/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * ArduCopter parameter definitions * */ #define GSCALAR(v, name, def) { g.v.vtype, name, Parameters::k_param_ ## v, &g.v, {def_value : def} } #define GGROUP(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &g.v, {group_info : class::var_info} } #define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &v, {group_info : class::var_info} } const AP_Param::Info var_info[] PROGMEM = { // @Param: SYSID_SW_MREV // @DisplayName: Eeprom format version number // @Description: This value is incremented when changes are made to the eeprom format // @User: Advanced GSCALAR(format_version, "SYSID_SW_MREV", 0), // @Param: SYSID_SW_TYPE // @DisplayName: Software Type // @Description: This is used by the ground station to recognise the software type (eg ArduPlane vs ArduCopter) // @User: Advanced GSCALAR(software_type, "SYSID_SW_TYPE", Parameters::k_software_type), // @Param: SYSID_THISMAV // @DisplayName: Mavlink version // @Description: Allows reconising the mavlink version // @User: Advanced GSCALAR(sysid_this_mav, "SYSID_THISMAV", MAV_SYSTEM_ID), // @Param: SYSID_MYGCS // @DisplayName: My ground station number // @Description: Allows restricting radio overrides to only come from my ground station // @User: Advanced GSCALAR(sysid_my_gcs, "SYSID_MYGCS", 255), // @Param: SERIAL3_BAUD // @DisplayName: Telemetry Baud Rate // @Description: The baud rate used on the telemetry port // @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200 // @User: Standard GSCALAR(serial3_baud, "SERIAL3_BAUD", SERIAL3_BAUD/1000), // @Param: TELEM_DELAY // @DisplayName: Telemetry startup delay // @Description: The amount of time (in seconds) to delay radio telemetry to prevent an Xbee bricking on power up // @User: Standard // @Units: seconds // @Range: 0 10 // @Increment: 1 GSCALAR(telem_delay, "TELEM_DELAY", 0), // @Param: RTL_ALT // @DisplayName: RTL Altitude // @Description: The minimum altitude the model will move to before Returning to Launch. Set to zero to return at current altitude. // @Units: Centimeters // @Range: 0 8000 // @Increment: 1 // @User: Standard GSCALAR(rtl_altitude, "RTL_ALT", RTL_ALT), // @Param: SONAR_ENABLE // @DisplayName: Enable Sonar // @Description: Setting this to Enabled(1) will enable the sonar. Setting this to Disabled(0) will disable the sonar // @Values: 0:Disabled,1:Enabled // @User: Standard GSCALAR(sonar_enabled, "SONAR_ENABLE", DISABLED), // @Param: SONAR_TYPE // @DisplayName: Sonar type // @Description: Used to adjust scaling to match the sonar used (only Maxbotix sonars are supported at this time) // @Values: 0:XL-EZ0 / XL-EZ4,1:LV-EZ0,2:XLL-EZ0,3:HRLV // @User: Standard GSCALAR(sonar_type, "SONAR_TYPE", AP_RANGEFINDER_MAXSONARXL), // @Param: SONAR_GAIN // @DisplayName: Sonar gain // @Description: Used to adjust the speed with which the target altitude is changed when objects are sensed below the copter // @Range: 0.01 0.5 // @Increment: 0.01 // @User: Standard GSCALAR(sonar_gain, "SONAR_GAIN", SONAR_GAIN_DEFAULT), // @Param: BATT_MONITOR // @DisplayName: Battery monitoring // @Description: Controls enabling monitoring of the battery's voltage and current // @Values: 0:Disabled,3:Voltage Only,4:Voltage and Current // @User: Standard GSCALAR(battery_monitoring, "BATT_MONITOR", BATT_MONITOR_DISABLED), // @Param: FS_BATT_ENABLE // @DisplayName: Battery Failsafe Enable // @Description: Controls whether failsafe will be invoked when battery voltage or current runs low // @Values: 0:Disabled,1:Enabled // @User: Standard GSCALAR(failsafe_battery_enabled, "FS_BATT_ENABLE", FS_BATTERY), // @Param: FS_GPS_ENABLE // @DisplayName: GPS Failsafe Enable // @Description: Controls whether failsafe will be invoked when gps signal is lost // @Values: 0:Disabled,1:Enabled // @User: Standard GSCALAR(failsafe_gps_enabled, "FS_GPS_ENABLE", FS_GPS), // @Param: FS_GCS_ENABLE // @DisplayName: Ground Station Failsafe Enable // @Description: Controls whether failsafe will be invoked (and what action to take) when connection with Ground station is lost for at least 5 seconds // @Values: 0:Disabled,1:Enabled always RTL,2:Enabled Continue with Mission in Auto Mode // @User: Standard GSCALAR(failsafe_gcs, "FS_GCS_ENABLE", FS_GCS_DISABLED), // @Param: GPS_HDOP_GOOD // @DisplayName: GPS Hdop Good // @Description: GPS Hdop value below which represent a good position. Used for pre-arm checks // @Range: 100 900 // @User: Advanced GSCALAR(gps_hdop_good, "GPS_HDOP_GOOD", GPS_HDOP_GOOD_DEFAULT), // @Param: VOLT_DIVIDER // @DisplayName: Voltage Divider // @Description: Used to convert the voltage of the voltage sensing pin (BATT_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_DIVIDER). For the 3DR Power brick, this should be set to 10.1. For the PX4 using the PX4IO power supply this should be set to 1. // @User: Advanced GSCALAR(volt_div_ratio, "VOLT_DIVIDER", VOLT_DIV_RATIO), // @Param: AMP_PER_VOLT // @DisplayName: Current Amps per volt // @Description: Used to convert the voltage on the current sensing pin (BATT_CURR_PIN) to the actual current being consumed in amps (curr pin voltage * INPUT_VOLTS/1024 * AMP_PER_VOLT ) // @User: Advanced GSCALAR(curr_amp_per_volt, "AMP_PER_VOLT", CURR_AMP_PER_VOLT), // @Param: BATT_CAPACITY // @DisplayName: Battery Capacity // @Description: Battery capacity in milliamp-hours (mAh) // @Units: mAh // @User: Standard GSCALAR(pack_capacity, "BATT_CAPACITY", HIGH_DISCHARGE), // @Param: MAG_ENABLE // @DisplayName: Enable Compass // @Description: Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass // @Values: 0:Disabled,1:Enabled // @User: Standard GSCALAR(compass_enabled, "MAG_ENABLE", MAGNETOMETER), // @Param: FLOW_ENABLE // @DisplayName: Enable Optical Flow // @Description: Setting this to Enabled(1) will enable optical flow. Setting this to Disabled(0) will disable optical flow // @Values: 0:Disabled,1:Enabled // @User: Standard GSCALAR(optflow_enabled, "FLOW_ENABLE", DISABLED), // @Param: LOW_VOLT // @DisplayName: Low Voltage // @Description: Set this to the voltage you want to represent low voltage // @Range: 0 20 // @Increment: 0.1 // @User: Standard GSCALAR(low_voltage, "LOW_VOLT", LOW_VOLTAGE), // @Param: SUPER_SIMPLE // @DisplayName: Enable Super Simple Mode // @Description: Setting this to Enabled(1) will enable Super Simple Mode. Setting this to Disabled(0) will disable Super Simple Mode // @Values: 0:Disabled,1:Enabled // @User: Standard GSCALAR(super_simple, "SUPER_SIMPLE", SUPER_SIMPLE), // @Param: RTL_ALT_FINAL // @DisplayName: RTL Final Altitude // @Description: This is the altitude the vehicle will move to as the final stage of Returning to Launch or after completing a mission. Set to zero to land. // @Units: Centimeters // @Range: -1 1000 // @Increment: 1 // @User: Standard GSCALAR(rtl_alt_final, "RTL_ALT_FINAL", RTL_ALT_FINAL), // @Param: BATT_VOLT_PIN // @DisplayName: Battery Voltage sensing pin // @Description: Setting this to 0 ~ 13 will enable battery current sensing on pins A0 ~ A13. For the 3DR power brick on APM2.5 it should be set to 13. On the PX4 it should be set to 100. // @Values: -1:Disabled, 0:A0, 1:A1, 13:A13, 100:PX4 // @User: Standard GSCALAR(battery_volt_pin, "BATT_VOLT_PIN", BATTERY_VOLT_PIN), // @Param: BATT_CURR_PIN // @DisplayName: Battery Current sensing pin // @Description: Setting this to 0 ~ 13 will enable battery current sensing on pins A0 ~ A13. For the 3DR power brick on APM2.5 it should be set to 12. On the PX4 it should be set to 101. // @Values: -1:Disabled, 1:A1, 2:A2, 12:A12, 101:PX4 // @User: Standard GSCALAR(battery_curr_pin, "BATT_CURR_PIN", BATTERY_CURR_PIN), // @Param: RSSI_PIN // @DisplayName: Receiver RSSI sensing pin // @Description: This selects an analog pin for the receiver RSSI voltage. It assumes the voltage is 5V for max rssi, 0V for minimum // @Values: -1:Disabled, 0:A0, 1:A1, 2:A2, 13:A13 // @User: Standard GSCALAR(rssi_pin, "RSSI_PIN", -1), // @Param: WP_YAW_BEHAVIOR // @DisplayName: Yaw behaviour during missions // @Description: Determines how the autopilot controls the yaw during missions and RTL // @Values: 0:Never change yaw, 1:Face next waypoint, 2:Face next waypoint except RTL, 3:Face along GPS course // @User: Advanced GSCALAR(wp_yaw_behavior, "WP_YAW_BEHAVIOR", WP_YAW_BEHAVIOR_DEFAULT), // @Param: WP_TOTAL // @DisplayName: Waypoint Total // @Description: Total number of commands in the mission stored in the eeprom. Do not update this parameter directly! // @User: Advanced GSCALAR(command_total, "WP_TOTAL", 0), // @Param: WP_INDEX // @DisplayName: Waypoint Index // @Description: The index number of the command that is currently being executed. Do not update this parameter directly! // @User: Advanced GSCALAR(command_index, "WP_INDEX", 0), // @Param: CIRCLE_RADIUS // @DisplayName: Circle radius // @Description: Defines the radius of the circle the vehicle will fly when in Circle flight mode // @Units: Meters // @Range: 1 127 // @Increment: 1 // @User: Standard GSCALAR(circle_radius, "CIRCLE_RADIUS", CIRCLE_RADIUS), // @Param: CIRCLE_RATE // @DisplayName: Circle rate // @Description: Circle mode's turn rate in degrees / second. Positive to turn clockwise, negative for counter clockwise // @Units: deg/s // @Range: -90 90 // @Increment: 1 // @User: Standard GSCALAR(circle_rate, "CIRCLE_RATE", CIRCLE_RATE), // @Param: RTL_LOIT_TIME // @DisplayName: RTL loiter time // @Description: Time (in milliseconds) to loiter above home before begining final descent // @Units: ms // @Range: 0 60000 // @Increment: 1000 // @User: Standard GSCALAR(rtl_loiter_time, "RTL_LOIT_TIME", RTL_LOITER_TIME), // @Param: LAND_SPEED // @DisplayName: Land speed // @Description: The descent speed for the final stage of landing in cm/s // @Units: cm/s // @Range: 20 200 // @Increment: 10 // @User: Standard GSCALAR(land_speed, "LAND_SPEED", LAND_SPEED), // @Param: PILOT_VELZ_MAX // @DisplayName: Pilot maximum vertical speed // @Description: The maximum vertical velocity the pilot may request in cm/s // @Units: Centimeters/Second // @Range: 10 500 // @Increment: 10 // @User: Standard GSCALAR(pilot_velocity_z_max, "PILOT_VELZ_MAX", PILOT_VELZ_MAX), // @Param: THR_MIN // @DisplayName: Minimum Throttle // @Description: The minimum throttle that will be sent to the motors to keep them spinning // @Units: ms // @Range: 0 1000 // @Increment: 1 // @User: Standard GSCALAR(throttle_min, "THR_MIN", MINIMUM_THROTTLE), // @Param: THR_MAX // @DisplayName: Maximum Throttle // @Description: The maximum throttle that will be sent to the motors // @Units: ms // @Range: 0 1000 // @Increment: 1 // @User: Standard GSCALAR(throttle_max, "THR_MAX", MAXIMUM_THROTTLE), // @Param: FS_THR_ENABLE // @DisplayName: Throttle Failsafe Enable // @Description: The throttle failsafe allows you to configure a software failsafe activated by a setting on the throttle input channel // @Values: 0:Disabled,1:Enabled always RTL,2:Enabled Continue with Mission in Auto Mode,3:Enabled always LAND // @User: Standard GSCALAR(failsafe_throttle, "FS_THR_ENABLE", FS_THR_DISABLED), // @Param: FS_THR_VALUE // @DisplayName: Throttle Failsafe Value // @Description: The PWM level on channel 3 below which throttle sailsafe triggers // @Range: 925 1100 // @Units: ms // @Increment: 1 // @User: Standard GSCALAR(failsafe_throttle_value, "FS_THR_VALUE", FS_THR_VALUE_DEFAULT), // @Param: TRIM_THROTTLE // @DisplayName: Throttle Trim // @Description: The autopilot's estimate of the throttle required to maintain a level hover. Calculated automatically from the pilot's throttle input while in stabilize mode // @Range: 0 1000 // @Units: ms // @User: Standard GSCALAR(throttle_cruise, "TRIM_THROTTLE", THROTTLE_CRUISE), // @Param: THR_MID // @DisplayName: Throttle Mid Position // @Description: The throttle output (0 ~ 1000) when throttle stick is in mid position. Used to scale the manual throttle so that the mid throttle stick position is close to the throttle required to hover // @User: Standard // @Range: 300 700 // @Increment: 1 GSCALAR(throttle_mid, "THR_MID", THR_MID), // @Param: FLTMODE1 // @DisplayName: Flight Mode 1 // @Description: Flight mode when Channel 5 pwm is <= 1230 // @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,8:Position,9:Land,10:OF_Loiter,11:ToyA,12:ToyM,13:Sport // @User: Standard GSCALAR(flight_mode1, "FLTMODE1", FLIGHT_MODE_1), // @Param: FLTMODE2 // @DisplayName: Flight Mode 2 // @Description: Flight mode when Channel 5 pwm is >1230, <= 1360 // @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,8:Position,9:Land,10:OF_Loiter,11:ToyA,12:ToyM,13:Sport // @User: Standard GSCALAR(flight_mode2, "FLTMODE2", FLIGHT_MODE_2), // @Param: FLTMODE3 // @DisplayName: Flight Mode 3 // @Description: Flight mode when Channel 5 pwm is >1360, <= 1490 // @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,8:Position,9:Land,10:OF_Loiter,11:ToyA,12:ToyM,13:Sport // @User: Standard GSCALAR(flight_mode3, "FLTMODE3", FLIGHT_MODE_3), // @Param: FLTMODE4 // @DisplayName: Flight Mode 4 // @Description: Flight mode when Channel 5 pwm is >1490, <= 1620 // @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,8:Position,9:Land,10:OF_Loiter,11:ToyA,12:ToyM,13:Sport // @User: Standard GSCALAR(flight_mode4, "FLTMODE4", FLIGHT_MODE_4), // @Param: FLTMODE5 // @DisplayName: Flight Mode 5 // @Description: Flight mode when Channel 5 pwm is >1620, <= 1749 // @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,8:Position,9:Land,10:OF_Loiter,11:ToyA,12:ToyM,13:Sport // @User: Standard GSCALAR(flight_mode5, "FLTMODE5", FLIGHT_MODE_5), // @Param: FLTMODE6 // @DisplayName: Flight Mode 6 // @Description: Flight mode when Channel 5 pwm is >=1750 // @Values: 0:Stabilize,1:Acro,2:AltHold,3:Auto,4:Guided,5:Loiter,6:RTL,7:Circle,8:Position,9:Land,10:OF_Loiter,11:ToyA,12:ToyM,13:Sport // @User: Standard GSCALAR(flight_mode6, "FLTMODE6", FLIGHT_MODE_6), // @Param: SIMPLE // @DisplayName: Simple mode bitmask // @Description: Bitmask which holds which flight modes use simple heading mode (eg bit 0 = 1 means Flight Mode 0 uses simple mode) // @User: Advanced GSCALAR(simple_modes, "SIMPLE", 0), // @Param: LOG_BITMASK // @DisplayName: Log bitmask // @Description: 2 byte bitmap of log types to enable // @Values: 0:Disabled,830:Default,958:Default+IMU,1854:Default+Motors,17214:Default+INav // @User: Advanced GSCALAR(log_bitmask, "LOG_BITMASK", DEFAULT_LOG_BITMASK), // @Param: TOY_RATE // @DisplayName: Toy Yaw Rate // @Description: Controls yaw rate in Toy mode. Higher values will cause a slower yaw rate. Do not set to zero! // @User: Advanced // @Range: 1 10 GSCALAR(toy_yaw_rate, "TOY_RATE", 1), // @Param: ESC // @DisplayName: ESC Calibration // @Description: Controls whether ArduCopter will enter ESC calibration on the next restart. Do not adjust this parameter manually. // @User: Advanced // @Values: 0:Normal Start-up,1:Start-up in ESC Calibration mode GSCALAR(esc_calibrate, "ESC", 0), // @Param: TUNE // @DisplayName: Channel 6 Tuning // @Description: Controls which parameters (normally PID gains) are being tuned with transmitter's channel 6 knob // @User: Standard // @Values: 0:None,1:Stab Roll/Pitch kP,4:Rate Roll/Pitch kP,5:Rate Roll/Pitch kI,21:Rate Roll/Pitch kD,3:Stab Yaw kP,6:Rate Yaw kP,26:Rate Yaw kD,14:Altitude Hold kP,7:Throttle Rate kP,37:Throttle Rate kD,34:Throttle Accel kP,35:Throttle Accel kI,36:Throttle Accel kD,12:Loiter Pos kP,22:Loiter Rate kP,28:Loiter Rate kI,23:Loiter Rate kD,10:WP Speed,25:Acro RollPitch kP,40:Acro Yaw kP,9:Relay On/Off,13:Heli Ext Gyro,17:OF Loiter kP,18:OF Loiter kI,19:OF Loiter kD,30:AHRS Yaw kP,31:AHRS kP,32:INAV_TC,38:Declination,39:Circle Rate,41:Sonar Gain GSCALAR(radio_tuning, "TUNE", 0), // @Param: TUNE_LOW // @DisplayName: Tuning minimum // @Description: The minimum value that will be applied to the parameter currently being tuned with the transmitter's channel 6 knob // @User: Standard // @Range: 0 32767 GSCALAR(radio_tuning_low, "TUNE_LOW", 0), // @Param: TUNE_HIGH // @DisplayName: Tuning maximum // @Description: The maximum value that will be applied to the parameter currently being tuned with the transmitter's channel 6 knob // @User: Standard // @Range: 0 32767 GSCALAR(radio_tuning_high, "TUNE_HIGH", 1000), // @Param: FRAME // @DisplayName: Frame Orientation (+, X or V) // @Description: Controls motor mixing for multicopters. Not used for Tri or Traditional Helicopters. // @Values: 0:Plus, 1:X, 2:V, 3:H // @User: Standard GSCALAR(frame_orientation, "FRAME", FRAME_ORIENTATION), // @Param: CH7_OPT // @DisplayName: Channel 7 option // @Description: Select which function if performed when CH7 is above 1800 pwm // @Values: 0:Do Nothing, 2:Flip, 3:Simple Mode, 4:RTL, 5:Save Trim, 7:Save WP, 8:Multi Mode, 9:Camera Trigger, 10:Sonar, 11:Fence, 12:ResetToArmedYaw, 13:Super Simple Mode, 14:Acro Trainer, 16:Auto // @User: Standard GSCALAR(ch7_option, "CH7_OPT", CH7_OPTION), // @Param: CH8_OPT // @DisplayName: Channel 8 option // @Description: Select which function if performed when CH8 is above 1800 pwm // @Values: 0:Do Nothing, 2:Flip, 3:Simple Mode, 4:RTL, 5:Save Trim, 7:Save WP, 8:Multi Mode, 9:Camera Trigger, 10:Sonar, 11:Fence, 12:ResetToArmedYaw, 13:Super Simple Mode, 14:Acro Trainer, 16:Auto // @User: Standard GSCALAR(ch8_option, "CH8_OPT", CH8_OPTION), // @Param: ARMING_CHECK // @DisplayName: Arming check // @Description: Allows enabling or disabling of pre-arming checks of receiver, accelerometer, barometer and compass // @Values: 0:Disabled, 1:Enabled // @User: Standard GSCALAR(arming_check_enabled, "ARMING_CHECK", 1), // @Param: ANGLE_MAX // @DisplayName: Angle Max // @Description: Maximum lean angle in all flight modes // @Range 1000 8000 // @User: Advanced GSCALAR(angle_max, "ANGLE_MAX", DEFAULT_ANGLE_MAX), #if FRAME_CONFIG == HELI_FRAME // @Group: HS1_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp GGROUP(heli_servo_1, "HS1_", RC_Channel), // @Group: HS2_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp GGROUP(heli_servo_2, "HS2_", RC_Channel), // @Group: HS3_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp GGROUP(heli_servo_3, "HS3_", RC_Channel), // @Group: HS4_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp GGROUP(heli_servo_4, "HS4_", RC_Channel), // @Param: RATE_PIT_FF // @DisplayName: Rate Pitch Feed Forward // @Description: Rate Pitch Feed Forward (for TradHeli Only) // @Range: 0 10 // @User: Standard GSCALAR(heli_pitch_ff, "RATE_PIT_FF", HELI_PITCH_FF), // @Param: RATE_RLL_FF // @DisplayName: Rate Roll Feed Forward // @Description: Rate Roll Feed Forward (for TradHeli Only) // @Range: 0 10 // @User: Standard GSCALAR(heli_roll_ff, "RATE_RLL_FF", HELI_ROLL_FF), // @Param: RATE_YAW_FF // @DisplayName: Rate Yaw Feed Forward // @Description: Rate Yaw Feed Forward (for TradHeli Only) // @Range: 0 10 // @User: Standard GSCALAR(heli_yaw_ff, "RATE_YAW_FF", HELI_YAW_FF), #endif // RC channel //----------- // @Group: RC1_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp GGROUP(rc_1, "RC1_", RC_Channel), // @Group: RC2_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp GGROUP(rc_2, "RC2_", RC_Channel), // @Group: RC3_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp GGROUP(rc_3, "RC3_", RC_Channel), // @Group: RC4_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp GGROUP(rc_4, "RC4_", RC_Channel), // @Group: RC5_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_5, "RC5_", RC_Channel_aux), // @Group: RC6_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_6, "RC6_", RC_Channel_aux), // @Group: RC7_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_7, "RC7_", RC_Channel_aux), // @Group: RC8_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_8, "RC8_", RC_Channel_aux), #if MOUNT == ENABLED // @Group: RC10_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_10, "RC10_", RC_Channel_aux), // @Group: RC11_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_11, "RC11_", RC_Channel_aux), #endif #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 // @Group: RC9_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_9, "RC9_", RC_Channel_aux), // @Group: RC12_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_12, "RC12_", RC_Channel_aux), #endif // @Param: RC_SPEED // @DisplayName: ESC Update Speed // @Description: This is the speed in Hertz that your ESCs will receive updates // @Units: Hz // @Range: 50 490 // @Increment: 1 // @User: Advanced GSCALAR(rc_speed, "RC_SPEED", RC_FAST_SPEED), // @Param: ACRO_RP_P // @DisplayName: Acro Roll and Pitch P gain // @Description: Converts pilot roll and pitch into a desired rate of rotation in ACRO and SPORT mode. Higher values mean faster rate of rotation. // @Range: 1 10 // @User: Standard GSCALAR(acro_rp_p, "ACRO_RP_P", ACRO_RP_P), // @Param: ACRO_YAW_P // @DisplayName: Acro Yaw P gain // @Description: Converts pilot yaw input into a desired rate of rotation in ACRO, Stabilize and SPORT modes. Higher values mean faster rate of rotation. // @Range: 1 10 // @User: Standard GSCALAR(acro_yaw_p, "ACRO_YAW_P", ACRO_YAW_P), // @Param: ACRO_BAL_ROLL // @DisplayName: Acro Balance Roll // @Description: rate at which roll angle returns to level in acro mode // @Range: 0 3 // @Increment: 0.1 // @User: Advanced GSCALAR(acro_balance_roll, "ACRO_BAL_ROLL", ACRO_BALANCE_ROLL), // @Param: ACRO_BAL_PITCH // @DisplayName: Acro Balance Pitch // @Description: rate at which pitch angle returns to level in acro mode // @Range: 0 3 // @Increment: 0.1 // @User: Advanced GSCALAR(acro_balance_pitch, "ACRO_BAL_PITCH", ACRO_BALANCE_PITCH), // @Param: ACRO_TRAINER // @DisplayName: Acro Trainer // @Description: Type of trainer used in acro mode // @Values: 0:Disabled,1:Leveling,2:Leveling and Limited // @User: Advanced GSCALAR(acro_trainer, "ACRO_TRAINER", ACRO_TRAINER_LIMITED), // @Param: LED_MODE // @DisplayName: Copter LED Mode // @Description: bitmap to control the copter led mode // @Values: 0:Disabled,1:Enable,2:GPS On,4:Aux,8:Buzzer,16:Oscillate,32:Nav Blink,64:GPS Nav Blink // @User: Standard GSCALAR(copter_leds_mode, "LED_MODE", 9), // PID controller //--------------- // @Param: RATE_RLL_P // @DisplayName: Roll axis rate controller P gain // @Description: Roll axis rate controller P gain. Converts the difference between desired roll rate and actual roll rate into a motor speed output // @Range: 0.08 0.20 // @Increment: 0.005 // @User: Standard // @Param: RATE_RLL_I // @DisplayName: Roll axis rate controller I gain // @Description: Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate // @Range: 0.01 0.5 // @Increment: 0.01 // @User: Standard // @Param: RATE_RLL_IMAX // @DisplayName: Roll axis rate controller I gain maximum // @Description: Roll axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output // @Range: 0 500 // @Increment: 10 // @Units: ms // @User: Standard // @Param: RATE_RLL_D // @DisplayName: Roll axis rate controller D gain // @Description: Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate // @Range: 0.001 0.008 // @Increment: 0.001 // @User: Standard GGROUP(pid_rate_roll, "RATE_RLL_", AC_PID), // @Param: RATE_PIT_P // @DisplayName: Pitch axis rate controller P gain // @Description: Pitch axis rate controller P gain. Converts the difference between desired pitch rate and actual pitch rate into a motor speed output // @Range: 0.08 0.20 // @Increment: 0.005 // @User: Standard // @Param: RATE_PIT_I // @DisplayName: Pitch axis rate controller I gain // @Description: Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate // @Range: 0.01 0.5 // @Increment: 0.01 // @User: Standard // @Param: RATE_PIT_IMAX // @DisplayName: Pitch axis rate controller I gain maximum // @Description: Pitch axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output // @Range: 0 500 // @Increment: 10 // @Units: ms // @User: Standard // @Param: RATE_PIT_D // @DisplayName: Pitch axis rate controller D gain // @Description: Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate // @Range: 0.001 0.008 // @Increment: 0.001 // @User: Standard GGROUP(pid_rate_pitch, "RATE_PIT_", AC_PID), // @Param: RATE_YAW_P // @DisplayName: Yaw axis rate controller P gain // @Description: Yaw axis rate controller P gain. Converts the difference between desired yaw rate and actual yaw rate into a motor speed output // @Range: 0.150 0.250 // @Increment: 0.005 // @User: Standard // @Param: RATE_YAW_I // @DisplayName: Yaw axis rate controller I gain // @Description: Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate // @Range: 0.010 0.020 // @Increment: 0.01 // @User: Standard // @Param: RATE_YAW_IMAX // @DisplayName: Yaw axis rate controller I gain maximum // @Description: Yaw axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output // @Range: 0 500 // @Increment: 10 // @Units: ms // @User: Standard // @Param: RATE_YAW_D // @DisplayName: Yaw axis rate controller D gain // @Description: Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate // @Range: 0.000 0.001 // @Increment: 0.001 // @User: Standard GGROUP(pid_rate_yaw, "RATE_YAW_", AC_PID), // @Param: LOITER_LAT_P // @DisplayName: Loiter latitude rate controller P gain // @Description: Loiter latitude rate controller P gain. Converts the difference between desired speed and actual speed into a lean angle in the latitude direction // @Range: 0.1 6.0 // @Increment: 0.1 // @User: Standard // @Param: LOITER_LAT_I // @DisplayName: Loiter latitude rate controller I gain // @Description: Loiter latitude rate controller I gain. Corrects long-term difference in desired speed and actual speed in the latitude direction // @Range: 0.02 1.00 // @Increment: 0.01 // @User: Standard // @Param: LOITER_LAT_IMAX // @DisplayName: Loiter rate controller I gain maximum // @Description: Loiter rate controller I gain maximum. Constrains the lean angle that the I gain will output // @Range: 0 4500 // @Increment: 10 // @Units: Centi-Degrees // @User: Standard // @Param: LOITER_LAT_D // @DisplayName: Loiter latitude rate controller D gain // @Description: Loiter latitude rate controller D gain. Compensates for short-term change in desired speed vs actual speed // @Range: 0.0 0.6 // @Increment: 0.01 // @User: Standard GGROUP(pid_loiter_rate_lat, "LOITER_LAT_", AC_PID), // @Param: LOITER_LON_P // @DisplayName: Loiter longitude rate controller P gain // @Description: Loiter longitude rate controller P gain. Converts the difference between desired speed and actual speed into a lean angle in the longitude direction // @Range: 0.1 6.0 // @Increment: 0.1 // @User: Standard // @Param: LOITER_LON_I // @DisplayName: Loiter longitude rate controller I gain // @Description: Loiter longitude rate controller I gain. Corrects long-term difference in desired speed and actual speed in the longitude direction // @Range: 0.02 1.00 // @Increment: 0.01 // @User: Standard // @Param: LOITER_LON_IMAX // @DisplayName: Loiter longitude rate controller I gain maximum // @Description: Loiter longitude rate controller I gain maximum. Constrains the lean angle that the I gain will output // @Range: 0 4500 // @Increment: 10 // @Units: Centi-Degrees // @User: Standard // @Param: LOITER_LON_D // @DisplayName: Loiter longituderate controller D gain // @Description: Loiter longitude rate controller D gain. Compensates for short-term change in desired speed vs actual speed // @Range: 0.0 0.6 // @Increment: 0.01 // @User: Standard GGROUP(pid_loiter_rate_lon, "LOITER_LON_", AC_PID), // @Param: THR_RATE_P // @DisplayName: Throttle rate controller P gain // @Description: Throttle rate controller P gain. Converts the difference between desired vertical speed and actual speed into a desired acceleration that is passed to the throttle acceleration controller // @Range: 1.000 8.000 // @User: Standard // @Param: THR_RATE_I // @DisplayName: Throttle rate controller I gain // @Description: Throttle rate controller I gain. Corrects long-term difference in desired vertical speed and actual speed // @Range: 0.000 0.100 // @User: Standard // @Param: THR_RATE_IMAX // @DisplayName: Throttle rate controller I gain maximum // @Description: Throttle rate controller I gain maximum. Constrains the desired acceleration that the I gain will generate // @Range: 0 500 // @Units: cm/s/s // @User: Standard // @Param: THR_RATE_D // @DisplayName: Throttle rate controller D gain // @Description: Throttle rate controller D gain. Compensates for short-term change in desired vertical speed vs actual speed // @Range: 0.000 0.400 // @User: Standard GGROUP(pid_throttle_rate, "THR_RATE_", AC_PID), // @Param: THR_ACCEL_P // @DisplayName: Throttle acceleration controller P gain // @Description: Throttle acceleration controller P gain. Converts the difference between desired vertical acceleration and actual acceleration into a motor output // @Range: 0.500 1.500 // @User: Standard // @Param: THR_ACCEL_I // @DisplayName: Throttle acceleration controller I gain // @Description: Throttle acceleration controller I gain. Corrects long-term difference in desired vertical acceleration and actual acceleration // @Range: 0.000 3.000 // @User: Standard // @Param: THR_ACCEL_IMAX // @DisplayName: Throttle acceleration controller I gain maximum // @Description: Throttle acceleration controller I gain maximum. Constrains the maximum pwm that the I term will generate // @Range: 0 500 // @Units: ms // @User: Standard // @Param: THR_ACCEL_D // @DisplayName: Throttle acceleration controller D gain // @Description: Throttle acceleration controller D gain. Compensates for short-term change in desired vertical acceleration vs actual acceleration // @Range: 0.000 0.400 // @User: Standard GGROUP(pid_throttle_accel,"THR_ACCEL_", AC_PID), // @Param: OF_RLL_P // @DisplayName: Optical Flow based loiter controller roll axis P gain // @Description: Optical Flow based loiter controller roll axis P gain. Converts the position error from the target point to a roll angle // @Range: 2.000 3.000 // @User: Standard // @Param: OF_RLL_I // @DisplayName: Optical Flow based loiter controller roll axis I gain // @Description: Optical Flow based loiter controller roll axis I gain. Corrects long-term position error by more persistently rolling left or right // @Range: 0.250 0.750 // @User: Standard // @Param: OF_RLL_IMAX // @DisplayName: Optical Flow based loiter controller roll axis I gain maximum // @Description: Optical Flow based loiter controller roll axis I gain maximum. Constrains the maximum roll angle that the I term will generate // @Range: 0 4500 // @Units: Centi-Degrees // @User: Standard // @Param: OF_RLL_D // @DisplayName: Optical Flow based loiter controller roll axis D gain // @Description: Optical Flow based loiter controller roll axis D gain. Compensates for short-term change in speed in the roll direction // @Range: 0.100 0.140 // @User: Standard GGROUP(pid_optflow_roll, "OF_RLL_", AC_PID), // @Param: OF_PIT_P // @DisplayName: Optical Flow based loiter controller pitch axis P gain // @Description: Optical Flow based loiter controller pitch axis P gain. Converts the position error from the target point to a pitch angle // @Range: 2.000 3.000 // @User: Standard // @Param: OF_PIT_I // @DisplayName: Optical Flow based loiter controller pitch axis I gain // @Description: Optical Flow based loiter controller pitch axis I gain. Corrects long-term position error by more persistently pitching left or right // @Range: 0.250 0.750 // @User: Standard // @Param: OF_PIT_IMAX // @DisplayName: Optical Flow based loiter controller pitch axis I gain maximum // @Description: Optical Flow based loiter controller pitch axis I gain maximum. Constrains the maximum pitch angle that the I term will generate // @Range: 0 4500 // @Units: Centi-Degrees // @User: Standard // @Param: OF_PIT_D // @DisplayName: Optical Flow based loiter controller pitch axis D gain // @Description: Optical Flow based loiter controller pitch axis D gain. Compensates for short-term change in speed in the pitch direction // @Range: 0.100 0.140 // @User: Standard GGROUP(pid_optflow_pitch, "OF_PIT_", AC_PID), // PI controller //-------------- // @Param: STB_RLL_P // @DisplayName: Roll axis stabilize controller P gain // @Description: Roll axis stabilize (i.e. angle) controller P gain. Converts the error between the desired roll angle and actual angle to a desired roll rate // @Range: 3.000 6.000 // @User: Standard // @Param: STB_RLL_I // @DisplayName: Roll axis stabilize controller I gain // @Description: Roll axis stabilize (i.e. angle) controller I gain. Corrects for longer-term difference in desired roll angle and actual angle // @Range: 0.000 0.100 // @User: Standard // @Param: STB_RLL_IMAX // @DisplayName: Roll axis stabilize controller I gain maximum // @Description: Roll axis stabilize (i.e. angle) controller I gain maximum. Constrains the maximum roll rate that the I term will generate // @Range: 0 4500 // @Units: Centi-Degrees/Sec // @User: Standard GGROUP(pi_stabilize_roll, "STB_RLL_", APM_PI), // @Param: STB_PIT_P // @DisplayName: Pitch axis stabilize controller P gain // @Description: Pitch axis stabilize (i.e. angle) controller P gain. Converts the error between the desired pitch angle and actual angle to a desired pitch rate // @Range: 3.000 6.000 // @User: Standard // @Param: STB_PIT_I // @DisplayName: Pitch axis stabilize controller I gain // @Description: Pitch axis stabilize (i.e. angle) controller I gain. Corrects for longer-term difference in desired pitch angle and actual angle // @Range: 0.000 0.100 // @User: Standard // @Param: STB_PIT_IMAX // @DisplayName: Pitch axis stabilize controller I gain maximum // @Description: Pitch axis stabilize (i.e. angle) controller I gain maximum. Constrains the maximum pitch rate that the I term will generate // @Range: 0 4500 // @Units: Centi-Degrees/Sec // @User: Standard GGROUP(pi_stabilize_pitch, "STB_PIT_", APM_PI), // @Param: STB_YAW_P // @DisplayName: Yaw axis stabilize controller P gain // @Description: Yaw axis stabilize (i.e. angle) controller P gain. Converts the error between the desired yaw angle and actual angle to a desired yaw rate // @Range: 3.000 6.000 // @User: Standard // @Param: STB_YAW_I // @DisplayName: Yaw axis stabilize controller I gain // @Description: Yaw axis stabilize (i.e. angle) controller I gain. Corrects for longer-term difference in desired yaw angle and actual angle // @Range: 0.000 0.100 // @User: Standard // @Param: STB_YAW_IMAX // @DisplayName: Yaw axis stabilize controller I gain maximum // @Description: Yaw axis stabilize (i.e. angle) controller I gain maximum. Constrains the maximum yaw rate that the I term will generate // @Range: 0 4500 // @Units: Centi-Degrees/Sec // @User: Standard GGROUP(pi_stabilize_yaw, "STB_YAW_", APM_PI), // @Param: THR_ALT_P // @DisplayName: Altitude controller P gain // @Description: Altitude controller P gain. Converts the difference between the desired altitude and actual altitude into a climb or descent rate which is passed to the throttle rate controller // @Range: 1.000 3.000 // @User: Standard // @Param: THR_ALT_I // @DisplayName: Altitude controller I gain // @Description: Altitude controller I gain. Corrects for longer-term difference in desired altitude and actual altitude // @Range: 0.000 0.100 // @User: Standard // @Param: THR_ALT_IMAX // @DisplayName: Altitude controller I gain maximum // @Description: Altitude controller I gain maximum. Constrains the maximum climb rate rate that the I term will generate // @Range: 0 500 // @Units: cm/s // @User: Standard GGROUP(pi_alt_hold, "THR_ALT_", APM_PI), // @Param: HLD_LAT_P // @DisplayName: Loiter latitude position controller P gain // @Description: Loiter latitude position controller P gain. Converts the distance (in the latitude direction) to the target location into a desired speed which is then passed to the loiter latitude rate controller // @Range: 0.100 0.300 // @User: Standard // @Param: HLD_LAT_I // @DisplayName: Loiter latitude position controller I gain // @Description: Loiter latitude position controller I gain. Corrects for longer-term distance (in latitude) to the target location // @Range: 0.000 0.100 // @User: Standard // @Param: HLD_LAT_IMAX // @DisplayName: Loiter latitude position controller I gain maximum // @Description: Loiter latitude position controller I gain maximum. Constrains the maximum desired speed that the I term will generate // @Range: 0 3000 // @Units: cm/s // @User: Standard GGROUP(pi_loiter_lat, "HLD_LAT_", APM_PI), // @Param: HLD_LON_P // @DisplayName: Loiter longitude position controller P gain // @Description: Loiter longitude position controller P gain. Converts the distance (in the longitude direction) to the target location into a desired speed which is then passed to the loiter longitude rate controller // @Range: 0.100 0.300 // @User: Standard // @Param: HLD_LON_I // @DisplayName: Loiter longitude position controller I gain // @Description: Loiter longitude position controller I gain. Corrects for longer-term distance (in longitude direction) to the target location // @Range: 0.000 0.100 // @User: Standard // @Param: HLD_LON_IMAX // @DisplayName: Loiter longitudeposition controller I gain maximum // @Description: Loiter longitudeposition controller I gain maximum. Constrains the maximum desired speed that the I term will generate // @Range: 0 3000 // @Units: cm/s // @User: Standard GGROUP(pi_loiter_lon, "HLD_LON_", APM_PI), // variables not in the g class which contain EEPROM saved variables // variables not in the g class which contain EEPROM saved variables #if CAMERA == ENABLED // @Group: CAM_ // @Path: ../libraries/AP_Camera/AP_Camera.cpp GOBJECT(camera, "CAM_", AP_Camera), #endif // @Group: RELAY_ // @Path: ../libraries/AP_Relay/AP_Relay.cpp GOBJECT(relay, "RELAY_", AP_Relay), // @Group: COMPASS_ // @Path: ../libraries/AP_Compass/Compass.cpp GOBJECT(compass, "COMPASS_", Compass), // @Group: INS_ // @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp #if HIL_MODE != HIL_MODE_ATTITUDE GOBJECT(ins, "INS_", AP_InertialSensor), #endif // @Group: INAV_ // @Path: ../libraries/AP_InertialNav/AP_InertialNav.cpp GOBJECT(inertial_nav, "INAV_", AP_InertialNav), // @Group: WPNAV_ // @Path: ../libraries/AC_WPNav/AC_WPNav.cpp GOBJECT(wp_nav, "WPNAV_", AC_WPNav), // @Group: SR0_ // @Path: ./GCS_Mavlink.pde GOBJECT(gcs0, "SR0_", GCS_MAVLINK), // @Group: SR3_ // @Path: ./GCS_Mavlink.pde GOBJECT(gcs3, "SR3_", GCS_MAVLINK), // @Group: AHRS_ // @Path: ../libraries/AP_AHRS/AP_AHRS.cpp GOBJECT(ahrs, "AHRS_", AP_AHRS), #if MOUNT == ENABLED // @Group: MNT_ // @Path: ../libraries/AP_Mount/AP_Mount.cpp GOBJECT(camera_mount, "MNT_", AP_Mount), #endif #if MOUNT2 == ENABLED // @Group: MNT2_ // @Path: ../libraries/AP_Mount/AP_Mount.cpp GOBJECT(camera_mount2, "MNT2_", AP_Mount), #endif #if SPRAYER == ENABLED // @Group: SPRAYER_ // @Path: ../libraries/AC_Sprayer/AC_Sprayer.cpp GOBJECT(sprayer, "SPRAY_", AC_Sprayer), #endif #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL GOBJECT(sitl, "SIM_", SITL), #endif // @Group: GND_ // @Path: ../libraries/AP_Baro/AP_Baro.cpp GOBJECT(barometer, "GND_", AP_Baro), // @Group: SCHED_ // @Path: ../libraries/AP_Scheduler/AP_Scheduler.cpp GOBJECT(scheduler, "SCHED_", AP_Scheduler), #if AC_FENCE == ENABLED // @Group: FENCE_ // @Path: ../libraries/AC_Fence/AC_Fence.cpp GOBJECT(fence, "FENCE_", AC_Fence), #endif #if FRAME_CONFIG == HELI_FRAME // @Group: H_ // @Path: ../libraries/AP_Motors/AP_MotorsHeli.cpp GOBJECT(motors, "H_", AP_MotorsHeli), #else // @Group: MOT_ // @Path: ../libraries/AP_Motors/AP_Motors_Class.cpp GOBJECT(motors, "MOT_", AP_Motors), #endif // @Group: RCMAP_ // @Path: ../libraries/AP_RCMapper/AP_RCMapper.cpp GOBJECT(rcmap, "RCMAP_", RCMapper), AP_VAREND }; static void load_parameters(void) { // change the default for the AHRS_GPS_GAIN for ArduCopter // if it hasn't been set by the user if (!ahrs.gps_gain.load()) { ahrs.gps_gain.set_and_save(1.0); } // disable centrifugal force correction, it will be enabled as part of the arming process ahrs.set_correct_centrifugal(false); // setup different AHRS gains for ArduCopter than the default // but allow users to override in their config if (!ahrs._kp.load()) { ahrs._kp.set_and_save(0.1); } if (!ahrs._kp_yaw.load()) { ahrs._kp_yaw.set_and_save(0.1); } #if SECONDARY_DMP_ENABLED == ENABLED if (!ahrs2._kp.load()) { ahrs2._kp.set(0.1); } if (!ahrs2._kp_yaw.load()) { ahrs2._kp_yaw.set(0.1); } #endif // setup different Compass learn setting for ArduCopter than the default // but allow users to override in their config if (!compass._learn.load()) { compass._learn.set_and_save(0); } if (!g.format_version.load() || g.format_version != Parameters::k_format_version) { // erase all parameters cliSerial->printf_P(PSTR("Firmware change: erasing EEPROM...\n")); AP_Param::erase_all(); // save the current format version g.format_version.set_and_save(Parameters::k_format_version); cliSerial->println_P(PSTR("done.")); } else { uint32_t before = micros(); // Load all auto-loaded EEPROM variables AP_Param::load_all(); cliSerial->printf_P(PSTR("load_all took %luus\n"), micros() - before); } }