uint16_t size) { const uint8_t PREAMBLE1 = 0xb5; const uint8_t PREAMBLE2 = 0x62; const uint8_t CLASS_NAV = 0x1; uint8_t hdr[6], chk[2]; hdr[0] = PREAMBLE1; hdr[1] = PREAMBLE2; hdr[2] = CLASS_NAV; hdr[3] = msgid; hdr[4] = size & 0xFF; hdr[5] = size >> 8; chk[0] = chk[1] = hdr[2]; chk[1] += (chk[0] += hdr[3]); chk[1] += (chk[0] += hdr[4]); chk[1] += (chk[0] += hdr[5]); for (uint16_t i=0; ilongitude * 1.0e7; pos.latitude = d->latitude * 1.0e7; pos.altitude_ellipsoid = d->altitude * 1000.0f; pos.altitude_msl = d->altitude * 1000.0f; pos.horizontal_accuracy = _sitl->gps_accuracy[instance]*1000; pos.vertical_accuracy = _sitl->gps_accuracy[instance]*1000; status.time = gps_tow.ms; status.fix_type = d->have_lock?3:0; status.fix_status = d->have_lock?1:0; status.differential_status = 0; status.res = 0; status.time_to_first_fix = 0; status.uptime = AP_HAL::millis(); velned.time = gps_tow.ms; velned.ned_north = 100.0f * d->speedN; velned.ned_east = 100.0f * d->speedE; velned.ned_down = 100.0f * d->speedD; velned.speed_2d = norm(d->speedN, d->speedE) * 100; velned.speed_3d = norm(d->speedN, d->speedE, d->speedD) * 100; velned.heading_2d = ToDeg(atan2f(d->speedE, d->speedN)) * 100000.0f; if (velned.heading_2d < 0.0f) { velned.heading_2d += 360.0f * 100000.0f; } velned.speed_accuracy = 40; velned.heading_accuracy = 4; memset(&sol, 0, sizeof(sol)); sol.fix_type = d->have_lock?3:0; sol.fix_status = 221; sol.satellites = d->have_lock ? _sitl->gps_numsats[instance] : 3; sol.time = gps_tow.ms; sol.week = gps_tow.week; dop.time = gps_tow.ms; dop.gDOP = 65535; dop.pDOP = 65535; dop.tDOP = 65535; dop.vDOP = 200; dop.hDOP = 121; dop.nDOP = 65535; dop.eDOP = 65535; pvt.itow = gps_tow.ms; pvt.year = 0; pvt.month = 0; pvt.day = 0; pvt.hour = 0; pvt.min = 0; pvt.sec = 0; pvt.valid = 0; // invalid utc date pvt.t_acc = 0; pvt.nano = 0; pvt.fix_type = d->have_lock? 0x3 : 0; pvt.flags = 0b10000011; // carrsoln=fixed, psm = na, diffsoln and fixok pvt.flags2 =0; pvt.num_sv = d->have_lock ? _sitl->gps_numsats[instance] : 3; pvt.lon = d->longitude * 1.0e7; pvt.lat = d->latitude * 1.0e7; pvt.height = d->altitude * 1000.0f; pvt.h_msl = d->altitude * 1000.0f; pvt.h_acc = _sitl->gps_accuracy[instance] * 1000; pvt.v_acc = _sitl->gps_accuracy[instance] * 1000; pvt.velN = 1000.0f * d->speedN; pvt.velE = 1000.0f * d->speedE; pvt.velD = 1000.0f * d->speedD; pvt.gspeed = norm(d->speedN, d->speedE) * 1000; pvt.head_mot = ToDeg(atan2f(d->speedE, d->speedN)) * 1.0e5; pvt.s_acc = 40; pvt.head_acc = 38 * 1.0e5; pvt.p_dop = 65535; memset(pvt.reserved1, '\0', ARRAY_SIZE(pvt.reserved1)); pvt.headVeh = 0; memset(pvt.reserved2, '\0', ARRAY_SIZE(pvt.reserved2)); if (_sitl->gps_hdg_enabled[instance] > SITL::SIM::GPS_HEADING_NONE) { const Vector3f ant1_pos = _sitl->gps_pos_offset[instance^1].get(); const Vector3f ant2_pos = _sitl->gps_pos_offset[instance].get(); Vector3f rel_antenna_pos = ant2_pos - ant1_pos; Matrix3f rot; // project attitude back using gyros to get antenna orientation at time of GPS sample Vector3f gyro(radians(_sitl->state.rollRate), radians(_sitl->state.pitchRate), radians(_sitl->state.yawRate)); rot.from_euler(radians(_sitl->state.rollDeg), radians(_sitl->state.pitchDeg), radians(d->yaw_deg)); const float lag = _sitl->gps_delay_ms[instance] * 0.001; rot.rotate(gyro * (-lag)); rel_antenna_pos = rot * rel_antenna_pos; relposned.version = 1; relposned.iTOW = gps_tow.ms; relposned.relPosN = rel_antenna_pos.x * 100; relposned.relPosE = rel_antenna_pos.y * 100; relposned.relPosD = rel_antenna_pos.z * 100; relposned.relPosLength = rel_antenna_pos.length() * 100; relposned.relPosHeading = degrees(Vector2f(rel_antenna_pos.x, rel_antenna_pos.y).angle()) * 1.0e5; relposned.flags = gnssFixOK | diffSoln | carrSolnFixed | isMoving | relPosValid | relPosHeadingValid; } send_ubx(MSG_POSLLH, (uint8_t*)&pos, sizeof(pos)); send_ubx(MSG_STATUS, (uint8_t*)&status, sizeof(status)); send_ubx(MSG_VELNED, (uint8_t*)&velned, sizeof(velned)); send_ubx(MSG_SOL, (uint8_t*)&sol, sizeof(sol)); send_ubx(MSG_DOP, (uint8_t*)&dop, sizeof(dop)); send_ubx(MSG_PVT, (uint8_t*)&pvt, sizeof(pvt)); if (_sitl->gps_hdg_enabled[instance] > SITL::SIM::GPS_HEADING_NONE) { send_ubx(MSG_RELPOSNED, (uint8_t*)&relposned, sizeof(relposned)); } if (gps_tow.ms > _next_nav_sv_info_time) { svinfo.itow = gps_tow.ms; svinfo.numCh = 32; svinfo.globalFlags = 4; // u-blox 8/M8 // fill in the SV's with some data even though firmware does not currently use it // note that this is not using num_sats as we aren't dynamically creating this to match for (uint8_t i = 0; i < SV_COUNT; i++) { svinfo.sv[i].chn = i; svinfo.sv[i].svid = i; svinfo.sv[i].flags = (i < _sitl->gps_numsats[instance]) ? 0x7 : 0x6; // sv used, diff correction data, orbit information svinfo.sv[i].quality = 7; // code and carrier lock and time synchronized svinfo.sv[i].cno = MAX(20, 30 - i); svinfo.sv[i].elev = MAX(30, 90 - i); svinfo.sv[i].azim = i; // not bothering to fill in prRes } send_ubx(MSG_SVINFO, (uint8_t*)&svinfo, sizeof(svinfo)); _next_nav_sv_info_time = gps_tow.ms + 10000; // 10 second delay } } /* formatted print of NMEA message, with checksum appended */ void GPS_NMEA::nmea_printf(const char *fmt, ...) { va_list ap; va_start(ap, fmt); char *s = nmea_vaprintf(fmt, ap); va_end(ap); if (s != nullptr) { write_to_autopilot((const char*)s, strlen(s)); free(s); } } /* send a new GPS NMEA packet */ void GPS_NMEA::update_write(const GPS_Data *d) { struct timeval tv; struct tm *tm; char tstring[20]; char dstring[20]; char lat_string[20]; char lng_string[20]; simulation_timeval(&tv); tm = gmtime(&tv.tv_sec); // format time string snprintf(tstring, sizeof(tstring), "%02u%02u%06.3f", tm->tm_hour, tm->tm_min, tm->tm_sec + tv.tv_usec*1.0e-6); // format date string snprintf(dstring, sizeof(dstring), "%02u%02u%02u", tm->tm_mday, tm->tm_mon+1, tm->tm_year % 100); // format latitude double deg = fabs(d->latitude); snprintf(lat_string, sizeof(lat_string), "%02u%08.5f,%c", (unsigned)deg, (deg - int(deg))*60, d->latitude<0?'S':'N'); // format longitude deg = fabs(d->longitude); snprintf(lng_string, sizeof(lng_string), "%03u%08.5f,%c", (unsigned)deg, (deg - int(deg))*60, d->longitude<0?'W':'E'); nmea_printf("$GPGGA,%s,%s,%s,%01d,%02d,%04.1f,%07.2f,M,0.0,M,,", tstring, lat_string, lng_string, d->have_lock?1:0, d->have_lock?_sitl->gps_numsats[instance]:3, 1.2, d->altitude); const float speed_mps = d->speed_2d(); const float speed_knots = speed_mps * M_PER_SEC_TO_KNOTS; const auto heading_rad = d->heading(); //$GPVTG,133.18,T,120.79,M,0.11,N,0.20,K,A*24 nmea_printf("$GPVTG,%.2f,T,%.2f,M,%.2f,N,%.2f,K,A", tstring, heading_rad, heading_rad, speed_knots, speed_knots * KNOTS_TO_METERS_PER_SECOND * 3.6); nmea_printf("$GPRMC,%s,%c,%s,%s,%.2f,%.2f,%s,,", tstring, d->have_lock?'A':'V', lat_string, lng_string, speed_knots, heading_rad, dstring); if (_sitl->gps_hdg_enabled[instance] == SITL::SIM::GPS_HEADING_HDT) { nmea_printf("$GPHDT,%.2f,T", d->yaw_deg); } else if (_sitl->gps_hdg_enabled[instance] == SITL::SIM::GPS_HEADING_THS) { nmea_printf("$GPTHS,%.2f,%c,T", d->yaw_deg, d->have_lock ? 'A' : 'V'); } else if (_sitl->gps_hdg_enabled[instance] == SITL::SIM::GPS_HEADING_KSXT) { // Unicore support // $KSXT,20211016083433.00,116.31296102,39.95817066,49.4911,223.57,-11.32,330.19,0.024,,1,3,28,27,,,,-0.012,0.021,0.020,,*2D nmea_printf("$KSXT,%04u%02u%02u%02u%02u%02u.%02u,%.8f,%.8f,%.4f,%.2f,%.2f,%.2f,%.2f,%.3f,%u,%u,%u,%u,,,,%.3f,%.3f,%.3f,,", tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, unsigned(tv.tv_usec*1.e-4), d->longitude, d->latitude, d->altitude, wrap_360(d->yaw_deg), d->pitch_deg, heading_rad, speed_mps, d->roll_deg, d->have_lock?1:0, // 2=rtkfloat 3=rtkfixed, 3, // fixed rtk yaw solution, d->have_lock?_sitl->gps_numsats[instance]:3, d->have_lock?_sitl->gps_numsats[instance]:3, d->speedE * 3.6, d->speedN * 3.6, -d->speedD * 3.6); } } void GPS_SBP_Common::sbp_send_message(uint16_t msg_type, uint16_t sender_id, uint8_t len, uint8_t *payload) { if (len != 0 && payload == 0) { return; //SBP_NULL_ERROR; } uint8_t preamble = 0x55; write_to_autopilot((char*)&preamble, 1); write_to_autopilot((char*)&msg_type, 2); write_to_autopilot((char*)&sender_id, 2); write_to_autopilot((char*)&len, 1); if (len > 0) { write_to_autopilot((char*)payload, len); } uint16_t crc; crc = crc16_ccitt((uint8_t*)&(msg_type), 2, 0); crc = crc16_ccitt((uint8_t*)&(sender_id), 2, crc); crc = crc16_ccitt(&(len), 1, crc); crc = crc16_ccitt(payload, len, crc); write_to_autopilot((char*)&crc, 2); } void GPS_SBP::update_write(const GPS_Data *d) { struct sbp_heartbeat_t { bool sys_error : 1; bool io_error : 1; bool nap_error : 1; uint8_t res : 5; uint8_t protocol_minor : 8; uint8_t protocol_major : 8; uint8_t res2 : 7; bool ext_antenna : 1; } hb; // 4 bytes struct PACKED sbp_gps_time_t { uint16_t wn; //< GPS week number uint32_t tow; //< GPS Time of Week rounded to the nearest ms int32_t ns; //< Nanosecond remainder of rounded tow uint8_t flags; //< Status flags (reserved) } t; struct PACKED sbp_pos_llh_t { uint32_t tow; //< GPS Time of Week double lat; //< Latitude double lon; //< Longitude double height; //< Height uint16_t h_accuracy; //< Horizontal position accuracy estimate uint16_t v_accuracy; //< Vertical position accuracy estimate uint8_t n_sats; //< Number of satellites used in solution uint8_t flags; //< Status flags } pos; struct PACKED sbp_vel_ned_t { uint32_t tow; //< GPS Time of Week int32_t n; //< Velocity North coordinate int32_t e; //< Velocity East coordinate int32_t d; //< Velocity Down coordinate uint16_t h_accuracy; //< Horizontal velocity accuracy estimate uint16_t v_accuracy; //< Vertical velocity accuracy estimate uint8_t n_sats; //< Number of satellites used in solution uint8_t flags; //< Status flags (reserved) } velned; struct PACKED sbp_dops_t { uint32_t tow; //< GPS Time of Week uint16_t gdop; //< Geometric Dilution of Precision uint16_t pdop; //< Position Dilution of Precision uint16_t tdop; //< Time Dilution of Precision uint16_t hdop; //< Horizontal Dilution of Precision uint16_t vdop; //< Vertical Dilution of Precision uint8_t flags; //< Status flags (reserved) } dops; static const uint16_t SBP_HEARTBEAT_MSGTYPE = 0xFFFF; static const uint16_t SBP_GPS_TIME_MSGTYPE = 0x0100; static const uint16_t SBP_DOPS_MSGTYPE = 0x0206; static const uint16_t SBP_POS_LLH_MSGTYPE = 0x0201; static const uint16_t SBP_VEL_NED_MSGTYPE = 0x0205; const auto gps_tow = gps_time(); t.wn = gps_tow.week; t.tow = gps_tow.ms; t.ns = 0; t.flags = 0; sbp_send_message(SBP_GPS_TIME_MSGTYPE, 0x2222, sizeof(t), (uint8_t*)&t); if (!d->have_lock) { return; } pos.tow = gps_tow.ms; pos.lon = d->longitude; pos.lat= d->latitude; pos.height = d->altitude; pos.h_accuracy = _sitl->gps_accuracy[instance]*1000; pos.v_accuracy = _sitl->gps_accuracy[instance]*1000; pos.n_sats = d->have_lock ? _sitl->gps_numsats[instance] : 3; // Send single point position solution pos.flags = 0; sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos); // Send "pseudo-absolute" RTK position solution pos.flags = 1; sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos); velned.tow = gps_tow.ms; velned.n = 1e3 * d->speedN; velned.e = 1e3 * d->speedE; velned.d = 1e3 * d->speedD; velned.h_accuracy = 5e3; velned.v_accuracy = 5e3; velned.n_sats = d->have_lock ? _sitl->gps_numsats[instance] : 3; velned.flags = 0; sbp_send_message(SBP_VEL_NED_MSGTYPE, 0x2222, sizeof(velned), (uint8_t*)&velned); static uint32_t do_every_count = 0; if (do_every_count % 5 == 0) { dops.tow = gps_tow.ms; dops.gdop = 1; dops.pdop = 1; dops.tdop = 1; dops.hdop = 100; dops.vdop = 1; dops.flags = 1; sbp_send_message(SBP_DOPS_MSGTYPE, 0x2222, sizeof(dops), (uint8_t*)&dops); hb.protocol_major = 0; //Sends protocol version 0 sbp_send_message(SBP_HEARTBEAT_MSGTYPE, 0x2222, sizeof(hb), (uint8_t*)&hb); } do_every_count++; } void GPS_SBP2::update_write(const GPS_Data *d) { struct sbp_heartbeat_t { bool sys_error : 1; bool io_error : 1; bool nap_error : 1; uint8_t res : 5; uint8_t protocol_minor : 8; uint8_t protocol_major : 8; uint8_t res2 : 7; bool ext_antenna : 1; } hb; // 4 bytes struct PACKED sbp_gps_time_t { uint16_t wn; //< GPS week number uint32_t tow; //< GPS Time of Week rounded to the nearest ms int32_t ns; //< Nanosecond remainder of rounded tow uint8_t flags; //< Status flags (reserved) } t; struct PACKED sbp_pos_llh_t { uint32_t tow; //< GPS Time of Week double lat; //< Latitude double lon; //< Longitude double height; //< Height uint16_t h_accuracy; //< Horizontal position accuracy estimate uint16_t v_accuracy; //< Vertical position accuracy estimate uint8_t n_sats; //< Number of satellites used in solution uint8_t flags; //< Status flags } pos; struct PACKED sbp_vel_ned_t { uint32_t tow; //< GPS Time of Week int32_t n; //< Velocity North coordinate int32_t e; //< Velocity East coordinate int32_t d; //< Velocity Down coordinate uint16_t h_accuracy; //< Horizontal velocity accuracy estimate uint16_t v_accuracy; //< Vertical velocity accuracy estimate uint8_t n_sats; //< Number of satellites used in solution uint8_t flags; //< Status flags (reserved) } velned; struct PACKED sbp_dops_t { uint32_t tow; //< GPS Time of Week uint16_t gdop; //< Geometric Dilution of Precision uint16_t pdop; //< Position Dilution of Precision uint16_t tdop; //< Time Dilution of Precision uint16_t hdop; //< Horizontal Dilution of Precision uint16_t vdop; //< Vertical Dilution of Precision uint8_t flags; //< Status flags (reserved) } dops; static const uint16_t SBP_HEARTBEAT_MSGTYPE = 0xFFFF; static const uint16_t SBP_GPS_TIME_MSGTYPE = 0x0102; static const uint16_t SBP_DOPS_MSGTYPE = 0x0208; static const uint16_t SBP_POS_LLH_MSGTYPE = 0x020A; static const uint16_t SBP_VEL_NED_MSGTYPE = 0x020E; const auto gps_tow = gps_time(); t.wn = gps_tow.week; t.tow = gps_tow.ms; t.ns = 0; t.flags = 1; sbp_send_message(SBP_GPS_TIME_MSGTYPE, 0x2222, sizeof(t), (uint8_t*)&t); if (!d->have_lock) { return; } pos.tow = gps_tow.ms; pos.lon = d->longitude; pos.lat= d->latitude; pos.height = d->altitude; pos.h_accuracy = _sitl->gps_accuracy[instance]*1000; pos.v_accuracy = _sitl->gps_accuracy[instance]*1000; pos.n_sats = d->have_lock ? _sitl->gps_numsats[instance] : 3; // Send single point position solution pos.flags = 1; sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos); // Send "pseudo-absolute" RTK position solution pos.flags = 4; sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos); velned.tow = gps_tow.ms; velned.n = 1e3 * d->speedN; velned.e = 1e3 * d->speedE; velned.d = 1e3 * d->speedD; velned.h_accuracy = 5e3; velned.v_accuracy = 5e3; velned.n_sats = d->have_lock ? _sitl->gps_numsats[instance] : 3; velned.flags = 1; sbp_send_message(SBP_VEL_NED_MSGTYPE, 0x2222, sizeof(velned), (uint8_t*)&velned); static uint32_t do_every_count = 0; if (do_every_count % 5 == 0) { dops.tow = gps_tow.ms; dops.gdop = 1; dops.pdop = 1; dops.tdop = 1; dops.hdop = 100; dops.vdop = 1; dops.flags = 1; sbp_send_message(SBP_DOPS_MSGTYPE, 0x2222, sizeof(dops), (uint8_t*)&dops); hb.protocol_major = 2; //Sends protocol version 2.0 sbp_send_message(SBP_HEARTBEAT_MSGTYPE, 0x2222, sizeof(hb), (uint8_t*)&hb); } do_every_count++; } void GPS_NOVA::update_write(const GPS_Data *d) { static struct PACKED nova_header { // 0 uint8_t preamble[3]; // 3 uint8_t headerlength; // 4 uint16_t messageid; // 6 uint8_t messagetype; //7 uint8_t portaddr; //8 uint16_t messagelength; //10 uint16_t sequence; //12 uint8_t idletime; //13 uint8_t timestatus; //14 uint16_t week; //16 uint32_t tow; //20 uint32_t recvstatus; // 24 uint16_t resv; //26 uint16_t recvswver; } header; struct PACKED psrdop { float gdop; float pdop; float hdop; float htdop; float tdop; float cutoff; uint32_t svcount; // extra data for individual prns } psrdop {}; struct PACKED bestpos { uint32_t solstat; uint32_t postype; double lat; double lng; double hgt; float undulation; uint32_t datumid; float latsdev; float lngsdev; float hgtsdev; // 4 bytes uint8_t stnid[4]; float diffage; float sol_age; uint8_t svstracked; uint8_t svsused; uint8_t svsl1; uint8_t svsmultfreq; uint8_t resv; uint8_t extsolstat; uint8_t galbeisigmask; uint8_t gpsglosigmask; } bestpos {}; struct PACKED bestvel { uint32_t solstat; uint32_t veltype; float latency; float age; double horspd; double trkgnd; // + up double vertspd; float resv; } bestvel {}; const auto gps_tow = gps_time(); header.preamble[0] = 0xaa; header.preamble[1] = 0x44; header.preamble[2] = 0x12; header.headerlength = sizeof(header); header.week = gps_tow.week; header.tow = gps_tow.ms; header.messageid = 174; header.messagelength = sizeof(psrdop); header.sequence += 1; psrdop.hdop = 1.20; psrdop.htdop = 1.20; nova_send_message((uint8_t*)&header,sizeof(header),(uint8_t*)&psrdop, sizeof(psrdop)); header.messageid = 99; header.messagelength = sizeof(bestvel); header.sequence += 1; bestvel.horspd = norm(d->speedN, d->speedE); bestvel.trkgnd = ToDeg(atan2f(d->speedE, d->speedN)); bestvel.vertspd = -d->speedD; nova_send_message((uint8_t*)&header,sizeof(header),(uint8_t*)&bestvel, sizeof(bestvel)); header.messageid = 42; header.messagelength = sizeof(bestpos); header.sequence += 1; bestpos.lat = d->latitude; bestpos.lng = d->longitude; bestpos.hgt = d->altitude; bestpos.svsused = d->have_lock ? _sitl->gps_numsats[instance] : 3; bestpos.latsdev=0.2; bestpos.lngsdev=0.2; bestpos.hgtsdev=0.2; bestpos.solstat=0; bestpos.postype=32; nova_send_message((uint8_t*)&header,sizeof(header),(uint8_t*)&bestpos, sizeof(bestpos)); } void GPS_NOVA::nova_send_message(uint8_t *header, uint8_t headerlength, uint8_t *payload, uint8_t payloadlen) { write_to_autopilot((char*)header, headerlength); write_to_autopilot((char*)payload, payloadlen); uint32_t crc = CalculateBlockCRC32(headerlength, header, (uint32_t)0); crc = CalculateBlockCRC32(payloadlen, payload, crc); write_to_autopilot((char*)&crc, 4); } #define CRC32_POLYNOMIAL 0xEDB88320L uint32_t GPS_NOVA::CRC32Value(uint32_t icrc) { int i; uint32_t crc = icrc; for ( i = 8 ; i > 0; i-- ) { if ( crc & 1 ) crc = ( crc >> 1 ) ^ CRC32_POLYNOMIAL; else crc >>= 1; } return crc; } uint32_t GPS_NOVA::CalculateBlockCRC32(uint32_t length, uint8_t *buffer, uint32_t crc) { while ( length-- != 0 ) { crc = ((crc >> 8) & 0x00FFFFFFL) ^ (CRC32Value(((uint32_t) crc ^ *buffer++) & 0xff)); } return( crc ); } void GPS_GSOF::update_write(const GPS_Data *d) { // https://receiverhelp.trimble.com/oem-gnss/index.html#GSOFmessages_TIME.html?TocPath=Output%2520Messages%257CGSOF%2520Messages%257C_____25 constexpr uint8_t GSOF_POS_TIME_TYPE { 0x01 }; constexpr uint8_t GSOF_POS_TIME_LEN { 0x0A }; // TODO magic number until SITL supports GPS bootcount based on GPSN_ENABLE const uint8_t bootcount = 17; // https://receiverhelp.trimble.com/oem-gnss/GSOFmessages_Flags.html#Position%20flags%201 enum class POS_FLAGS_1 : uint8_t { NEW_POSITION = 1U << 0, CLOCK_FIX_CALULATED = 1U << 1, HORIZ_FROM_THIS_POS = 1U << 2, HEIGHT_FROM_THIS_POS = 1U << 3, RESERVED_4 = 1U << 4, LEAST_SQ_POSITION = 1U << 5, RESERVED_6 = 1U << 6, POSITION_L1_PSEUDORANGES = 1U << 7 }; const uint8_t pos_flags_1 { uint8_t(POS_FLAGS_1::NEW_POSITION) | uint8_t(POS_FLAGS_1::CLOCK_FIX_CALULATED) | uint8_t(POS_FLAGS_1::HORIZ_FROM_THIS_POS) | uint8_t(POS_FLAGS_1::HEIGHT_FROM_THIS_POS) | uint8_t(POS_FLAGS_1::RESERVED_4) | uint8_t(POS_FLAGS_1::LEAST_SQ_POSITION) | uint8_t(POS_FLAGS_1::POSITION_L1_PSEUDORANGES) }; // https://receiverhelp.trimble.com/oem-gnss/GSOFmessages_Flags.html#Position%20flags%202 enum class POS_FLAGS_2 : uint8_t { DIFFERENTIAL_POS = 1U << 0, DIFFERENTIAL_POS_PHASE_RTK = 1U << 1, POSITION_METHOD_FIXED_PHASE = 1U << 2, OMNISTAR_ACTIVE = 1U << 3, DETERMINED_WITH_STATIC_CONSTRAINT = 1U << 4, NETWORK_RTK = 1U << 5, DITHERED_RTK = 1U << 6, BEACON_DGNSS = 1U << 7, }; // Simulate a GPS without RTK in SIM since there is no RTK SIM params. // This means these flags are unset: // NETWORK_RTK, DITHERED_RTK, BEACON_DGNSS uint8_t pos_flags_2 {0}; if(d->have_lock) { pos_flags_2 |= uint8_t(POS_FLAGS_2::DIFFERENTIAL_POS); pos_flags_2 |= uint8_t(POS_FLAGS_2::DIFFERENTIAL_POS_PHASE_RTK); pos_flags_2 |= uint8_t(POS_FLAGS_2::POSITION_METHOD_FIXED_PHASE); pos_flags_2 |= uint8_t(POS_FLAGS_2::OMNISTAR_ACTIVE); pos_flags_2 |= uint8_t(POS_FLAGS_2::DETERMINED_WITH_STATIC_CONSTRAINT); } const auto gps_tow = gps_time(); const struct PACKED gsof_pos_time { const uint8_t OUTPUT_RECORD_TYPE; const uint8_t RECORD_LEN; uint32_t time_week_ms; uint16_t time_week; uint8_t num_sats; // https://receiverhelp.trimble.com/oem-gnss/GSOFmessages_Flags.html#Position%20flags%201 uint8_t pos_flags_1; // https://receiverhelp.trimble.com/oem-gnss/GSOFmessages_Flags.html#Position%20flags%202 uint8_t pos_flags_2; uint8_t initialized_num; } pos_time { GSOF_POS_TIME_TYPE, GSOF_POS_TIME_LEN, htobe32(gps_tow.ms), htobe16(gps_tow.week), d->have_lock ? _sitl->gps_numsats[instance] : uint8_t(3), pos_flags_1, pos_flags_2, bootcount }; static_assert(sizeof(gsof_pos_time) - (sizeof(gsof_pos_time::OUTPUT_RECORD_TYPE) + sizeof(gsof_pos_time::RECORD_LEN)) == GSOF_POS_TIME_LEN); constexpr uint8_t GSOF_POS_TYPE = 0x02; constexpr uint8_t GSOF_POS_LEN = 0x18; const struct PACKED gsof_pos { const uint8_t OUTPUT_RECORD_TYPE; const uint8_t RECORD_LEN; uint64_t lat; uint64_t lng; uint64_t alt; } pos { GSOF_POS_TYPE, GSOF_POS_LEN, gsof_pack_double(d->latitude * DEG_TO_RAD_DOUBLE), gsof_pack_double(d->longitude * DEG_TO_RAD_DOUBLE), gsof_pack_double(static_cast(d->altitude)) }; static_assert(sizeof(gsof_pos) - (sizeof(gsof_pos::OUTPUT_RECORD_TYPE) + sizeof(gsof_pos::RECORD_LEN)) == GSOF_POS_LEN); // https://receiverhelp.trimble.com/oem-gnss/GSOFmessages_Velocity.html constexpr uint8_t GSOF_VEL_TYPE = 0x08; // use the smaller packet by ignoring local coordinate system constexpr uint8_t GSOF_VEL_LEN = 0x0D; // https://receiverhelp.trimble.com/oem-gnss/GSOFmessages_Flags.html#Velocity%20flags enum class VEL_FIELDS : uint8_t { VALID = 1U << 0, CONSECUTIVE_MEASUREMENTS = 1U << 1, HEADING_VALID = 1U << 2, RESERVED_3 = 1U << 3, RESERVED_4 = 1U << 4, RESERVED_5 = 1U << 5, RESERVED_6 = 1U << 6, RESERVED_7 = 1U << 7, }; uint8_t vel_flags {0}; if(d->have_lock) { vel_flags |= uint8_t(VEL_FIELDS::VALID); vel_flags |= uint8_t(VEL_FIELDS::CONSECUTIVE_MEASUREMENTS); vel_flags |= uint8_t(VEL_FIELDS::HEADING_VALID); } const struct PACKED gsof_vel { const uint8_t OUTPUT_RECORD_TYPE; const uint8_t RECORD_LEN; // https://receiverhelp.trimble.com/oem-gnss/GSOFmessages_Flags.html#Velocity%20flags uint8_t flags; uint32_t horiz_m_p_s; uint32_t heading_rad; uint32_t vertical_m_p_s; } vel { GSOF_VEL_TYPE, GSOF_VEL_LEN, vel_flags, gsof_pack_float(d->speed_2d()), gsof_pack_float(d->heading()), // Trimble API has ambiguous direction here. // Intentionally narrow from double. gsof_pack_float(static_cast(d->speedD)) }; static_assert(sizeof(gsof_vel) - (sizeof(gsof_vel::OUTPUT_RECORD_TYPE) + sizeof(gsof_vel::RECORD_LEN)) == GSOF_VEL_LEN); // https://receiverhelp.trimble.com/oem-gnss/index.html#GSOFmessages_PDOP.html?TocPath=Output%2520Messages%257CGSOF%2520Messages%257C_____12 constexpr uint8_t GSOF_DOP_TYPE = 0x09; constexpr uint8_t GSOF_DOP_LEN = 0x10; const struct PACKED gsof_dop { const uint8_t OUTPUT_RECORD_TYPE { GSOF_DOP_TYPE }; const uint8_t RECORD_LEN { GSOF_DOP_LEN }; uint32_t pdop = htobe32(1); uint32_t hdop = htobe32(1); uint32_t vdop = htobe32(1); uint32_t tdop = htobe32(1); } dop {}; // Check the payload size calculation in the compiler constexpr auto dop_size = sizeof(gsof_dop); static_assert(dop_size == 18); constexpr auto dop_record_type_size = sizeof(gsof_dop::OUTPUT_RECORD_TYPE); static_assert(dop_record_type_size == 1); constexpr auto len_size = sizeof(gsof_dop::RECORD_LEN); static_assert(len_size == 1); constexpr auto dop_payload_size = dop_size - (dop_record_type_size + len_size); static_assert(dop_payload_size == GSOF_DOP_LEN); constexpr uint8_t GSOF_POS_SIGMA_TYPE = 0x0C; constexpr uint8_t GSOF_POS_SIGMA_LEN = 0x26; const struct PACKED gsof_pos_sigma { const uint8_t OUTPUT_RECORD_TYPE { GSOF_POS_SIGMA_TYPE }; const uint8_t RECORD_LEN { GSOF_POS_SIGMA_LEN }; uint32_t pos_rms = htobe32(0); uint32_t sigma_e = htobe32(0); uint32_t sigma_n = htobe32(0); uint32_t cov_en = htobe32(0); uint32_t sigma_up = htobe32(0); uint32_t semi_major_axis = htobe32(0); uint32_t semi_minor_axis = htobe32(0); uint32_t orientation = htobe32(0); uint32_t unit_variance = htobe32(0); uint16_t n_epocs = htobe32(1); // Always 1 for kinematic. } pos_sigma {}; static_assert(sizeof(gsof_pos_sigma) - (sizeof(gsof_pos_sigma::OUTPUT_RECORD_TYPE) + sizeof(gsof_pos_sigma::RECORD_LEN)) == GSOF_POS_SIGMA_LEN); // TODO add GSOF49 const uint8_t payload_sz = sizeof(pos_time) + sizeof(pos) + sizeof(vel) + sizeof(dop) + sizeof(pos_sigma); uint8_t buf[payload_sz] = {}; uint8_t offset = 0; memcpy(&buf[offset], &pos_time, sizeof(pos_time)); offset += sizeof(pos_time); memcpy(&buf[offset], &pos, sizeof(pos)); offset += sizeof(pos); memcpy(&buf[offset], &vel, sizeof(vel)); offset += sizeof(vel); memcpy(&buf[offset], &dop, sizeof(dop)); offset += sizeof(dop); memcpy(&buf[offset], &pos_sigma, sizeof(pos_sigma)); offset += sizeof(pos_sigma); assert(offset == payload_sz); send_gsof(buf, sizeof(buf)); } void GPS_GSOF::send_gsof(const uint8_t *buf, const uint16_t size) { // All Trimble "Data Collector" packets, including GSOF, are comprised of three fields: // * A fixed-length packet header (dcol_header) // * A variable-length data frame (buf) // * A fixed-length packet trailer (dcol_trailer) // Reference: // https://receiverhelp.trimble.com/oem-gnss/index.html#API_DataCollectorFormatPacketStructure.html?TocPath=API%2520Documentation%257CData%2520collector%2520format%2520packets%257CData%2520collector%2520format%253A%2520packet%2520structure%257C_____0 const uint8_t STX = 0x02; // status bitfield // https://receiverhelp.trimble.com/oem-gnss/index.html#API_ReceiverStatusByte.html?TocPath=API%2520Documentation%257CData%2520collector%2520format%2520packets%257CData%2520collector%2520format%253A%2520packet%2520structure%257C_____1 const uint8_t STATUS = 0xa8; const uint8_t PACKET_TYPE = 0x40; // Report Packet 40h (GENOUT) // Before writing the GSOF data buffer, the GSOF header needs added between the DCOL header and the payload data frame. // https://receiverhelp.trimble.com/oem-gnss/index.html#GSOFmessages_GSOF.html?TocPath=Output%2520Messages%257CGSOF%2520Messages%257C_____2 static uint8_t TRANSMISSION_NUMBER = 0; // Functionally, this is a sequence number // Most messages, even GSOF49, only take one page. For SIM, assume it. assert(size < 0xFA); // GPS SIM doesn't yet support paging constexpr uint8_t PAGE_INDEX = 0; constexpr uint8_t MAX_PAGE_INDEX = 0; const uint8_t gsof_header[3] = { TRANSMISSION_NUMBER, PAGE_INDEX, MAX_PAGE_INDEX, }; ++TRANSMISSION_NUMBER; // A captured GSOF49 packet from BD940 has LENGTH field set to 0x6d = 109 bytes. // A captured GSOF49 packet from BD940 has total bytes of 115 bytes. // Thus, the following 5 bytes are not counted. // 1) STX // 2) STATUS // 3) PACKET TYPE // 4) LENGTH // 5) CHECKSUM // 6) ETX // This aligns with manual's idea of data bytes: // "Each message begins with a 4-byte header, followed by the bytes of data in each packet. The packet ends with a 2-byte trailer." // Thus, for this implementation with single-page single-record per DCOL packet, // the length is simply the sum of data packet size, the gsof_header size. const uint8_t length = size + sizeof(gsof_header); const uint8_t dcol_header[4] { STX, STATUS, PACKET_TYPE, length }; // Sum bytes (status + type + length + data bytes) and modulo 256 the summation // Because it's a uint8, use natural overflow uint8_t csum = STATUS + PACKET_TYPE + length; for (size_t i = 0; i < ARRAY_SIZE(gsof_header); i++) { csum += gsof_header[i]; } for (size_t i = 0; i < size; i++) { csum += buf[i]; } constexpr uint8_t ETX = 0x03; const uint8_t dcol_trailer[2] = { csum, ETX }; write_to_autopilot((char*)dcol_header, sizeof(dcol_header)); write_to_autopilot((char*)gsof_header, sizeof(gsof_header)); write_to_autopilot((char*)buf, size); write_to_autopilot((char*)dcol_trailer, sizeof(dcol_trailer)); const uint8_t total_size = sizeof(dcol_header) + sizeof(gsof_header) + size + sizeof(dcol_trailer); // Validate length based on everything but DCOL h if(dcol_header[3] != total_size - (sizeof(dcol_header) + sizeof(dcol_trailer))) { INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); } } uint64_t GPS_GSOF::gsof_pack_double(const double& src) { uint64_t dst; static_assert(sizeof(src) == sizeof(dst)); memcpy(&dst, &src, sizeof(dst)); dst = htobe64(dst); return dst; } uint32_t GPS_GSOF::gsof_pack_float(const float& src) { uint32_t dst; static_assert(sizeof(src) == sizeof(dst)); memcpy(&dst, &src, sizeof(dst)); dst = htobe32(dst); return dst; } /* send MSP GPS data */ void GPS_MSP::update_write(const GPS_Data *d) { struct PACKED { // header struct PACKED { uint8_t dollar = '$'; uint8_t magic = 'X'; uint8_t code = '<'; uint8_t flags; uint16_t cmd = 0x1F03; // GPS uint16_t size = 52; } hdr; uint8_t instance; uint16_t gps_week; uint32_t ms_tow; uint8_t fix_type; uint8_t satellites_in_view; uint16_t horizontal_pos_accuracy; // [cm] uint16_t vertical_pos_accuracy; // [cm] uint16_t horizontal_vel_accuracy; // [cm/s] uint16_t hdop; int32_t longitude; int32_t latitude; int32_t msl_altitude; // cm int32_t ned_vel_north; // cm/s int32_t ned_vel_east; int32_t ned_vel_down; uint16_t ground_course; // deg * 100, 0..36000 uint16_t true_yaw; // deg * 100, values of 0..36000 are valid. 65535 = no data available uint16_t year; uint8_t month; uint8_t day; uint8_t hour; uint8_t min; uint8_t sec; // footer CRC uint8_t crc; } msp_gps {}; auto t = gps_time(); struct timeval tv; simulation_timeval(&tv); auto *tm = gmtime(&tv.tv_sec); msp_gps.gps_week = t.week; msp_gps.ms_tow = t.ms; msp_gps.fix_type = d->have_lock?3:0; msp_gps.satellites_in_view = d->have_lock ? _sitl->gps_numsats[instance] : 3; msp_gps.horizontal_pos_accuracy = _sitl->gps_accuracy[instance]*100; msp_gps.vertical_pos_accuracy = _sitl->gps_accuracy[instance]*100; msp_gps.horizontal_vel_accuracy = 30; msp_gps.hdop = 100; msp_gps.longitude = d->longitude * 1.0e7; msp_gps.latitude = d->latitude * 1.0e7; msp_gps.msl_altitude = d->altitude * 100; msp_gps.ned_vel_north = 100 * d->speedN; msp_gps.ned_vel_east = 100 * d->speedE; msp_gps.ned_vel_down = 100 * d->speedD; msp_gps.ground_course = ToDeg(atan2f(d->speedE, d->speedN)) * 100; msp_gps.true_yaw = wrap_360(d->yaw_deg)*100U; // can send 65535 for no yaw msp_gps.year = tm->tm_year; msp_gps.month = tm->tm_mon; msp_gps.day = tm->tm_mday; msp_gps.hour = tm->tm_hour; msp_gps.min = tm->tm_min; msp_gps.sec = tm->tm_sec; // CRC is over packet without first 3 bytes and trailing CRC byte msp_gps.crc = crc8_dvb_s2_update(0, (uint8_t *)&msp_gps.hdr.flags, sizeof(msp_gps)-4); write_to_autopilot((const char *)&msp_gps, sizeof(msp_gps)); } /* read file data logged from AP_GPS_DEBUG_LOGGING_ENABLED */ #if AP_SIM_GPS_FILE_ENABLED void GPS_FILE::update_write(const GPS_Data *d) { static int fd[2] = {-1,-1}; static uint32_t base_time[2]; const uint16_t lognum = uint16_t(_sitl->gps_log_num.get()); if (instance > 1) { return; } if (fd[instance] == -1) { char fname[] = "gpsN_NNN.log"; hal.util->snprintf(fname, 13, "gps%u_%03u.log", instance+1, lognum); fd[instance] = open(fname, O_RDONLY|O_CLOEXEC); if (fd[instance] == -1) { return; } } const uint32_t magic = 0x7fe53b04; struct { uint32_t magic; uint32_t time_ms; uint32_t n; } header; uint8_t *buf = nullptr; while (true) { if (::read(fd[instance], (void *)&header, sizeof(header)) != sizeof(header) || header.magic != magic) { goto rewind_file; } if (header.time_ms+base_time[instance] > AP_HAL::millis()) { // not ready for this data yet ::lseek(fd[instance], -sizeof(header), SEEK_CUR); return; } buf = new uint8_t[header.n]; if (buf != nullptr && ::read(fd[instance], buf, header.n) == ssize_t(header.n)) { write_to_autopilot((const char *)buf, header.n); delete[] buf; buf = nullptr; continue; } goto rewind_file; } rewind_file: ::printf("GPS[%u] rewind\n", unsigned(instance)); base_time[instance] = AP_HAL::millis(); ::lseek(fd[instance], 0, SEEK_SET); delete[] buf; } #endif // AP_SIM_GPS_FILE_ENABLED void GPS::check_backend_allocation() { const Type configured_type = Type(_sitl->gps_type[instance].get()); if (allocated_type == configured_type) { return; } // mismatch; delete any already-allocated backend: if (backend != nullptr) { delete backend; backend = nullptr; } // attempt to allocate backend switch (configured_type) { case Type::NONE: // no GPS attached break; case Type::UBLOX: backend = new GPS_UBlox(*this, instance); break; case Type::NMEA: backend = new GPS_NMEA(*this, instance); break; case Type::SBP: backend = new GPS_SBP(*this, instance); break; case Type::SBP2: backend = new GPS_SBP2(*this, instance); break; case Type::NOVA: backend = new GPS_NOVA(*this, instance); break; case Type::MSP: backend = new GPS_MSP(*this, instance); break; case Type::GSOF: backend = new GPS_GSOF(*this, instance); break; #if AP_SIM_GPS_FILE_ENABLED case Type::FILE: backend = new GPS_FILE(*this, instance); break; #endif }; allocated_type = configured_type; } /* possibly send a new GPS packet */ void GPS::update() { if (!init_sitl_pointer()) { return; } check_backend_allocation(); if (backend == nullptr) { return; } double latitude =_sitl->state.latitude; double longitude = _sitl->state.longitude; float altitude = _sitl->state.altitude; const double speedN = _sitl->state.speedN; const double speedE = _sitl->state.speedE; const double speedD = _sitl->state.speedD; const uint32_t now_ms = AP_HAL::millis(); if (now_ms < 20000) { // apply the init offsets for the first 20s. This allows for // having the origin a long way from the takeoff location, // which makes testing long flights easier latitude += _sitl->gps_init_lat_ofs; longitude += _sitl->gps_init_lon_ofs; altitude += _sitl->gps_init_alt_ofs; } //Capture current position as basestation location for if (!_gps_has_basestation_position && now_ms >= _sitl->gps_lock_time[0]*1000UL) { _gps_basestation_data.latitude = latitude; _gps_basestation_data.longitude = longitude; _gps_basestation_data.altitude = altitude; _gps_basestation_data.speedN = speedN; _gps_basestation_data.speedE = speedE; _gps_basestation_data.speedD = speedD; _gps_has_basestation_position = true; } const uint8_t idx = instance; // alias to avoid code churn struct GPS_Data d {}; // simulate delayed lock times bool have_lock = (!_sitl->gps_disable[idx] && now_ms >= _sitl->gps_lock_time[idx]*1000UL); // run at configured GPS rate (default 5Hz) if ((now_ms - last_update) < (uint32_t)(1000/_sitl->gps_hertz[idx])) { return; } last_update = now_ms; d.latitude = latitude; d.longitude = longitude; d.yaw_deg = _sitl->state.yawDeg; d.roll_deg = _sitl->state.rollDeg; d.pitch_deg = _sitl->state.pitchDeg; // add an altitude error controlled by a slow sine wave d.altitude = altitude + _sitl->gps_noise[idx] * sinf(now_ms * 0.0005f) + _sitl->gps_alt_offset[idx]; // Add offset to c.g. velocity to get velocity at antenna and add simulated error Vector3f velErrorNED = _sitl->gps_vel_err[idx]; d.speedN = speedN + (velErrorNED.x * rand_float()); d.speedE = speedE + (velErrorNED.y * rand_float()); d.speedD = speedD + (velErrorNED.z * rand_float()); d.have_lock = have_lock; if (_sitl->gps_drift_alt[idx] > 0) { // add slow altitude drift controlled by a slow sine wave d.altitude += _sitl->gps_drift_alt[idx]*sinf(now_ms*0.001f*0.02f); } // correct the latitude, longitude, height and NED velocity for the offset between // the vehicle c.g. and GPS antenna Vector3f posRelOffsetBF = _sitl->gps_pos_offset[idx]; if (!posRelOffsetBF.is_zero()) { // get a rotation matrix following DCM conventions (body to earth) Matrix3f rotmat; _sitl->state.quaternion.rotation_matrix(rotmat); // rotate the antenna offset into the earth frame Vector3f posRelOffsetEF = rotmat * posRelOffsetBF; // Add the offset to the latitude, longitude and height using a spherical earth approximation double const earth_rad_inv = 1.569612305760477e-7; // use Authalic/Volumetric radius double lng_scale_factor = earth_rad_inv / cos(radians(d.latitude)); d.latitude += degrees(posRelOffsetEF.x * earth_rad_inv); d.longitude += degrees(posRelOffsetEF.y * lng_scale_factor); d.altitude -= posRelOffsetEF.z; // calculate a velocity offset due to the antenna position offset and body rotation rate // note: % operator is overloaded for cross product Vector3f gyro(radians(_sitl->state.rollRate), radians(_sitl->state.pitchRate), radians(_sitl->state.yawRate)); Vector3f velRelOffsetBF = gyro % posRelOffsetBF; // rotate the velocity offset into earth frame and add to the c.g. velocity Vector3f velRelOffsetEF = rotmat * velRelOffsetBF; d.speedN += velRelOffsetEF.x; d.speedE += velRelOffsetEF.y; d.speedD += velRelOffsetEF.z; } // get delayed data d.timestamp_ms = now_ms; d = interpolate_data(d, _sitl->gps_delay_ms[instance]); // Applying GPS glitch // Using first gps glitch Vector3f glitch_offsets = _sitl->gps_glitch[idx]; d.latitude += glitch_offsets.x; d.longitude += glitch_offsets.y; d.altitude += glitch_offsets.z; backend->update(d); // i.e. reading configuration etc from autopilot } void GPS_Backend::update_read(const GPS_Data *d) { // swallow any config bytes char c; read_from_autopilot(&c, 1); } /* get delayed data by interpolation */ GPS_Data GPS::interpolate_data(const GPS_Data &d, uint32_t delay_ms) { const uint8_t N = ARRAY_SIZE(_gps_history); const uint32_t now_ms = d.timestamp_ms; // add in into history array, shifting old elements memmove(&_gps_history[1], &_gps_history[0], sizeof(_gps_history[0])*(ARRAY_SIZE(_gps_history)-1)); _gps_history[0] = d; for (uint8_t i=0; i= dt1 && delay_ms <= dt2) { // we will interpolate this pair of samples. Start with // the older sample const GPS_Data &s1 = _gps_history[i+1]; const GPS_Data &s2 = _gps_history[i]; GPS_Data d2 = s1; const float p = (dt2 - delay_ms) / MAX(1,float(dt2 - dt1)); d2.latitude += p * (s2.latitude - s1.latitude); d2.longitude += p * (s2.longitude - s1.longitude); d2.altitude += p * (s2.altitude - s1.altitude); d2.speedN += p * (s2.speedN - s1.speedN); d2.speedE += p * (s2.speedE - s1.speedE); d2.speedD += p * (s2.speedD - s1.speedD); d2.yaw_deg += p * wrap_180(s2.yaw_deg - s1.yaw_deg); return d2; } } // delay is too long, use last sample return _gps_history[N-1]; } float GPS_Data::heading() const { const auto velocity = Vector2d{speedE, speedN}; return velocity.angle(); } float GPS_Data::speed_2d() const { const auto velocity = Vector2d{speedN, speedE}; return velocity.length(); } #endif // HAL_SIM_GPS_ENABLED