/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if AUTOTUNE_ENABLED == ENABLED /* * control_autotune.pde - init and run calls for autotune flight mode * * Instructions: * 1) Set up one flight mode switch position to be AltHold. * 2) Set the Ch7 Opt or Ch8 Opt to AutoTune to allow you to turn the auto tuning on/off with the ch7 or ch8 switch. * 3) Ensure the ch7 or ch8 switch is in the LOW position. * 4) Wait for a calm day and go to a large open area. * 5) Take off and put the vehicle into AltHold mode at a comfortable altitude. * 6) Set the ch7/ch8 switch to the HIGH position to engage auto tuning: * a) You will see it twitch about 20 degrees left and right for a few minutes, then it will repeat forward and back. * b) Use the roll and pitch stick at any time to reposition the copter if it drifts away (it will use the original PID gains during repositioning and between tests). * When you release the sticks it will continue auto tuning where it left off. * c) Move the ch7/ch8 switch into the LOW position at any time to abandon the autotuning and return to the origin PIDs. * d) Make sure that you do not have any trim set on your transmitter or the autotune may not get the signal that the sticks are centered. * 7) When the tune completes the vehicle will change back to the original PID gains. * 8) Put the ch7/ch8 switch into the LOW position then back to the HIGH position to test the tuned PID gains. * 9) Put the ch7/ch8 switch into the LOW position to fly using the original PID gains. * 10) If you are happy with the autotuned PID gains, leave the ch7/ch8 switch in the HIGH position, land and disarm to save the PIDs permanently. * If you DO NOT like the new PIDS, switch ch7/ch8 LOW to return to the original PIDs. The gains will not be saved when you disarm * * What it's doing during each "twitch": * a) invokes 90 deg/sec rate request * b) records maximum "forward" roll rate and bounce back rate * c) when copter reaches 20 degrees or 1 second has passed, it commands level * d) tries to keep max rotation rate between 80% ~ 100% of requested rate (90deg/sec) by adjusting rate P * e) increases rate D until the bounce back becomes greater than 10% of requested rate (90deg/sec) * f) decreases rate D until the bounce back becomes less than 10% of requested rate (90deg/sec) * g) increases rate P until the max rotate rate becomes greater than the requeste rate (90deg/sec) * h) invokes a 20deg angle request on roll or pitch * i) increases stab P until the maximum angle becomes greater than 110% of the requested angle (20deg) * j) decreases stab P by 25% * * Notes: AUTOTUNE should not be set-up as a flight mode, it should be invoked only from the ch7/ch8 switch. * */ #define AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS 500 // restart tuning if pilot has left sticks in middle for 2 seconds #define AUTOTUNE_TESTING_STEP_TIMEOUT_MS 500 // timeout for tuning mode's testing step #define AUTOTUNE_TARGET_ANGLE_CD 2000 // target angle during TESTING_RATE step that will cause us to move to next step #define AUTOTUNE_TARGET_RATE_CDS 9000 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step #define AUTOTUNE_LEVEL_ANGLE_CD 300 // angle which qualifies as level #define AUTOTUNE_REQUIRED_LEVEL_TIME_MS 250 // time we require the copter to be level #define AUTOTUNE_AGGRESSIVENESS 0.1f // tuning for 10% overshoot #define AUTOTUNE_RD_STEP 0.0005f // minimum increment when increasing/decreasing Rate D term #define AUTOTUNE_RP_STEP 0.005f // minimum increment when increasing/decreasing Rate P term #define AUTOTUNE_SP_STEP 0.5f // minimum increment when increasing/decreasing Stab P term #define AUTOTUNE_SP_BACKOFF 0.75f // Stab P gains are reduced to 75% of their maximum value discovered during tuning #define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing #define AUTOTUNE_RP_RATIO_FINAL 1.0f // I is set 1x P after testing #define AUTOTUNE_RD_MIN 0.002f // minimum Rate D value #define AUTOTUNE_RD_MAX 0.015f // maximum Rate D value #define AUTOTUNE_RP_MIN 0.01f // minimum Rate P value #define AUTOTUNE_RP_MAX 0.25f // maximum Rate P value #define AUTOTUNE_SP_MAX 15.0f // maximum Stab P value #define AUTOTUNE_SUCCESS_COUNT 4 // how many successful iterations we need to freeze at current gains // Auto Tune message ids for ground station #define AUTOTUNE_MESSAGE_STARTED 0 #define AUTOTUNE_MESSAGE_STOPPED 1 #define AUTOTUNE_MESSAGE_SUCCESS 2 #define AUTOTUNE_MESSAGE_FAILED 3 // autotune modes (high level states) enum AutoTuneTuneMode { AUTOTUNE_MODE_UNINITIALISED = 0, // autotune has never been run AUTOTUNE_MODE_TUNING = 1, // autotune is testing gains AUTOTUNE_MODE_SUCCESS = 2, // tuning has completed, user is flight testing the new gains AUTOTUNE_MODE_FAILED = 3, // tuning has failed, user is flying on original gains }; // steps performed while in the tuning mode enum AutoTuneStepType { AUTOTUNE_STEP_WAITING_FOR_LEVEL = 0, // autotune is waiting for vehicle to return to level before beginning the next twitch AUTOTUNE_STEP_TWITCHING = 1, // autotune has begun a twitch and is watching the resulting vehicle movement AUTOTUNE_STEP_UPDATE_GAINS = 2 // autotune has completed a twitch and is updating the gains based on the results }; // things that can be tuned enum AutoTuneAxisType { AUTOTUNE_AXIS_ROLL = 0, // roll axis is being tuned (either angle or rate) AUTOTUNE_AXIS_PITCH = 1 // pitch axis is being tuned (either angle or rate) }; // mini steps performed while in Tuning mode, Testing step enum AutoTuneTuneType { AUTOTUNE_TYPE_RD_UP = 0, // rate D is being tuned up AUTOTUNE_TYPE_RD_DOWN = 1, // rate D is being tuned down AUTOTUNE_TYPE_RP_UP = 2, // rate P is being tuned up AUTOTUNE_TYPE_SP_UP = 3 // angle P is being tuned up }; // autotune_state_struct - hold state flags struct autotune_state_struct { AutoTuneTuneMode mode : 2; // see AutoTuneTuneMode for what modes are allowed uint8_t pilot_override : 1; // 1 = pilot is overriding controls so we suspend tuning temporarily AutoTuneAxisType axis : 1; // see AutoTuneAxisType for which things can be tuned uint8_t positive_direction : 1; // 0 = tuning in negative direction (i.e. left for roll), 1 = positive direction (i.e. right for roll) AutoTuneStepType step : 2; // see AutoTuneStepType for what steps are performed AutoTuneTuneType tune_type : 2; // see AutoTuneTuneType } autotune_state; // variables static uint32_t autotune_override_time; // the last time the pilot overrode the controls static float autotune_test_min; // the minimum angular rate achieved during TESTING_RATE step static float autotune_test_max; // the maximum angular rate achieved during TESTING_RATE step static uint32_t autotune_step_start_time; // start time of current tuning step (used for timeout checks) static int8_t autotune_counter; // counter for tuning gains static float orig_roll_rp = 0, orig_roll_ri, orig_roll_rd, orig_roll_sp; // backup of currently being tuned parameter values static float orig_pitch_rp = 0, orig_pitch_ri, orig_pitch_rd, orig_pitch_sp; // backup of currently being tuned parameter values static float tune_roll_rp, tune_roll_rd, tune_roll_sp; // currently being tuned parameter values static float tune_pitch_rp, tune_pitch_rd, tune_pitch_sp; // currently being tuned parameter values // autotune_start - should be called when the ch7/ch8 switch is switched ON static void autotune_start() { switch (autotune_state.mode) { case AUTOTUNE_MODE_FAILED: // autotune has been run but failed so reset state to uninitialised autotune_state.mode = AUTOTUNE_MODE_UNINITIALISED; // no break to allow fall through to restart the tuning case AUTOTUNE_MODE_UNINITIALISED: // autotune has never been run // switch into the AUTOTUNE flight mode if (set_mode(AUTOTUNE)) { // so store current gains as original gains autotune_backup_gains_and_initialise(); // advance mode to tuning autotune_state.mode = AUTOTUNE_MODE_TUNING; // send message to ground station that we've started tuning autotune_update_gcs(AUTOTUNE_MESSAGE_STARTED); } break; case AUTOTUNE_MODE_TUNING: // we are restarting tuning after the user must have switched ch7/ch8 off so we restart tuning where we left off // set_mode to AUTOTUNE if (set_mode(AUTOTUNE)) { // reset gains to tuning-start gains (i.e. low I term) autotune_load_intra_test_gains(); // write dataflash log even and send message to ground station Log_Write_Event(DATA_AUTOTUNE_RESTART); autotune_update_gcs(AUTOTUNE_MESSAGE_STARTED); } break; case AUTOTUNE_MODE_SUCCESS: // we have completed a tune and the pilot wishes to test the new gains in the current flight mode // so simply apply tuning gains (i.e. do not change flight mode) autotune_load_tuned_gains(); Log_Write_Event(DATA_AUTOTUNE_PILOT_TESTING); break; } } // autotune_stop - should be called when the ch7/ch8 switch is switched OFF static void autotune_stop() { // set gains to their original values autotune_load_orig_gains(); // re-enable angle-to-rate request limits attitude_control.limit_angle_to_rate_request(true); // log off event and send message to ground statoin autotune_update_gcs(AUTOTUNE_MESSAGE_STOPPED); Log_Write_Event(DATA_AUTOTUNE_OFF); // Note: we leave the autotune_state.mode as it was so that we know how the autotune ended // we expect the caller will change the flight mode back to the flight mode indicated by the flight mode switch } // autotune_init - initialise autotune flight mode static bool autotune_init(bool ignore_checks) { // only allow flip from Stabilize or AltHold flight modes if (control_mode != STABILIZE && control_mode != ALT_HOLD) { return false; } // ensure throttle is above zero if (g.rc_3.control_in <= 0) { return false; } // ensure we are flying if (!motors.armed() || !ap.auto_armed || ap.land_complete) { return false; } // initialise altitude target to stopping point pos_control.set_target_to_stopping_point_z(); return true; } // autotune_run - runs the autotune flight mode // should be called at 100hz or more static void autotune_run() { int16_t target_roll, target_pitch; float target_yaw_rate; int16_t target_climb_rate; // if not auto armed set throttle to zero and exit immediately // this should not actually be possible because of the autotune_init() checks if(!ap.auto_armed) { attitude_control.init_targets(); attitude_control.set_throttle_out(0, false); return; } // apply SIMPLE mode transform to pilot inputs update_simple_mode(); // get pilot desired lean angles get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, target_roll, target_pitch); // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in); // get pilot desired climb rate target_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in); // check for pilot requested take-off - this should not actually be possible because of autotune_init() checks if (ap.land_complete && target_climb_rate > 0) { // indicate we are taking off set_land_complete(false); // clear i term when we're taking off set_throttle_takeoff(); } // reset target lean angles and heading while landed if (ap.land_complete) { attitude_control.init_targets(); // move throttle to minimum to keep us on the ground attitude_control.set_throttle_out(0, false); }else{ // check if pilot is overriding the controls if (target_roll != 0 || target_pitch != 0 || target_yaw_rate != 0.0f || target_climb_rate != 0) { if (!autotune_state.pilot_override) { autotune_state.pilot_override = true; // set gains to their original values autotune_load_orig_gains(); } // reset pilot override time autotune_override_time = millis(); }else if (autotune_state.pilot_override) { // check if we should resume tuning after pilot's override if (millis() - autotune_override_time > AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS) { autotune_state.pilot_override = false; // turn off pilot override // set gains to their intra-test values (which are very close to the original gains) autotune_load_intra_test_gains(); autotune_state.step = AUTOTUNE_STEP_WAITING_FOR_LEVEL; // set tuning step back from beginning autotune_step_start_time = millis(); } } // if pilot override call attitude controller if (autotune_state.pilot_override || autotune_state.mode != AUTOTUNE_MODE_TUNING) { attitude_control.angle_ef_roll_pitch_rate_ef_yaw(target_roll, target_pitch, target_yaw_rate); }else{ // somehow get attitude requests from autotuning autotune_attitude_control(); } // call position controller pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt); pos_control.update_z_controller(); } } // autotune_attitude_controller - sets attitude control targets during tuning static void autotune_attitude_control() { float rotation_rate; // rotation rate in radians/second int32_t lean_angle; // check tuning step switch (autotune_state.step) { case AUTOTUNE_STEP_WAITING_FOR_LEVEL: // Note: we should be using intra-test gains (which are very close to the original gains but have lower I) // re-enable rate limits attitude_control.limit_angle_to_rate_request(true); // hold level attitude attitude_control.angle_ef_roll_pitch_rate_ef_yaw(0.0f, 0.0f, 0.0f); // hold the copter level for 0.25 seconds before we begin a twitch // reset counter if we are no longer level if ((labs(ahrs.roll_sensor) > AUTOTUNE_LEVEL_ANGLE_CD) || (labs(ahrs.pitch_sensor) > AUTOTUNE_LEVEL_ANGLE_CD)) { autotune_step_start_time = millis(); } // if we have been level for a sufficient amount of time (0.25 seconds) move onto tuning step if (millis() - autotune_step_start_time >= AUTOTUNE_REQUIRED_LEVEL_TIME_MS) { // init variables for next step autotune_state.step = AUTOTUNE_STEP_TWITCHING; autotune_step_start_time = millis(); autotune_test_max = 0; autotune_test_min = 0; rotation_rate = 0; // set gains to their to-be-tested values autotune_load_twitch_gains(); } break; case AUTOTUNE_STEP_TWITCHING: // Run the twitching step // Note: we should be using intra-test gains (which are very close to the original gains but have lower I) // disable rate limits attitude_control.limit_angle_to_rate_request(false); if(autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP){ // Testing increasing stabilize P gain so will set lean angle target if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) { // request roll to 20deg if (autotune_state.positive_direction) { attitude_control.angle_ef_roll_pitch_rate_ef_yaw(AUTOTUNE_TARGET_ANGLE_CD, 0.0f, 0.0f); }else{ attitude_control.angle_ef_roll_pitch_rate_ef_yaw(-AUTOTUNE_TARGET_ANGLE_CD, 0.0f, 0.0f); } }else{ // request pitch to 20deg if (autotune_state.positive_direction) { attitude_control.angle_ef_roll_pitch_rate_ef_yaw(0.0f, AUTOTUNE_TARGET_ANGLE_CD, 0.0f); }else{ attitude_control.angle_ef_roll_pitch_rate_ef_yaw(0.0f, -AUTOTUNE_TARGET_ANGLE_CD, 0.0f); } } } else { // Testing rate P and D gains so will set body-frame rate targets if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) { // override body-frame roll rate (rate controller will use existing pitch and yaw body-frame rates and convert to motor outputs) if (autotune_state.positive_direction) { attitude_control.rate_bf_roll_target(AUTOTUNE_TARGET_RATE_CDS); }else{ attitude_control.rate_bf_roll_target(-AUTOTUNE_TARGET_RATE_CDS); } }else{ // override body-frame pitch rate (rate controller will use existing roll and yaw body-frame rates and convert to motor outputs) if (autotune_state.positive_direction) { attitude_control.rate_bf_pitch_target(AUTOTUNE_TARGET_RATE_CDS); }else{ attitude_control.rate_bf_pitch_target(-AUTOTUNE_TARGET_RATE_CDS); } } } // capture this iterations rotation rate and lean angle if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) { // 20 Hz filter on rate rotation_rate = ToDeg(fabs(ahrs.get_gyro().x)) * 100.0f; lean_angle = labs(ahrs.roll_sensor); }else{ // 20 Hz filter on rate // rotation_rate = rotation_rate + 0.55686f*(ToDeg(fabs(ahrs.get_gyro().y))*100.0f-rotation_rate); rotation_rate = ToDeg(fabs(ahrs.get_gyro().y)) * 100.0f; lean_angle = labs(ahrs.pitch_sensor); } // log this iterations lean angle and rotation rate Log_Write_AutoTuneDetails((int16_t)lean_angle, rotation_rate); // compare rotation rate or lean angle to previous iterations of this testing step if(autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP){ // when tuning stabilize P gain, capture the max lean angle if (lean_angle > autotune_test_max) { autotune_test_max = lean_angle; autotune_test_min = lean_angle; } // capture min lean angle if (lean_angle < autotune_test_min && autotune_test_max > AUTOTUNE_TARGET_ANGLE_CD*(1-AUTOTUNE_AGGRESSIVENESS)) { autotune_test_min = lean_angle; } }else{ // when tuning rate P and D gain, capture max rotation rate if (rotation_rate > autotune_test_max) { autotune_test_max = rotation_rate; autotune_test_min = rotation_rate; } // capture min rotation rate after the rotation rate has peaked (aka "bounce back rate") if (rotation_rate < autotune_test_min && autotune_test_max > AUTOTUNE_TARGET_RATE_CDS*(1-2*AUTOTUNE_AGGRESSIVENESS)) { autotune_test_min = rotation_rate; } } // check for end of test conditions // testing step time out after 0.5sec if(millis() - autotune_step_start_time >= AUTOTUNE_TESTING_STEP_TIMEOUT_MS) { autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS; } if(autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP){ // stabilize P testing completes when the lean angle reaches 22deg or the vehicle has rotated 22deg if ((lean_angle >= AUTOTUNE_TARGET_ANGLE_CD*(1+AUTOTUNE_AGGRESSIVENESS)) || (autotune_test_max-autotune_test_min > AUTOTUNE_TARGET_ANGLE_CD*AUTOTUNE_AGGRESSIVENESS)) { autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS; } }else{ // rate P and D testing completes when the vehicle reaches 20deg if (lean_angle >= AUTOTUNE_TARGET_ANGLE_CD) { autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS; } // rate P and D testing can also complete when the "bounce back rate" is at least 9deg less than the maximum rotation rate if (autotune_state.tune_type == AUTOTUNE_TYPE_RD_UP || autotune_state.tune_type == AUTOTUNE_TYPE_RD_DOWN) { if(autotune_test_max-autotune_test_min > AUTOTUNE_TARGET_RATE_CDS*AUTOTUNE_AGGRESSIVENESS) { autotune_state.step = AUTOTUNE_STEP_UPDATE_GAINS; } } } break; case AUTOTUNE_STEP_UPDATE_GAINS: // set gains to their intra-test values (which are very close to the original gains) autotune_load_intra_test_gains(); // re-enable rate limits attitude_control.limit_angle_to_rate_request(true); // log the latest gains if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) { Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_test_min, autotune_test_max, tune_roll_rp, tune_roll_rd, tune_roll_sp); }else{ Log_Write_AutoTune(autotune_state.axis, autotune_state.tune_type, autotune_test_min, autotune_test_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp); } // Check results after mini-step to increase rate D gain if (autotune_state.tune_type == AUTOTUNE_TYPE_RD_UP) { // when tuning the rate D gain if (autotune_test_max > AUTOTUNE_TARGET_RATE_CDS) { // if max rotation rate was higher than target, reduce rate P if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) { tune_roll_rp -= AUTOTUNE_RP_STEP; }else{ tune_pitch_rp -= AUTOTUNE_RP_STEP; } // abandon tuning if rate P falls below 0.01 if(((autotune_state.axis == AUTOTUNE_AXIS_ROLL && tune_roll_rp < AUTOTUNE_RP_MIN) || (autotune_state.axis == AUTOTUNE_AXIS_PITCH && tune_pitch_rp < AUTOTUNE_RP_MIN)) ) { autotune_failed(); return; } // if maximum rotation rate was less than 80% of requested rate increase rate P }else if(autotune_test_max < AUTOTUNE_TARGET_RATE_CDS*(1.0f-AUTOTUNE_AGGRESSIVENESS*2.0f) && ((autotune_state.axis == AUTOTUNE_AXIS_ROLL && tune_roll_rp <= AUTOTUNE_RP_MAX) || (autotune_state.axis == AUTOTUNE_AXIS_PITCH && tune_pitch_rp <= AUTOTUNE_RP_MAX)) ) { if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) { tune_roll_rp += AUTOTUNE_RP_STEP*2.0f; }else{ tune_pitch_rp += AUTOTUNE_RP_STEP*2.0f; } }else{ // if "bounce back rate" if greater than 10% of requested rate (i.e. >9deg/sec) this is a good tune if (autotune_test_max-autotune_test_min > AUTOTUNE_TARGET_RATE_CDS*AUTOTUNE_AGGRESSIVENESS) { autotune_counter++; }else{ // bounce back was too small so reduce number of good tunes if (autotune_counter > 0 ) { autotune_counter--; } // increase rate D (which should increase "bounce back rate") if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) { tune_roll_rd += AUTOTUNE_RD_STEP*2.0f; // stop tuning if we hit max D if (tune_roll_rd >= AUTOTUNE_RD_MAX) { tune_roll_rd = AUTOTUNE_RD_MAX; autotune_counter = AUTOTUNE_SUCCESS_COUNT; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } }else{ tune_pitch_rd += AUTOTUNE_RD_STEP*2.0f; // stop tuning if we hit max D if (tune_pitch_rd >= AUTOTUNE_RD_MAX) { tune_pitch_rd = AUTOTUNE_RD_MAX; autotune_counter = AUTOTUNE_SUCCESS_COUNT; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } } } } // Check results after mini-step to decrease rate D gain } else if (autotune_state.tune_type == AUTOTUNE_TYPE_RD_DOWN) { if (autotune_test_max > AUTOTUNE_TARGET_RATE_CDS) { // if max rotation rate was higher than target, reduce rate P if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) { tune_roll_rp -= AUTOTUNE_RP_STEP; }else{ tune_pitch_rp -= AUTOTUNE_RP_STEP; } // abandon tuning if rate P falls below 0.01 if(((autotune_state.axis == AUTOTUNE_AXIS_ROLL && tune_roll_rp < AUTOTUNE_RP_MIN) || (autotune_state.axis == AUTOTUNE_AXIS_PITCH && tune_pitch_rp < AUTOTUNE_RP_MIN)) ) { autotune_failed(); return; } // if maximum rotation rate was less than 80% of requested rate increase rate P }else if(autotune_test_max < AUTOTUNE_TARGET_RATE_CDS*(1-AUTOTUNE_AGGRESSIVENESS*2.0f) && ((autotune_state.axis == AUTOTUNE_AXIS_ROLL && tune_roll_rp <= AUTOTUNE_RP_MAX) || (autotune_state.axis == AUTOTUNE_AXIS_PITCH && tune_pitch_rp <= AUTOTUNE_RP_MAX)) ) { if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) { tune_roll_rp += AUTOTUNE_RP_STEP; }else{ tune_pitch_rp += AUTOTUNE_RP_STEP; } }else{ // if "bounce back rate" if less than 10% of requested rate (i.e. >9deg/sec) this is a good tune if (autotune_test_max-autotune_test_min < AUTOTUNE_TARGET_RATE_CDS*AUTOTUNE_AGGRESSIVENESS) { autotune_counter++; }else{ // bounce back was too large so reduce number of good tunes if (autotune_counter > 0 ) { autotune_counter--; } // decrease rate D (which should decrease "bounce back rate") if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) { tune_roll_rd -= AUTOTUNE_RD_STEP; // stop tuning if we hit min D if (tune_roll_rd <= AUTOTUNE_RD_MIN) { tune_roll_rd = AUTOTUNE_RD_MIN; autotune_counter = AUTOTUNE_SUCCESS_COUNT; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } }else{ tune_pitch_rd -= AUTOTUNE_RD_STEP; // stop tuning if we hit min D if (tune_pitch_rd <= AUTOTUNE_RD_MIN) { tune_pitch_rd = AUTOTUNE_RD_MIN; autotune_counter = AUTOTUNE_SUCCESS_COUNT; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } } } } // Check results after mini-step to increase rate P gain } else if (autotune_state.tune_type == AUTOTUNE_TYPE_RP_UP) { // if max rotation rate greater than target, this is a good tune if (autotune_test_max > AUTOTUNE_TARGET_RATE_CDS) { autotune_counter++; }else{ // rotation rate was too low so reduce number of good tunes if (autotune_counter > 0 ) { autotune_counter--; } // increase rate P and I gains if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) { tune_roll_rp += AUTOTUNE_RP_STEP; // stop tuning if we hit max P if (tune_roll_rp >= AUTOTUNE_RP_MAX) { tune_roll_rp = AUTOTUNE_RP_MAX; autotune_counter = AUTOTUNE_SUCCESS_COUNT; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } }else{ tune_pitch_rp += AUTOTUNE_RP_STEP; // stop tuning if we hit max P if (tune_pitch_rp >= AUTOTUNE_RP_MAX) { tune_pitch_rp = AUTOTUNE_RP_MAX; autotune_counter = AUTOTUNE_SUCCESS_COUNT; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } } } // Check results after mini-step to increase stabilize P gain } else if (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP) { // if max angle reaches 22deg this is a successful tune if (autotune_test_max > AUTOTUNE_TARGET_ANGLE_CD*(1+AUTOTUNE_AGGRESSIVENESS) || (autotune_test_max-autotune_test_min > AUTOTUNE_TARGET_ANGLE_CD*AUTOTUNE_AGGRESSIVENESS)) { autotune_counter++; }else{ // did not reach the target angle so this is a bad tune if (autotune_counter > 0 ) { autotune_counter--; } // increase stabilize P and I gains if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) { tune_roll_sp += AUTOTUNE_SP_STEP; // stop tuning if we hit max P if (tune_roll_sp >= AUTOTUNE_SP_MAX) { tune_roll_sp = AUTOTUNE_SP_MAX; autotune_counter = AUTOTUNE_SUCCESS_COUNT; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } }else{ tune_pitch_sp += AUTOTUNE_SP_STEP; // stop tuning if we hit max P if (tune_pitch_sp >= AUTOTUNE_SP_MAX) { tune_pitch_sp = AUTOTUNE_SP_MAX; autotune_counter = AUTOTUNE_SUCCESS_COUNT; Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); } } } } // reverse direction autotune_state.positive_direction = !autotune_state.positive_direction; // we've complete this step, finalise pids and move to next step if (autotune_counter >= AUTOTUNE_SUCCESS_COUNT) { // reset counter autotune_counter = 0; // move to the next tuning type if (autotune_state.tune_type < AUTOTUNE_TYPE_SP_UP) { autotune_state.tune_type++; }else{ // we've reached the end of a D-up-down PI-up-down tune type cycle autotune_state.tune_type = AUTOTUNE_TYPE_RD_UP; // if we've just completed roll move onto pitch if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) { tune_roll_sp = tune_roll_sp * AUTOTUNE_SP_BACKOFF; autotune_state.axis = AUTOTUNE_AXIS_PITCH; }else{ tune_pitch_sp = tune_pitch_sp * AUTOTUNE_SP_BACKOFF; tune_roll_sp = min(tune_roll_sp, tune_pitch_sp); tune_pitch_sp = min(tune_roll_sp, tune_pitch_sp); // if we've just completed pitch we have successfully completed the autotune // change to TESTING mode to allow user to fly with new gains autotune_state.mode = AUTOTUNE_MODE_SUCCESS; autotune_update_gcs(AUTOTUNE_MESSAGE_SUCCESS); Log_Write_Event(DATA_AUTOTUNE_SUCCESS); } } } // reset testing step autotune_state.step = AUTOTUNE_STEP_WAITING_FOR_LEVEL; autotune_step_start_time = millis(); break; } } // autotune has failed, return to standard gains and log event // called when the autotune is unable to find good gains static void autotune_failed() { // set autotune mode to failed so that it cannot restart autotune_state.mode = AUTOTUNE_MODE_FAILED; // set gains to their original values autotune_load_orig_gains(); // re-enable angle-to-rate request limits attitude_control.limit_angle_to_rate_request(true); // log failure Log_Write_Event(DATA_AUTOTUNE_FAILED); } // autotune_backup_gains_and_initialise - store current gains as originals // called before tuning starts to backup original gains static void autotune_backup_gains_and_initialise() { // initialise state because this is our first time autotune_state.axis = AUTOTUNE_AXIS_ROLL; autotune_state.positive_direction = false; autotune_state.step = AUTOTUNE_STEP_WAITING_FOR_LEVEL; autotune_step_start_time = millis(); autotune_state.tune_type = AUTOTUNE_TYPE_RD_UP; // backup original pids orig_roll_rp = g.pid_rate_roll.kP(); orig_roll_ri = g.pid_rate_roll.kI(); orig_roll_rd = g.pid_rate_roll.kD(); orig_roll_sp = g.pi_stabilize_roll.kP(); orig_pitch_rp = g.pid_rate_pitch.kP(); orig_pitch_ri = g.pid_rate_pitch.kI(); orig_pitch_rd = g.pid_rate_pitch.kD(); orig_pitch_sp = g.pi_stabilize_pitch.kP(); // initialise tuned pid values tune_roll_rp = g.pid_rate_roll.kP(); tune_roll_rd = g.pid_rate_roll.kD(); tune_roll_sp = g.pi_stabilize_roll.kP(); tune_pitch_rp = g.pid_rate_pitch.kP(); tune_pitch_rd = g.pid_rate_pitch.kD(); tune_pitch_sp = g.pi_stabilize_pitch.kP(); Log_Write_Event(DATA_AUTOTUNE_INITIALISED); } // autotune_load_orig_gains - set gains to their original values // called by autotune_stop and autotune_failed functions static void autotune_load_orig_gains() { // sanity check the original gains if (orig_roll_rp != 0 && orig_pitch_rp != 0) { g.pid_rate_roll.kP(orig_roll_rp); g.pid_rate_roll.kI(orig_roll_ri); g.pid_rate_roll.kD(orig_roll_rd); g.pi_stabilize_roll.kP(orig_roll_sp); g.pid_rate_pitch.kP(orig_pitch_rp); g.pid_rate_pitch.kI(orig_pitch_ri); g.pid_rate_pitch.kD(orig_pitch_rd); g.pi_stabilize_pitch.kP(orig_pitch_sp); } } // autotune_load_tuned_gains - load tuned gains static void autotune_load_tuned_gains() { // sanity check the gains if (tune_roll_rp != 0 && tune_pitch_rp != 0) { g.pid_rate_roll.kP(tune_roll_rp); g.pid_rate_roll.kI(tune_roll_rp*AUTOTUNE_RP_RATIO_FINAL); g.pid_rate_roll.kD(tune_roll_rd); g.pi_stabilize_roll.kP(tune_roll_sp); g.pid_rate_pitch.kP(tune_pitch_rp); g.pid_rate_pitch.kI(tune_pitch_rp*AUTOTUNE_RP_RATIO_FINAL); g.pid_rate_pitch.kD(tune_pitch_rd); g.pi_stabilize_pitch.kP(tune_pitch_sp); }else{ // log an error message and fail the autotune Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS); } } // autotune_load_intra_test_gains - gains used between tests // called during testing mode's update-gains step to set gains ahead of return-to-level step static void autotune_load_intra_test_gains() { // we are restarting tuning so reset gains to tuning-start gains (i.e. low I term) // sanity check the original gains if (orig_roll_rp != 0 && orig_pitch_rp != 0) { g.pid_rate_roll.kP(orig_roll_rp); g.pid_rate_roll.kI(orig_roll_rp*AUTOTUNE_PI_RATIO_FOR_TESTING); g.pid_rate_roll.kD(orig_roll_rd); g.pi_stabilize_roll.kP(orig_roll_sp); g.pid_rate_pitch.kP(orig_pitch_rp); g.pid_rate_pitch.kI(orig_pitch_rp*AUTOTUNE_PI_RATIO_FOR_TESTING); g.pid_rate_pitch.kD(orig_pitch_rd); g.pi_stabilize_pitch.kP(orig_pitch_sp); }else{ // log an error message and fail the autotune Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS); } } // autotune_load_twitch_gains - load the to-be-tested gains for a single axis // called by autotune_attitude_control() just before it beings testing a gain (i.e. just before it twitches) static void autotune_load_twitch_gains() { if (autotune_state.axis == AUTOTUNE_AXIS_ROLL) { if (tune_roll_rp != 0) { g.pid_rate_roll.kP(tune_roll_rp); g.pid_rate_roll.kI(tune_roll_rp*0.01f); g.pid_rate_roll.kD(tune_roll_rd); g.pi_stabilize_roll.kP(tune_roll_sp); }else{ // log an error message and fail the autotune Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS); } }else{ if (tune_pitch_rp != 0) { g.pid_rate_pitch.kP(tune_pitch_rp); g.pid_rate_pitch.kI(tune_pitch_rp*0.01f); g.pid_rate_pitch.kD(tune_pitch_rd); g.pi_stabilize_pitch.kP(tune_pitch_sp); }else{ // log an error message and fail the autotune Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS); } } } // save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position) static void autotune_save_tuning_gains() { // if we successfully completed tuning if (autotune_state.mode == AUTOTUNE_MODE_SUCCESS) { // sanity check the rate P values if (tune_roll_rp != 0 && tune_pitch_rp != 0) { // rate roll gains g.pid_rate_roll.kP(tune_roll_rp); g.pid_rate_roll.kI(tune_roll_rp*AUTOTUNE_RP_RATIO_FINAL); g.pid_rate_roll.kD(tune_roll_rd); g.pid_rate_roll.save_gains(); // rate pitch gains g.pid_rate_pitch.kP(tune_pitch_rp); g.pid_rate_pitch.kI(tune_pitch_rp*AUTOTUNE_RP_RATIO_FINAL); g.pid_rate_pitch.kD(tune_pitch_rd); g.pid_rate_pitch.save_gains(); // stabilize roll g.pi_stabilize_roll.kP(tune_roll_sp); g.pi_stabilize_roll.save_gains(); // stabilize pitch g.pi_stabilize_pitch.save_gains(); g.pi_stabilize_pitch.kP(tune_pitch_sp); // resave pids to originals in case the autotune is run again orig_roll_rp = g.pid_rate_roll.kP(); orig_roll_ri = g.pid_rate_roll.kI(); orig_roll_rd = g.pid_rate_roll.kD(); orig_roll_sp = g.pi_stabilize_roll.kP(); orig_pitch_rp = g.pid_rate_pitch.kP(); orig_pitch_ri = g.pid_rate_pitch.kI(); orig_pitch_rd = g.pid_rate_pitch.kD(); orig_pitch_sp = g.pi_stabilize_pitch.kP(); // log save gains event Log_Write_Event(DATA_AUTOTUNE_SAVEDGAINS); }else{ // log an error message and fail the autotune Log_Write_Error(ERROR_SUBSYSTEM_AUTOTUNE,ERROR_CODE_AUTOTUNE_BAD_GAINS); } } } // send message to ground station void autotune_update_gcs(uint8_t message_id) { switch (message_id) { case AUTOTUNE_MESSAGE_STARTED: gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Started")); break; case AUTOTUNE_MESSAGE_STOPPED: gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Stopped")); break; case AUTOTUNE_MESSAGE_SUCCESS: gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Success")); break; case AUTOTUNE_MESSAGE_FAILED: gcs_send_text_P(SEVERITY_HIGH,PSTR("AutoTune: Failed")); break; } } #endif // AUTOTUNE_ENABLED == ENABLED