/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_MotorsTailsitter.cpp - ArduCopter motors library for tailsitters and bicopters * */ #include #include #include "AP_MotorsTailsitter.h" #include extern const AP_HAL::HAL& hal; #define SERVO_OUTPUT_RANGE 4500 // init void AP_MotorsTailsitter::init(motor_frame_class frame_class, motor_frame_type frame_type) { // setup default motor and servo mappings uint8_t chan; // right throttle defaults to servo output 1 SRV_Channels::set_aux_channel_default(SRV_Channel::k_throttleRight, CH_1); if (SRV_Channels::find_channel(SRV_Channel::k_throttleRight, chan)) { motor_enabled[chan] = true; } // left throttle defaults to servo output 2 SRV_Channels::set_aux_channel_default(SRV_Channel::k_throttleLeft, CH_2); if (SRV_Channels::find_channel(SRV_Channel::k_throttleLeft, chan)) { motor_enabled[chan] = true; } // right servo defaults to servo output 3 SRV_Channels::set_aux_channel_default(SRV_Channel::k_tiltMotorRight, CH_3); SRV_Channels::set_angle(SRV_Channel::k_tiltMotorRight, SERVO_OUTPUT_RANGE); // left servo defaults to servo output 4 SRV_Channels::set_aux_channel_default(SRV_Channel::k_tiltMotorLeft, CH_4); SRV_Channels::set_angle(SRV_Channel::k_tiltMotorLeft, SERVO_OUTPUT_RANGE); // record successful initialisation if what we setup was the desired frame_class _flags.initialised_ok = (frame_class == MOTOR_FRAME_TAILSITTER); } /// Constructor AP_MotorsTailsitter::AP_MotorsTailsitter(uint16_t loop_rate, uint16_t speed_hz) : AP_MotorsMulticopter(loop_rate, speed_hz) { set_update_rate(speed_hz); } // set update rate to motors - a value in hertz void AP_MotorsTailsitter::set_update_rate(uint16_t speed_hz) { // record requested speed _speed_hz = speed_hz; SRV_Channels::set_rc_frequency(SRV_Channel::k_throttleLeft, speed_hz); SRV_Channels::set_rc_frequency(SRV_Channel::k_throttleRight, speed_hz); } void AP_MotorsTailsitter::output_to_motors() { if (!_flags.initialised_ok) { return; } float throttle_pwm = 0.0f; switch (_spool_mode) { case SHUT_DOWN: throttle_pwm = get_pwm_output_min(); SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, get_pwm_output_min()); SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, get_pwm_output_min()); break; case GROUND_IDLE: throttle_pwm = calc_spin_up_to_pwm(); SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, calc_spin_up_to_pwm()); SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, calc_spin_up_to_pwm()); break; case SPOOL_UP: case THROTTLE_UNLIMITED: case SPOOL_DOWN: throttle_pwm = calc_thrust_to_pwm(_throttle); SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, calc_thrust_to_pwm(_thrust_left)); SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, calc_thrust_to_pwm(_thrust_right)); break; } // Always output to tilt servos SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, _tilt_left*SERVO_OUTPUT_RANGE); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, _tilt_right*SERVO_OUTPUT_RANGE); // plane outputs for Qmodes are setup here, and written to the HAL by the plane servos loop SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, -_yaw_in*SERVO_OUTPUT_RANGE); SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, _pitch_in*SERVO_OUTPUT_RANGE); SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, _roll_in*SERVO_OUTPUT_RANGE); SRV_Channels::set_output_pwm(SRV_Channel::k_throttle, throttle_pwm); } // get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t AP_MotorsTailsitter::get_motor_mask() { uint32_t motor_mask = 0; uint8_t chan; if (SRV_Channels::find_channel(SRV_Channel::k_throttleLeft, chan)) { motor_mask |= 1U << chan; } if (SRV_Channels::find_channel(SRV_Channel::k_throttleRight, chan)) { motor_mask |= 1U << chan; } // add parent's mask motor_mask |= AP_MotorsMulticopter::get_motor_mask(); return motor_mask; } // calculate outputs to the motors void AP_MotorsTailsitter::output_armed_stabilizing() { float roll_thrust; // roll thrust input value, +/- 1.0 float pitch_thrust; // pitch thrust input value, +/- 1.0 float yaw_thrust; // yaw thrust input value, +/- 1.0 float throttle_thrust; // throttle thrust input value, 0.0 - 1.0 float thrust_max; // highest motor value float thr_adj = 0.0f; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy // apply voltage and air pressure compensation const float compensation_gain = get_compensation_gain(); roll_thrust = _roll_in * compensation_gain; pitch_thrust = _pitch_in * compensation_gain; yaw_thrust = _yaw_in * compensation_gain; throttle_thrust = get_throttle() * compensation_gain; // sanity check throttle is above zero and below current limited throttle if (throttle_thrust <= 0.0f) { throttle_thrust = 0.0f; limit.throttle_lower = true; } if (throttle_thrust >= _throttle_thrust_max) { throttle_thrust = _throttle_thrust_max; limit.throttle_upper = true; } // calculate left and right throttle outputs _thrust_left = throttle_thrust + roll_thrust*0.5f; _thrust_right = throttle_thrust - roll_thrust*0.5f; // if max thrust is more than one reduce average throttle thrust_max = MAX(_thrust_right,_thrust_left); if (thrust_max > 1.0f) { thr_adj = 1.0f - thrust_max; limit.throttle_upper = true; limit.roll_pitch = true; } // Add adjustment to reduce average throttle _thrust_left = constrain_float(_thrust_left + thr_adj, 0.0f, 1.0f); _thrust_right = constrain_float(_thrust_right + thr_adj, 0.0f, 1.0f); _throttle = throttle_thrust + thr_adj; // thrust vectoring _tilt_left = pitch_thrust - yaw_thrust; _tilt_right = pitch_thrust + yaw_thrust; } // output_test_seq - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_MotorsTailsitter::output_test_seq(uint8_t motor_seq, int16_t pwm) { // exit immediately if not armed if (!armed()) { return; } // output to motors and servos switch (motor_seq) { case 1: // right throttle SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, pwm); break; case 2: // right tilt servo SRV_Channels::set_output_pwm(SRV_Channel::k_tiltMotorRight, pwm); break; case 3: // left throttle SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, pwm); break; case 4: // left tilt servo SRV_Channels::set_output_pwm(SRV_Channel::k_tiltMotorLeft, pwm); break; default: // do nothing break; } }