/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 #include "AP_InertialSensor_PX4.h" const extern AP_HAL::HAL& hal; #include #include #include #include #include #include #include uint16_t AP_InertialSensor_PX4::_init_sensor( Sample_rate sample_rate ) { // assumes max 2 instances _accel_fd[0] = open(ACCEL_DEVICE_PATH, O_RDONLY); _accel_fd[1] = open(ACCEL_DEVICE_PATH "1", O_RDONLY); _gyro_fd[0] = open(GYRO_DEVICE_PATH, O_RDONLY); _gyro_fd[1] = open(GYRO_DEVICE_PATH "1", O_RDONLY); if (_accel_fd[0] < 0) { hal.scheduler->panic("Unable to open accel device " ACCEL_DEVICE_PATH); } if (_gyro_fd[0] < 0) { hal.scheduler->panic("Unable to open gyro device " GYRO_DEVICE_PATH); } _num_accel_instances = _accel_fd[1] >= 0?2:1; _num_gyro_instances = _gyro_fd[1] >= 0?2:1; switch (sample_rate) { case RATE_50HZ: _default_filter_hz = 15; _sample_time_usec = 20000; break; case RATE_100HZ: _default_filter_hz = 30; _sample_time_usec = 10000; break; case RATE_200HZ: default: _default_filter_hz = 30; _sample_time_usec = 5000; break; } _set_filter_frequency(_mpu6000_filter); #if defined(CONFIG_ARCH_BOARD_PX4FMU_V2) return AP_PRODUCT_ID_PX4_V2; #else return AP_PRODUCT_ID_PX4; #endif } /* set the filter frequency */ void AP_InertialSensor_PX4::_set_filter_frequency(uint8_t filter_hz) { if (filter_hz == 0) { filter_hz = _default_filter_hz; } for (uint8_t i=0; i<_num_gyro_instances; i++) { ioctl(_gyro_fd[i], GYROIOCSLOWPASS, filter_hz); } for (uint8_t i=0; i<_num_accel_instances; i++) { ioctl(_accel_fd[i], ACCELIOCSLOWPASS, filter_hz); } } /*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */ // multi-device interface bool AP_InertialSensor_PX4::get_gyro_health(uint8_t instance) const { if (instance >= _num_gyro_instances) { return false; } if (_sample_time_usec == 0) { // not initialised yet, show as healthy to prevent scary GCS // warnings return true; } uint64_t tnow = hrt_absolute_time(); if ((tnow - _last_gyro_timestamp[instance]) > 2*_sample_time_usec) { // gyros have not updated return false; } return true; } uint8_t AP_InertialSensor_PX4::get_gyro_count(void) const { return _num_gyro_instances; } bool AP_InertialSensor_PX4::get_accel_health(uint8_t k) const { if (k >= _num_accel_instances) { return false; } if (_sample_time_usec == 0) { // not initialised yet, show as healthy to prevent scary GCS // warnings return true; } uint64_t tnow = hrt_absolute_time(); if ((tnow - _last_accel_timestamp[k]) > 2*_sample_time_usec) { // accels have not updated return false; } if (fabsf(_accel[k].x) > 30 && fabsf(_accel[k].y) > 30 && fabsf(_accel[k].z) > 30 && (_previous_accel[k] - _accel[k]).length() < 0.01f) { // unchanging accel, large in all 3 axes. This is a likely // accelerometer failure of the LSM303d return false; } return true; } uint8_t AP_InertialSensor_PX4::get_accel_count(void) const { return _num_accel_instances; } bool AP_InertialSensor_PX4::update(void) { if (!wait_for_sample(100)) { return false; } // get the latest sample from the sensor drivers _get_sample(); for (uint8_t k=0; k<_num_accel_instances; k++) { _previous_accel[k] = _accel[k]; _accel[k] = _accel_in[k]; _accel[k].rotate(_board_orientation); _accel[k].x *= _accel_scale[k].get().x; _accel[k].y *= _accel_scale[k].get().y; _accel[k].z *= _accel_scale[k].get().z; _accel[k] -= _accel_offset[k]; } for (uint8_t k=0; k<_num_gyro_instances; k++) { _gyro[k] = _gyro_in[k]; _gyro[k].rotate(_board_orientation); _gyro[k] -= _gyro_offset[k]; } if (_last_filter_hz != _mpu6000_filter) { _set_filter_frequency(_mpu6000_filter); _last_filter_hz = _mpu6000_filter; } _have_sample_available = false; return true; } float AP_InertialSensor_PX4::get_delta_time(void) { return _sample_time_usec * 1.0e-6f; } float AP_InertialSensor_PX4::get_gyro_drift_rate(void) { // assume 0.5 degrees/second/minute return ToRad(0.5/60); } void AP_InertialSensor_PX4::_get_sample(void) { for (uint8_t i=0; i<_num_accel_instances; i++) { struct accel_report accel_report; while (_accel_fd[i] != -1 && ::read(_accel_fd[i], &accel_report, sizeof(accel_report)) == sizeof(accel_report) && accel_report.timestamp != _last_accel_timestamp[i]) { _accel_in[i] = Vector3f(accel_report.x, accel_report.y, accel_report.z); _last_accel_timestamp[i] = accel_report.timestamp; } } for (uint8_t i=0; i<_num_gyro_instances; i++) { struct gyro_report gyro_report; while (_gyro_fd[i] != -1 && ::read(_gyro_fd[i], &gyro_report, sizeof(gyro_report)) == sizeof(gyro_report) && gyro_report.timestamp != _last_gyro_timestamp[i]) { _gyro_in[i] = Vector3f(gyro_report.x, gyro_report.y, gyro_report.z); _last_gyro_timestamp[i] = gyro_report.timestamp; } } } bool AP_InertialSensor_PX4::_sample_available(void) { uint64_t tnow = hrt_absolute_time(); while (tnow - _last_sample_timestamp > _sample_time_usec) { _have_sample_available = true; _last_sample_timestamp += _sample_time_usec; } return _have_sample_available; } bool AP_InertialSensor_PX4::wait_for_sample(uint16_t timeout_ms) { if (_sample_available()) { return true; } uint32_t start = hal.scheduler->millis(); while ((hal.scheduler->millis() - start) < timeout_ms) { uint64_t tnow = hrt_absolute_time(); // we spin for the last timing_lag microseconds. Before that // we yield the CPU to allow IO to happen const uint16_t timing_lag = 400; if (_last_sample_timestamp + _sample_time_usec > tnow+timing_lag) { hal.scheduler->delay_microseconds(_last_sample_timestamp + _sample_time_usec - (tnow+timing_lag)); } if (_sample_available()) { return true; } } return false; } /** try to detect bad accel/gyro sensors */ bool AP_InertialSensor_PX4::healthy(void) const { return get_gyro_health(0) && get_accel_health(0); } uint8_t AP_InertialSensor_PX4::_get_primary_gyro(void) const { for (uint8_t i=0; i<_num_gyro_instances; i++) { if (get_gyro_health(i)) return i; } return 0; } uint8_t AP_InertialSensor_PX4::_get_primary_accel(void) const { for (uint8_t i=0; i<_num_accel_instances; i++) { if (get_accel_health(i)) return i; } return 0; } #endif // CONFIG_HAL_BOARD