/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once #include "AP_GPS_config.h" #if AP_GPS_ENABLED #include #include #include #include #include #include "GPS_detect_state.h" #include #include #include #include #include /** maximum number of GPS instances available on this platform. If more than 1 then redundant sensors may be available */ #ifndef GPS_MAX_RECEIVERS #define GPS_MAX_RECEIVERS 2 // maximum number of physical GPS sensors allowed - does not include virtual GPS created by blending receiver data #endif #if !defined(GPS_MAX_INSTANCES) #if GPS_MAX_RECEIVERS > 1 #define GPS_MAX_INSTANCES (GPS_MAX_RECEIVERS + 1) // maximum number of GPS instances including the 'virtual' GPS created by blending receiver data #else #define GPS_MAX_INSTANCES 1 #endif // GPS_MAX_RECEIVERS > 1 #endif // GPS_MAX_INSTANCES #if GPS_MAX_RECEIVERS <= 1 && GPS_MAX_INSTANCES > 1 #error "GPS_MAX_INSTANCES should be 1 for GPS_MAX_RECEIVERS <= 1" #endif #if GPS_MAX_INSTANCES > GPS_MAX_RECEIVERS #define GPS_BLENDED_INSTANCE GPS_MAX_RECEIVERS // the virtual blended GPS is always the highest instance (2) #endif #define GPS_UNKNOWN_DOP UINT16_MAX // set unknown DOP's to maximum value, which is also correct for MAVLink // the number of GPS leap seconds - copied into SIM_GPS.cpp #define GPS_LEAPSECONDS_MILLIS 18000ULL #define UNIX_OFFSET_MSEC (17000ULL * 86400ULL + 52ULL * 10ULL * AP_MSEC_PER_WEEK - GPS_LEAPSECONDS_MILLIS) #ifndef GPS_MOVING_BASELINE #define GPS_MOVING_BASELINE GPS_MAX_RECEIVERS>1 #endif #if GPS_MOVING_BASELINE #include "MovingBase.h" #endif // GPS_MOVING_BASELINE class AP_GPS_Backend; class RTCM3_Parser; /// @class AP_GPS /// GPS driver main class class AP_GPS { friend class AP_GPS_ERB; friend class AP_GPS_GSOF; friend class AP_GPS_MAV; friend class AP_GPS_MSP; friend class AP_GPS_ExternalAHRS; friend class AP_GPS_NMEA; friend class AP_GPS_NOVA; friend class AP_GPS_PX4; friend class AP_GPS_SBF; friend class AP_GPS_SBP; friend class AP_GPS_SBP2; friend class AP_GPS_SIRF; friend class AP_GPS_UBLOX; friend class AP_GPS_Backend; friend class AP_GPS_DroneCAN; public: AP_GPS(); /* Do not allow copies */ CLASS_NO_COPY(AP_GPS); static AP_GPS *get_singleton() { return _singleton; } // allow threads to lock against GPS update HAL_Semaphore &get_semaphore(void) { return rsem; } // GPS driver types enum GPS_Type { GPS_TYPE_NONE = 0, GPS_TYPE_AUTO = 1, GPS_TYPE_UBLOX = 2, // GPS_TYPE_MTK = 3, // driver removed // GPS_TYPE_MTK19 = 4, // driver removed GPS_TYPE_NMEA = 5, GPS_TYPE_SIRF = 6, GPS_TYPE_HIL = 7, GPS_TYPE_SBP = 8, GPS_TYPE_UAVCAN = 9, GPS_TYPE_SBF = 10, GPS_TYPE_GSOF = 11, GPS_TYPE_ERB = 13, GPS_TYPE_MAV = 14, GPS_TYPE_NOVA = 15, GPS_TYPE_HEMI = 16, // hemisphere NMEA GPS_TYPE_UBLOX_RTK_BASE = 17, GPS_TYPE_UBLOX_RTK_ROVER = 18, GPS_TYPE_MSP = 19, GPS_TYPE_ALLYSTAR = 20, // AllyStar NMEA GPS_TYPE_EXTERNAL_AHRS = 21, GPS_TYPE_UAVCAN_RTK_BASE = 22, GPS_TYPE_UAVCAN_RTK_ROVER = 23, GPS_TYPE_UNICORE_NMEA = 24, GPS_TYPE_UNICORE_MOVINGBASE_NMEA = 25, GPS_TYPE_SBF_DUAL_ANTENNA = 26, #if HAL_SIM_GPS_ENABLED GPS_TYPE_SITL = 100, #endif }; // convenience methods for working out what general type an instance is: bool is_rtk_base(uint8_t instance) const; bool is_rtk_rover(uint8_t instance) const; /// GPS status codes. These are kept aligned with MAVLink by /// static_assert in AP_GPS.cpp enum GPS_Status { NO_GPS = 0, ///< No GPS connected/detected NO_FIX = 1, ///< Receiving valid GPS messages but no lock GPS_OK_FIX_2D = 2, ///< Receiving valid messages and 2D lock GPS_OK_FIX_3D = 3, ///< Receiving valid messages and 3D lock GPS_OK_FIX_3D_DGPS = 4, ///< Receiving valid messages and 3D lock with differential improvements GPS_OK_FIX_3D_RTK_FLOAT = 5, ///< Receiving valid messages and 3D RTK Float GPS_OK_FIX_3D_RTK_FIXED = 6, ///< Receiving valid messages and 3D RTK Fixed }; // GPS navigation engine settings. Not all GPS receivers support // this enum GPS_Engine_Setting { GPS_ENGINE_NONE = -1, GPS_ENGINE_PORTABLE = 0, GPS_ENGINE_STATIONARY = 2, GPS_ENGINE_PEDESTRIAN = 3, GPS_ENGINE_AUTOMOTIVE = 4, GPS_ENGINE_SEA = 5, GPS_ENGINE_AIRBORNE_1G = 6, GPS_ENGINE_AIRBORNE_2G = 7, GPS_ENGINE_AIRBORNE_4G = 8 }; // role for auto-config enum GPS_Role { GPS_ROLE_NORMAL, GPS_ROLE_MB_BASE, GPS_ROLE_MB_ROVER, }; // GPS Covariance Types matching ROS2 sensor_msgs/msg/NavSatFix enum class CovarianceType : uint8_t { UNKNOWN = 0, ///< The GPS does not support any accuracy metrics APPROXIMATED = 1, ///< The accuracy is approximated through metrics such as HDOP/VDOP DIAGONAL_KNOWN = 2, ///< The diagonal (east, north, up) components of covariance are reported by the GPS KNOWN = 3, ///< The full covariance array is reported by the GPS }; /* The GPS_State structure is filled in by the backend driver as it parses each message from the GPS. */ struct GPS_State { uint8_t instance; // the instance number of this GPS // all the following fields must all be filled by the backend driver GPS_Status status; ///< driver fix status uint32_t time_week_ms; ///< GPS time (milliseconds from start of GPS week) uint16_t time_week; ///< GPS week number Location location; ///< last fix location float ground_speed; ///< ground speed in m/s float ground_course; ///< ground course in degrees float gps_yaw; ///< GPS derived yaw information, if available (degrees) uint32_t gps_yaw_time_ms; ///< timestamp of last GPS yaw reading bool gps_yaw_configured; ///< GPS is configured to provide yaw uint16_t hdop; ///< horizontal dilution of precision in cm uint16_t vdop; ///< vertical dilution of precision in cm uint8_t num_sats; ///< Number of visible satellites Vector3f velocity; ///< 3D velocity in m/s, in NED format float speed_accuracy; ///< 3D velocity RMS accuracy estimate in m/s float horizontal_accuracy; ///< horizontal RMS accuracy estimate in m float vertical_accuracy; ///< vertical RMS accuracy estimate in m float gps_yaw_accuracy; ///< heading accuracy of the GPS in degrees bool have_vertical_velocity; ///< does GPS give vertical velocity? Set to true only once available. bool have_speed_accuracy; ///< does GPS give speed accuracy? Set to true only once available. bool have_horizontal_accuracy; ///< does GPS give horizontal position accuracy? Set to true only once available. bool have_vertical_accuracy; ///< does GPS give vertical position accuracy? Set to true only once available. bool have_gps_yaw; ///< does GPS give yaw? Set to true only once available. bool have_gps_yaw_accuracy; ///< does the GPS give a heading accuracy estimate? Set to true only once available float undulation; // NO_FIX) { return NO_FIX; } return state[instance].status; } GPS_Status status(void) const { return status(primary_instance); } // return a single human-presentable character representing the // fix type. For space-constrained human-readable displays char status_onechar(void) const { switch (status()) { case AP_GPS::NO_GPS: return ' '; case AP_GPS::NO_FIX: return '-'; case AP_GPS::GPS_OK_FIX_2D: return '2'; case AP_GPS::GPS_OK_FIX_3D: return '3'; case AP_GPS::GPS_OK_FIX_3D_DGPS: return '4'; case AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT: return '5'; case AP_GPS::GPS_OK_FIX_3D_RTK_FIXED: return '6'; } // should never reach here; compiler flags guarantees this. return '?'; } // Query the highest status this GPS supports (always reports GPS_OK_FIX_3D for the blended GPS) GPS_Status highest_supported_status(uint8_t instance) const WARN_IF_UNUSED; // location of last fix const Location &location(uint8_t instance) const { return state[instance].location; } const Location &location() const { return location(primary_instance); } // get the difference between WGS84 and AMSL. A positive value means // the AMSL height is higher than WGS84 ellipsoid height bool get_undulation(uint8_t instance, float &undulation) const; // get the difference between WGS84 and AMSL. A positive value means // the AMSL height is higher than WGS84 ellipsoid height bool get_undulation(float &undulation) const { return get_undulation(primary_instance, undulation); } // report speed accuracy bool speed_accuracy(uint8_t instance, float &sacc) const; bool speed_accuracy(float &sacc) const { return speed_accuracy(primary_instance, sacc); } bool horizontal_accuracy(uint8_t instance, float &hacc) const; bool horizontal_accuracy(float &hacc) const { return horizontal_accuracy(primary_instance, hacc); } bool vertical_accuracy(uint8_t instance, float &vacc) const; bool vertical_accuracy(float &vacc) const { return vertical_accuracy(primary_instance, vacc); } CovarianceType position_covariance(const uint8_t instance, Matrix3f& cov) const WARN_IF_UNUSED; // 3D velocity in NED format const Vector3f &velocity(uint8_t instance) const { return state[instance].velocity; } const Vector3f &velocity() const { return velocity(primary_instance); } // ground speed in m/s float ground_speed(uint8_t instance) const { return state[instance].ground_speed; } float ground_speed() const { return ground_speed(primary_instance); } // ground speed in cm/s uint32_t ground_speed_cm(void) const { return ground_speed() * 100; } // ground course in degrees float ground_course(uint8_t instance) const { return state[instance].ground_course; } float ground_course() const { return ground_course(primary_instance); } // ground course in centi-degrees int32_t ground_course_cd(uint8_t instance) const { return ground_course(instance) * 100; } int32_t ground_course_cd() const { return ground_course_cd(primary_instance); } // yaw in degrees if available bool gps_yaw_deg(uint8_t instance, float &yaw_deg, float &accuracy_deg, uint32_t &time_ms) const; bool gps_yaw_deg(float &yaw_deg, float &accuracy_deg, uint32_t &time_ms) const { return gps_yaw_deg(primary_instance, yaw_deg, accuracy_deg, time_ms); } // number of locked satellites uint8_t num_sats(uint8_t instance) const { return state[instance].num_sats; } uint8_t num_sats() const { return num_sats(primary_instance); } // GPS time of week in milliseconds uint32_t time_week_ms(uint8_t instance) const { return state[instance].time_week_ms; } uint32_t time_week_ms() const { return time_week_ms(primary_instance); } // GPS week uint16_t time_week(uint8_t instance) const { return state[instance].time_week; } uint16_t time_week() const { return time_week(primary_instance); } // horizontal dilution of precision uint16_t get_hdop(uint8_t instance) const { return state[instance].hdop; } uint16_t get_hdop() const { return get_hdop(primary_instance); } // vertical dilution of precision uint16_t get_vdop(uint8_t instance) const { return state[instance].vdop; } uint16_t get_vdop() const { return get_vdop(primary_instance); } // the time we got our last fix in system milliseconds. This is // used when calculating how far we might have moved since that fix uint32_t last_fix_time_ms(uint8_t instance) const { return timing[instance].last_fix_time_ms; } uint32_t last_fix_time_ms(void) const { return last_fix_time_ms(primary_instance); } // the time we last processed a message in milliseconds. This is // used to indicate that we have new GPS data to process uint32_t last_message_time_ms(uint8_t instance) const { return timing[instance].last_message_time_ms; } uint32_t last_message_time_ms(void) const { return last_message_time_ms(primary_instance); } // system time delta between the last two reported positions uint16_t last_message_delta_time_ms(uint8_t instance) const { return timing[instance].delta_time_ms; } uint16_t last_message_delta_time_ms(void) const { return last_message_delta_time_ms(primary_instance); } // return true if the GPS supports vertical velocity values bool have_vertical_velocity(uint8_t instance) const { return state[instance].have_vertical_velocity; } bool have_vertical_velocity(void) const { return have_vertical_velocity(primary_instance); } // return true if the GPS currently has yaw available bool have_gps_yaw(uint8_t instance) const { return !_force_disable_gps_yaw && state[instance].have_gps_yaw; } bool have_gps_yaw(void) const { return have_gps_yaw(primary_instance); } // return true if the GPS is configured to provide yaw. This will // be true if we expect the GPS to provide yaw, even if it // currently is not able to provide yaw bool have_gps_yaw_configured(uint8_t instance) const { return state[instance].gps_yaw_configured; } // the expected lag (in seconds) in the position and velocity readings from the gps // return true if the GPS hardware configuration is known or the lag parameter has been set manually bool get_lag(uint8_t instance, float &lag_sec) const; bool get_lag(float &lag_sec) const { return get_lag(primary_instance, lag_sec); } // return a 3D vector defining the offset of the GPS antenna in meters relative to the body frame origin const Vector3f &get_antenna_offset(uint8_t instance) const; // lock out a GPS port, allowing another application to use the port void lock_port(uint8_t instance, bool locked); //MAVLink Status Sending void send_mavlink_gps_raw(mavlink_channel_t chan); void send_mavlink_gps2_raw(mavlink_channel_t chan); void send_mavlink_gps_rtk(mavlink_channel_t chan, uint8_t inst); // Returns true if there is an unconfigured GPS, and provides the instance number of the first non configured GPS bool first_unconfigured_gps(uint8_t &instance) const WARN_IF_UNUSED; void broadcast_first_configuration_failure_reason(void) const; // pre-arm check that all GPSs are close to each other. farthest distance between GPSs (in meters) is returned bool all_consistent(float &distance) const; // pre-arm check of GPS blending. False if blending is unhealthy, True if healthy or blending is not being used bool blend_health_check() const; // handle sending of initialisation strings to the GPS - only used by backends void send_blob_start(uint8_t instance); void send_blob_start(uint8_t instance, const char *_blob, uint16_t size); void send_blob_update(uint8_t instance); // return last fix time since the 1/1/1970 in microseconds uint64_t time_epoch_usec(uint8_t instance) const; uint64_t time_epoch_usec(void) const { return time_epoch_usec(primary_instance); } uint64_t last_message_epoch_usec(uint8_t instance) const; uint64_t last_message_epoch_usec() const { return last_message_epoch_usec(primary_instance); } // convert GPS week and millis to unix epoch in ms static uint64_t istate_time_to_epoch_ms(uint16_t gps_week, uint32_t gps_ms); static const struct AP_Param::GroupInfo var_info[]; #if HAL_LOGGING_ENABLED void Write_AP_Logger_Log_Startup_messages(); #endif // indicate which bit in LOG_BITMASK indicates gps logging enabled void set_log_gps_bit(uint32_t bit) { _log_gps_bit = bit; } // report if the gps is healthy (this is defined as existing, an update at a rate greater than 4Hz, // as well as any driver specific behaviour) bool is_healthy(uint8_t instance) const; bool is_healthy(void) const { return is_healthy(primary_instance); } // returns true if all GPS instances have passed all final arming checks/state changes bool prepare_for_arming(void); // returns true if all GPS backend drivers haven't seen any failure // this is for backends to be able to spout pre arm error messages bool backends_healthy(char failure_msg[], uint16_t failure_msg_len); // returns false if any GPS drivers are not performing their logging appropriately bool logging_failed(void) const; bool logging_present(void) const { return _raw_data != 0; } bool logging_enabled(void) const { return _raw_data != 0; } // used to disable GPS for GPS failure testing in flight void force_disable(bool disable) { _force_disable_gps = disable; } // used to disable GPS yaw for GPS failure testing in flight void set_force_disable_yaw(bool disable) { _force_disable_gps_yaw = disable; } // handle possibly fragmented RTCM injection data void handle_gps_rtcm_fragment(uint8_t flags, const uint8_t *data, uint8_t len); // get configured type by instance GPS_Type get_type(uint8_t instance) const { return instance>=GPS_MAX_RECEIVERS? GPS_Type::GPS_TYPE_NONE : GPS_Type(_type[instance].get()); } // get iTOW, if supported, zero otherwie uint32_t get_itow(uint8_t instance) const; bool get_error_codes(uint8_t instance, uint32_t &error_codes) const; bool get_error_codes(uint32_t &error_codes) const { return get_error_codes(primary_instance, error_codes); } enum class SBAS_Mode : int8_t { Disabled = 0, Enabled = 1, DoNotChange = 2, }; #if GPS_MOVING_BASELINE // methods used by UAVCAN GPS driver and AP_Periph for moving baseline void inject_MBL_data(uint8_t* data, uint16_t length); void get_RelPosHeading(uint32_t ×tamp, float &relPosHeading, float &relPosLength, float &relPosD, float &accHeading); bool get_RTCMV3(const uint8_t *&bytes, uint16_t &len); void clear_RTCMV3(); #endif // GPS_MOVING_BASELINE protected: // configuration parameters AP_Int8 _type[GPS_MAX_RECEIVERS]; AP_Int8 _navfilter; AP_Int8 _auto_switch; AP_Int16 _sbp_logmask; AP_Int8 _inject_to; uint32_t _last_instance_swap_ms; AP_Enum _sbas_mode; AP_Int8 _min_elevation; AP_Int8 _raw_data; AP_Int8 _gnss_mode[GPS_MAX_RECEIVERS]; AP_Int16 _rate_ms[GPS_MAX_RECEIVERS]; // this parameter should always be accessed using get_rate_ms() AP_Int8 _save_config; AP_Int8 _auto_config; AP_Vector3f _antenna_offset[GPS_MAX_RECEIVERS]; AP_Int16 _delay_ms[GPS_MAX_RECEIVERS]; AP_Int8 _com_port[GPS_MAX_RECEIVERS]; AP_Int8 _blend_mask; AP_Int16 _driver_options; AP_Int8 _primary; #if HAL_ENABLE_DRONECAN_DRIVERS AP_Int32 _node_id[GPS_MAX_RECEIVERS]; AP_Int32 _override_node_id[GPS_MAX_RECEIVERS]; #endif #if GPS_MOVING_BASELINE MovingBase mb_params[GPS_MAX_RECEIVERS]; #endif // GPS_MOVING_BASELINE uint32_t _log_gps_bit = -1; enum DriverOptions : int16_t { UBX_MBUseUart2 = (1U << 0U), SBF_UseBaseForYaw = (1U << 1U), UBX_Use115200 = (1U << 2U), UAVCAN_MBUseDedicatedBus = (1 << 3U), HeightEllipsoid = (1U << 4), GPSL5HealthOverride = (1U << 5), AlwaysRTCMDecode = (1U << 6), DisableRTCMDecode = (1U << 7), }; // check if an option is set bool option_set(const DriverOptions option) const { return (uint8_t(_driver_options.get()) & uint8_t(option)) != 0; } private: static AP_GPS *_singleton; HAL_Semaphore rsem; // returns the desired gps update rate in milliseconds // this does not provide any guarantee that the GPS is updating at the requested // rate it is simply a helper for use in the backends for determining what rate // they should be configuring the GPS to run at uint16_t get_rate_ms(uint8_t instance) const; struct GPS_timing { // the time we got our last fix in system milliseconds uint32_t last_fix_time_ms; // the time we got our last message in system milliseconds uint32_t last_message_time_ms; // delta time between the last pair of GPS updates in system milliseconds uint16_t delta_time_ms; // count of delayed frames uint8_t delayed_count; // the average time delta float average_delta_ms; }; // Note allowance for an additional instance to contain blended data GPS_timing timing[GPS_MAX_INSTANCES]; GPS_State state[GPS_MAX_INSTANCES]; AP_GPS_Backend *drivers[GPS_MAX_RECEIVERS]; AP_HAL::UARTDriver *_port[GPS_MAX_RECEIVERS]; /// primary GPS instance uint8_t primary_instance; /// number of GPS instances present uint8_t num_instances; // which ports are locked uint8_t locked_ports; // state of auto-detection process, per instance struct detect_state { uint32_t last_baud_change_ms; uint8_t current_baud; uint32_t probe_baud; bool auto_detected_baud; struct UBLOX_detect_state ublox_detect_state; struct SIRF_detect_state sirf_detect_state; struct NMEA_detect_state nmea_detect_state; struct SBP_detect_state sbp_detect_state; struct SBP2_detect_state sbp2_detect_state; struct ERB_detect_state erb_detect_state; } detect_state[GPS_MAX_RECEIVERS]; struct { const char *blob; uint16_t remaining; } initblob_state[GPS_MAX_RECEIVERS]; static const uint32_t _baudrates[]; static const char _initialisation_blob[]; static const char _initialisation_raw_blob[]; void detect_instance(uint8_t instance); // run detection step for one GPS instance. If this finds a GPS then it // will return it - otherwise nullptr AP_GPS_Backend *_detect_instance(uint8_t instance); void update_instance(uint8_t instance); /* buffer for re-assembling RTCM data for GPS injection. The 8 bit flags field in GPS_RTCM_DATA is interpreted as: 1 bit for "is fragmented" 2 bits for fragment number 5 bits for sequence number The rtcm_buffer is allocated on first use. Once a block of data is successfully reassembled it is injected into all active GPS backends. This assumes we don't want more than 4*180=720 bytes in a RTCM data block */ struct rtcm_buffer { uint8_t fragments_received; uint8_t sequence; uint8_t fragment_count; uint16_t total_length; uint8_t buffer[MAVLINK_MSG_GPS_RTCM_DATA_FIELD_DATA_LEN*4]; } *rtcm_buffer; struct { uint16_t fragments_used; uint16_t fragments_discarded; } rtcm_stats; // re-assemble GPS_RTCM_DATA message void handle_gps_rtcm_data(mavlink_channel_t chan, const mavlink_message_t &msg); void handle_gps_inject(const mavlink_message_t &msg); //Inject a packet of raw binary to a GPS void inject_data(const uint8_t *data, uint16_t len); void inject_data(uint8_t instance, const uint8_t *data, uint16_t len); #if defined(GPS_BLENDED_INSTANCE) // GPS blending and switching Vector3f _blended_antenna_offset; // blended antenna offset float _blended_lag_sec; // blended receiver lag in seconds float _blend_weights[GPS_MAX_RECEIVERS]; // blend weight for each GPS. The blend weights must sum to 1.0 across all instances. bool _output_is_blended; // true when a blended GPS solution being output uint8_t _blend_health_counter; // 0 = perfectly health, 100 = very unhealthy // calculate the blend weight. Returns true if blend could be calculated, false if not bool calc_blend_weights(void); // calculate the blended state void calc_blended_state(void); #endif bool should_log() const; bool needs_uart(GPS_Type type) const; #if GPS_MAX_RECEIVERS > 1 /// Update primary instance void update_primary(void); #endif // helper function for mavlink gps yaw uint16_t gps_yaw_cdeg(uint8_t instance) const; // Auto configure types enum GPS_AUTO_CONFIG { GPS_AUTO_CONFIG_DISABLE = 0, GPS_AUTO_CONFIG_ENABLE_SERIAL_ONLY = 1, GPS_AUTO_CONFIG_ENABLE_ALL = 2, }; enum class GPSAutoSwitch { NONE = 0, USE_BEST = 1, BLEND = 2, //USE_SECOND = 3, deprecated for new primary param USE_PRIMARY_IF_3D_FIX = 4, }; // used for flight testing with GPS loss bool _force_disable_gps; // used for flight testing with GPS yaw loss bool _force_disable_gps_yaw; // logging support void Write_GPS(uint8_t instance); #if AP_GPS_RTCM_DECODE_ENABLED /* per mavlink channel RTCM decoder, enabled with RTCM decode option in GPS_DRV_OPTIONS */ struct { RTCM3_Parser *parsers[MAVLINK_COMM_NUM_BUFFERS]; uint32_t sent_crc[32]; uint8_t sent_idx; uint16_t seen_mav_channels; } rtcm; bool parse_rtcm_injection(mavlink_channel_t chan, const mavlink_gps_rtcm_data_t &pkt); #endif }; namespace AP { AP_GPS &gps(); }; #endif // AP_GPS_ENABLED