/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_Airspeed.cpp - airspeed (pitot) driver */ #include #include "AP_Airspeed.h" // Dummy the AP_Airspeed class to allow building Airspeed only for plane, rover, sub, and copter & heli 2MB boards // This could be removed once the build system allows for APM_BUILD_TYPE in header files #ifndef AP_AIRSPEED_DUMMY_METHODS_ENABLED #define AP_AIRSPEED_DUMMY_METHODS_ENABLED ((APM_BUILD_COPTER_OR_HELI && BOARD_FLASH_SIZE <= 1024) || \ APM_BUILD_TYPE(APM_BUILD_AntennaTracker) || APM_BUILD_TYPE(APM_BUILD_Blimp)) #endif #if !AP_AIRSPEED_DUMMY_METHODS_ENABLED #include #include #include #include #include #include #include #include #include #include "AP_Airspeed_MS4525.h" #include "AP_Airspeed_MS5525.h" #include "AP_Airspeed_SDP3X.h" #include "AP_Airspeed_DLVR.h" #include "AP_Airspeed_analog.h" #include "AP_Airspeed_ASP5033.h" #include "AP_Airspeed_Backend.h" #include "AP_Airspeed_UAVCAN.h" #include "AP_Airspeed_NMEA.h" #include "AP_Airspeed_MSP.h" #include "AP_Airspeed_SITL.h" extern const AP_HAL::HAL &hal; #ifdef HAL_AIRSPEED_TYPE_DEFAULT #define ARSPD_DEFAULT_TYPE HAL_AIRSPEED_TYPE_DEFAULT #ifndef ARSPD_DEFAULT_PIN #define ARSPD_DEFAULT_PIN 1 #endif #elif APM_BUILD_TYPE(APM_BUILD_ArduPlane) // The HAL_BOARD_SITL setting is required because of current probe process for MS4525 will // connect and find the SIM_DLVR sensors & fault as there is no way to tell them apart #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #define ARSPD_DEFAULT_TYPE TYPE_ANALOG #define ARSPD_DEFAULT_PIN 1 #else #define ARSPD_DEFAULT_TYPE TYPE_I2C_MS4525 #ifdef HAL_DEFAULT_AIRSPEED_PIN #define ARSPD_DEFAULT_PIN HAL_DEFAULT_AIRSPEED_PIN #else #define ARSPD_DEFAULT_PIN 15 #endif #endif //CONFIG_HAL_BOARD #else // All Other Vehicle Types #define ARSPD_DEFAULT_TYPE TYPE_NONE #define ARSPD_DEFAULT_PIN 15 #endif #ifndef HAL_AIRSPEED_BUS_DEFAULT #define HAL_AIRSPEED_BUS_DEFAULT 1 #endif #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DISCO #define PSI_RANGE_DEFAULT 0.05 #endif #ifndef PSI_RANGE_DEFAULT #define PSI_RANGE_DEFAULT 1.0f #endif #define OPTIONS_DEFAULT AP_Airspeed::OptionsMask::ON_FAILURE_AHRS_WIND_MAX_DO_DISABLE | AP_Airspeed::OptionsMask::ON_FAILURE_AHRS_WIND_MAX_RECOVERY_DO_REENABLE | AP_Airspeed::OptionsMask::USE_EKF_CONSISTENCY // table of user settable parameters const AP_Param::GroupInfo AP_Airspeed::var_info[] = { // @Param: _TYPE // @DisplayName: Airspeed type // @Description: Type of airspeed sensor // @Values: 0:None,1:I2C-MS4525D0,2:Analog,3:I2C-MS5525,4:I2C-MS5525 (0x76),5:I2C-MS5525 (0x77),6:I2C-SDP3X,7:I2C-DLVR-5in,8:DroneCAN,9:I2C-DLVR-10in,10:I2C-DLVR-20in,11:I2C-DLVR-30in,12:I2C-DLVR-60in,13:NMEA water speed,14:MSP,15:ASP5033,100:SITL // @User: Standard AP_GROUPINFO_FLAGS("_TYPE", 0, AP_Airspeed, param[0].type, ARSPD_DEFAULT_TYPE, AP_PARAM_FLAG_ENABLE), // NOTE: Index 0 is actually used as index 63 here // @Param: _DEVID // @DisplayName: Airspeed ID // @Description: Airspeed sensor ID, taking into account its type, bus and instance // @ReadOnly: True // @User: Advanced AP_GROUPINFO_FLAGS("_DEVID", 24, AP_Airspeed, param[0].bus_id, 0, AP_PARAM_FLAG_INTERNAL_USE_ONLY), #ifndef HAL_BUILD_AP_PERIPH // @Param: _USE // @DisplayName: Airspeed use // @Description: Enables airspeed use for automatic throttle modes and replaces control from THR_TRIM. Continues to display and log airspeed if set to 0. Uses airspeed for control if set to 1. Only uses airspeed when throttle = 0 if set to 2 (useful for gliders with airspeed sensors behind propellers). // @Description{Copter, Blimp, Rover, Sub}: This parameter is not used by this vehicle. Always set to 0. // @Values: 0:DoNotUse,1:Use,2:UseWhenZeroThrottle // @User: Standard AP_GROUPINFO("_USE", 1, AP_Airspeed, param[0].use, 0), // @Param: _OFFSET // @DisplayName: Airspeed offset // @Description: Airspeed calibration offset // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("_OFFSET", 2, AP_Airspeed, param[0].offset, 0), // @Param: _RATIO // @DisplayName: Airspeed ratio // @Description: Calibrates pitot tube pressure to velocity. Increasing this value will indicate a higher airspeed at any given dynamic pressure. // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("_RATIO", 3, AP_Airspeed, param[0].ratio, 1.9936f), // @Param: _PIN // @DisplayName: Airspeed pin // @Description: The pin number that the airspeed sensor is connected to for analog sensors. Set to 15 on the Pixhawk for the analog airspeed port. // @User: Advanced AP_GROUPINFO("_PIN", 4, AP_Airspeed, param[0].pin, ARSPD_DEFAULT_PIN), #endif // HAL_BUILD_AP_PERIPH #if AP_AIRSPEED_AUTOCAL_ENABLE // @Param: _AUTOCAL // @DisplayName: Automatic airspeed ratio calibration // @DisplayName{Copter, Blimp, Rover, Sub}: This parameter and function is not used by this vehicle. Always set to 0. // @Description: Enables automatic adjustment of ARSPD_RATIO during a calibration flight based on estimation of ground speed and true airspeed. New ratio saved every 2 minutes if change is > 5%. Should not be left enabled. // @User: Advanced AP_GROUPINFO("_AUTOCAL", 5, AP_Airspeed, param[0].autocal, 0), #endif // @Param: _TUBE_ORDER // @DisplayName: Control pitot tube order // @Description: This parameter allows you to control whether the order in which the tubes are attached to your pitot tube matters. If you set this to 0 then the first (often the top) connector on the sensor needs to be the stagnation pressure (the pressure at the tip of the pitot tube). If set to 1 then the second (often the bottom) connector needs to be the stagnation pressure. If set to 2 (the default) then the airspeed driver will accept either order. The reason you may wish to specify the order is it will allow your airspeed sensor to detect if the aircraft is receiving excessive pressure on the static port compared to the stagnation port such as during a stall, which would otherwise be seen as a positive airspeed. // @User: Advanced // @Values: 0:Normal,1:Swapped,2:Auto Detect AP_GROUPINFO("_TUBE_ORDER", 6, AP_Airspeed, param[0].tube_order, 2), #ifndef HAL_BUILD_AP_PERIPH // @Param: _SKIP_CAL // @DisplayName: Skip airspeed offset calibration on startup // @Description: This parameter allows you to skip airspeed offset calibration on startup, instead using the offset from the last calibration. This may be desirable if the offset variance between flights for your sensor is low and you want to avoid having to cover the pitot tube on each boot. // @Values: 0:Disable,1:Enable // @User: Advanced AP_GROUPINFO("_SKIP_CAL", 7, AP_Airspeed, param[0].skip_cal, 0), #endif // HAL_BUILD_AP_PERIPH // @Param: _PSI_RANGE // @DisplayName: The PSI range of the device // @Description: This parameter allows you to set the PSI (pounds per square inch) range for your sensor. You should not change this unless you examine the datasheet for your device // @User: Advanced AP_GROUPINFO("_PSI_RANGE", 8, AP_Airspeed, param[0].psi_range, PSI_RANGE_DEFAULT), #ifndef HAL_BUILD_AP_PERIPH // @Param: _BUS // @DisplayName: Airspeed I2C bus // @Description: Bus number of the I2C bus where the airspeed sensor is connected. May not correspond to board's I2C bus number labels. Retry another bus and reboot if airspeed sensor fails to initialize. // @Values: 0:Bus0,1:Bus1,2:Bus2 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("_BUS", 9, AP_Airspeed, param[0].bus, HAL_AIRSPEED_BUS_DEFAULT), #endif // HAL_BUILD_AP_PERIPH #if AIRSPEED_MAX_SENSORS > 1 // @Param: _PRIMARY // @DisplayName: Primary airspeed sensor // @Description: This selects which airspeed sensor will be the primary if multiple sensors are found // @Values: 0:FirstSensor,1:2ndSensor // @User: Advanced AP_GROUPINFO("_PRIMARY", 10, AP_Airspeed, primary_sensor, 0), #endif #ifndef HAL_BUILD_AP_PERIPH // @Param: _OPTIONS // @DisplayName: Airspeed options bitmask // @Description: Bitmask of options to use with airspeed. 0:Disable use based on airspeed/groundspeed mismatch (see ARSPD_WIND_MAX), 1:Automatically reenable use based on airspeed/groundspeed mismatch recovery (see ARSPD_WIND_MAX) 2:Disable voltage correction, 3:Check that the airspeed is statistically consistent with the navigation EKF vehicle and wind velocity estimates using EKF3 (requires AHRS_EKF_TYPE = 3) // @Description{Copter, Blimp, Rover, Sub}: This parameter and function is not used by this vehicle. Always set to 0. // @Bitmask: 0:SpeedMismatchDisable, 1:AllowSpeedMismatchRecovery, 2:DisableVoltageCorrection, 3:UseEkf3Consistency // @User: Advanced AP_GROUPINFO("_OPTIONS", 21, AP_Airspeed, _options, OPTIONS_DEFAULT), // @Param: _WIND_MAX // @DisplayName: Maximum airspeed and ground speed difference // @Description: If the difference between airspeed and ground speed is greater than this value the sensor will be marked unhealthy. Using ARSPD_OPTION this health value can be used to disable the sensor. // @Description{Copter, Blimp, Rover, Sub}: This parameter and function is not used by this vehicle. Always set to 0. // @Units: m/s // @User: Advanced AP_GROUPINFO("_WIND_MAX", 22, AP_Airspeed, _wind_max, 0), // @Param: _WIND_WARN // @DisplayName: Airspeed and ground speed difference that gives a warning // @Description: If the difference between airspeed and ground speed is greater than this value the sensor will issue a warning. If 0 ARSPD_WIND_MAX is used. // @Description{Copter, Blimp, Rover, Sub}: This parameter and function is not used by this vehicle. Always set to 0. // @Units: m/s // @User: Advanced AP_GROUPINFO("_WIND_WARN", 23, AP_Airspeed, _wind_warn, 0), // @Param: _WIND_GATE // @DisplayName: Re-enable Consistency Check Gate Size // @Description: Number of standard deviations applied to the re-enable EKF consistency check that is used when ARSPD_OPTIONS bit position 3 is set. Larger values will make the re-enabling of the airspeed sensor faster, but increase the likelihood of re-enabling a degraded sensor. The value can be tuned by using the ARSP.TR log message by setting ARSP_WIND_GATE to a value that is higher than the value for ARSP.TR observed with a healthy airspeed sensor. Occasional transients in ARSP.TR above the value set by ARSP_WIND_GATE can be tolerated provided they are less than 5 seconds in duration and less than 10% duty cycle. // @Description{Copter, Blimp, Rover, Sub}: This parameter and function is not used by this vehicle. // @Range: 0.0 10.0 // @User: Advanced AP_GROUPINFO("_WIND_GATE", 26, AP_Airspeed, _wind_gate, 5.0f), #endif #if AIRSPEED_MAX_SENSORS > 1 // @Param: 2_TYPE // @DisplayName: Second Airspeed type // @Description: Type of 2nd airspeed sensor // @Values: 0:None,1:I2C-MS4525D0,2:Analog,3:I2C-MS5525,4:I2C-MS5525 (0x76),5:I2C-MS5525 (0x77),6:I2C-SDP3X,7:I2C-DLVR-5in,8:DroneCAN,9:I2C-DLVR-10in,10:I2C-DLVR-20in,11:I2C-DLVR-30in,12:I2C-DLVR-60in,13:NMEA water speed,14:MSP,15:ASP5033 // @User: Standard AP_GROUPINFO_FLAGS("2_TYPE", 11, AP_Airspeed, param[1].type, 0, AP_PARAM_FLAG_ENABLE), // @Param: 2_USE // @DisplayName: Enable use of 2nd airspeed sensor // @Description: use airspeed for flight control. When set to 0 airspeed sensor can be logged and displayed on a GCS but won't be used for flight. When set to 1 it will be logged and used. When set to 2 it will be only used when the throttle is zero, which can be useful in gliders with airspeed sensors behind a propeller // @Description{Copter, Blimp, Rover, Sub}: This parameter and function is not used by this vehicle. Always set to 0. // @Values: 0:Don't Use,1:use,2:UseWhenZeroThrottle // @User: Standard AP_GROUPINFO("2_USE", 12, AP_Airspeed, param[1].use, 0), // @Param: 2_OFFSET // @DisplayName: Airspeed offset for 2nd airspeed sensor // @Description: Airspeed calibration offset // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("2_OFFSET", 13, AP_Airspeed, param[1].offset, 0), // @Param: 2_RATIO // @DisplayName: Airspeed ratio for 2nd airspeed sensor // @Description: Airspeed calibration ratio // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("2_RATIO", 14, AP_Airspeed, param[1].ratio, 2), // @Param: 2_PIN // @DisplayName: Airspeed pin for 2nd airspeed sensor // @Description: Pin number indicating location of analog airspeed sensors. Pixhawk/Cube if set to 15. // @User: Advanced AP_GROUPINFO("2_PIN", 15, AP_Airspeed, param[1].pin, 0), // @Param: 2_AUTOCAL // @DisplayName: Automatic airspeed ratio calibration for 2nd airspeed sensor // @Description: If this is enabled then the autopilot will automatically adjust the ARSPD_RATIO during flight, based upon an estimation filter using ground speed and true airspeed. The automatic calibration will save the new ratio to EEPROM every 2 minutes if it changes by more than 5%. This option should be enabled for a calibration flight then disabled again when calibration is complete. Leaving it enabled all the time is not recommended. // @Description{Copter, Blimp, Rover, Sub}: This parameter and function is not used by this vehicle. Always set to 0. // @User: Advanced AP_GROUPINFO("2_AUTOCAL", 16, AP_Airspeed, param[1].autocal, 0), // @Param: 2_TUBE_ORDR // @DisplayName: Control pitot tube order of 2nd airspeed sensor // @Description: This parameter allows you to control whether the order in which the tubes are attached to your pitot tube matters. If you set this to 0 then the first (often the top) connector on the sensor needs to be the stagnation pressure (the pressure at the tip of the pitot tube). If set to 1 then the second (often the bottom) connector needs to be the stagnation pressure. If set to 2 (the default) then the airspeed driver will accept either order. The reason you may wish to specify the order is it will allow your airspeed sensor to detect if the aircraft is receiving excessive pressure on the static port compared to the stagnation port such as during a stall, which would otherwise be seen as a positive airspeed. // @User: Advanced // @Values: 0:Normal,1:Swapped,2:Auto Detect AP_GROUPINFO("2_TUBE_ORDR", 17, AP_Airspeed, param[1].tube_order, 2), // @Param: 2_SKIP_CAL // @DisplayName: Skip airspeed offset calibration on startup for 2nd sensor // @Description: This parameter allows you to skip airspeed offset calibration on startup, instead using the offset from the last calibration. This may be desirable if the offset variance between flights for your sensor is low and you want to avoid having to cover the pitot tube on each boot. // @Values: 0:Disable,1:Enable // @User: Advanced AP_GROUPINFO("2_SKIP_CAL", 18, AP_Airspeed, param[1].skip_cal, 0), // @Param: 2_PSI_RANGE // @DisplayName: The PSI range of the device for 2nd sensor // @Description: This parameter allows you to set the PSI (pounds per square inch) range for your sensor. You should not change this unless you examine the datasheet for your device // @User: Advanced AP_GROUPINFO("2_PSI_RANGE", 19, AP_Airspeed, param[1].psi_range, PSI_RANGE_DEFAULT), // @Param: 2_BUS // @DisplayName: Airspeed I2C bus for 2nd sensor // @Description: Bus number of the I2C bus where the airspeed sensor is connected. May not correspond to board's I2C bus number labels. Retry another bus and reboot if airspeed sensor fails to initialize. // @Values: 0:Bus0,1:Bus1,2:Bus2 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("2_BUS", 20, AP_Airspeed, param[1].bus, 1), #if AIRSPEED_MAX_SENSORS > 1 // @Param: 2_DEVID // @DisplayName: Airspeed2 ID // @Description: Airspeed2 sensor ID, taking into account its type, bus and instance // @ReadOnly: True // @User: Advanced AP_GROUPINFO_FLAGS("2_DEVID", 25, AP_Airspeed, param[1].bus_id, 0, AP_PARAM_FLAG_INTERNAL_USE_ONLY), #endif #endif // AIRSPEED_MAX_SENSORS // Note that 21, 22, 23, 24, 25 and 26 are used above by the _OPTIONS, _DEVID, __WIND_MAX, _WIND_WARN and _WIND_GATE parameters. Do not use them!! // NOTE: Index 63 is used by AIRSPEED_TYPE, Do not use it!: AP_Param converts an index of 0 to 63 so that the index may be bit shifted AP_GROUPEND }; /* this scaling factor converts from the old system where we used a 0 to 4095 raw ADC value for 0-5V to the new system which gets the voltage in volts directly from the ADC driver */ #define SCALING_OLD_CALIBRATION 819 // 4095/5 AP_Airspeed::AP_Airspeed() { AP_Param::setup_object_defaults(this, var_info); if (_singleton != nullptr) { AP_HAL::panic("AP_Airspeed must be singleton"); } _singleton = this; } // macro for use by HAL_INS_PROBE_LIST #define GET_I2C_DEVICE(bus, address) hal.i2c_mgr->get_device(bus, address) bool AP_Airspeed::add_backend(AP_Airspeed_Backend *backend) { if (!backend) { return false; } if (num_sensors >= AIRSPEED_MAX_SENSORS) { AP_HAL::panic("Too many airspeed drivers"); } const uint8_t i = num_sensors; sensor[num_sensors++] = backend; if (!sensor[i]->init()) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "Airspeed %u init failed", i+1); delete sensor[i]; sensor[i] = nullptr; } return true; } /* macro to add a backend with check for too many sensors We don't try to start more than the maximum allowed */ #define ADD_BACKEND(backend) \ do { add_backend(backend); \ if (num_sensors == AIRSPEED_MAX_SENSORS) { return; } \ } while (0) void AP_Airspeed::init() { if (sensor[0] != nullptr) { // already initialised return; } // cope with upgrade from old system if (param[0].pin.load() && param[0].pin.get() != 65) { param[0].type.set_default(TYPE_ANALOG); } #ifndef HAL_BUILD_AP_PERIPH // Switch to dedicated WIND_MAX param // PARAMETER_CONVERSION - Added: Oct-2020 const float ahrs_max_wind = AP::ahrs().get_max_wind(); if (!_wind_max.configured() && is_positive(ahrs_max_wind)) { _wind_max.set_and_save(ahrs_max_wind); // Turn off _options to override the new default if (!_options.configured()) { _options.set_and_save(0); } } #endif #ifdef HAL_AIRSPEED_PROBE_LIST // load sensors via a list from hwdef.dat HAL_AIRSPEED_PROBE_LIST; #else // look for sensors based on type parameters for (uint8_t i=0; iinit()) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "Airspeed %u init failed", i + 1); delete sensor[i]; sensor[i] = nullptr; } if (sensor[i] != nullptr) { num_sensors = i+1; } } #if AP_AIRSPEED_UAVCAN_ENABLED // we need a 2nd pass for DroneCAN sensors so we can match order by DEVID // the 2nd pass accepts any devid for (uint8_t i=0; iget_differential_pressure(pressure); } return pressure; } // get a temperature reading if possible bool AP_Airspeed::get_temperature(uint8_t i, float &temperature) { if (!enabled(i)) { return false; } if (sensor[i]) { return sensor[i]->get_temperature(temperature); } return false; } // calibrate the zero offset for the airspeed. This must be called at // least once before the get_airspeed() interface can be used void AP_Airspeed::calibrate(bool in_startup) { if (hal.util->was_watchdog_reset()) { GCS_SEND_TEXT(MAV_SEVERITY_INFO,"Airspeed: skipping cal"); return; } for (uint8_t i=0; i= 1000 && state[i].cal.read_count > 15) { if (state[i].cal.count == 0) { GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Airspeed %u unhealthy", i + 1); } else { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Airspeed %u calibrated", i + 1); param[i].offset.set_and_save(state[i].cal.sum / state[i].cal.count); } state[i].cal.start_ms = 0; return; } // we discard the first 5 samples if (state[i].healthy && state[i].cal.read_count > 5) { state[i].cal.sum += raw_pressure; state[i].cal.count++; } state[i].cal.read_count++; } // read one airspeed sensor void AP_Airspeed::read(uint8_t i) { if (!enabled(i) || !sensor[i]) { return; } state[i].last_update_ms = AP_HAL::millis(); // try and get a direct reading of airspeed if (sensor[i]->has_airspeed()) { state[i].healthy = sensor[i]->get_airspeed(state[i].airspeed); state[i].raw_airspeed = state[i].airspeed; // for logging return; } bool prev_healthy = state[i].healthy; float raw_pressure = get_pressure(i); if (state[i].cal.start_ms != 0) { update_calibration(i, raw_pressure); } float airspeed_pressure = raw_pressure - param[i].offset; // remember raw pressure for logging state[i].corrected_pressure = airspeed_pressure; // filter before clamping positive if (!prev_healthy) { // if the previous state was not healthy then we should not // use an IIR filter, otherwise a bad reading will last for // some time after the sensor becomees healthy again state[i].filtered_pressure = airspeed_pressure; } else { state[i].filtered_pressure = 0.7f * state[i].filtered_pressure + 0.3f * airspeed_pressure; } /* we support different pitot tube setups so user can choose if they want to be able to detect pressure on the static port */ switch ((enum pitot_tube_order)param[i].tube_order.get()) { case PITOT_TUBE_ORDER_NEGATIVE: state[i].last_pressure = -airspeed_pressure; state[i].raw_airspeed = sqrtf(MAX(-airspeed_pressure, 0) * param[i].ratio); state[i].airspeed = sqrtf(MAX(-state[i].filtered_pressure, 0) * param[i].ratio); break; case PITOT_TUBE_ORDER_POSITIVE: state[i].last_pressure = airspeed_pressure; state[i].raw_airspeed = sqrtf(MAX(airspeed_pressure, 0) * param[i].ratio); state[i].airspeed = sqrtf(MAX(state[i].filtered_pressure, 0) * param[i].ratio); break; case PITOT_TUBE_ORDER_AUTO: default: state[i].last_pressure = fabsf(airspeed_pressure); state[i].raw_airspeed = sqrtf(fabsf(airspeed_pressure) * param[i].ratio); state[i].airspeed = sqrtf(fabsf(state[i].filtered_pressure) * param[i].ratio); break; } } // read all airspeed sensors void AP_Airspeed::update() { for (uint8_t i=0; i 1) { return; //supporting 2 airspeed sensors at most } for (uint8_t i=0; ihandle_msp(pkt); } } } #endif // @LoggerMessage: HYGR // @Description: Hygrometer data // @Field: TimeUS: Time since system startup // @Field: Id: sensor ID // @Field: Humidity: percentage humidity // @Field: Temp: temperature in degrees C void AP_Airspeed::Log_Airspeed() { const uint64_t now = AP_HAL::micros64(); for (uint8_t i=0; iget_hygrometer(hygrometer.sample_ms, hygrometer.temperature, hygrometer.humidity) && hygrometer.sample_ms != state[i].last_hygrometer_log_ms) { AP::logger().WriteStreaming("HYGR", "TimeUS,Id,Humidity,Temp", "s#%O", "F---", "QBff", AP_HAL::micros64(), i, hygrometer.humidity, hygrometer.temperature); state[i].last_hygrometer_log_ms = hygrometer.sample_ms; } #endif } } bool AP_Airspeed::use(uint8_t i) const { if (_force_disable_use) { return false; } if (!enabled(i) || !param[i].use) { return false; } #ifndef HAL_BUILD_AP_PERIPH if (param[i].use == 2 && !is_zero(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle))) { // special case for gliders with airspeed sensors behind the // propeller. Allow airspeed to be disabled when throttle is // running return false; } #endif return true; } /* return true if all enabled sensors are healthy */ bool AP_Airspeed::all_healthy(void) const { for (uint8_t i=0; i 0 || state[i].use_zero_offset || param[i].skip_cal); #endif return ok; } // return the current airspeed in m/s float AP_Airspeed::get_airspeed(uint8_t i) const { if (!enabled(i)) { // we can't have negative airspeed so sending an obviously invalid value return -1.0; } return state[i].airspeed; } // return the unfiltered airspeed in m/s float AP_Airspeed::get_raw_airspeed(uint8_t i) const { if (!enabled(i)) { // we can't have negative airspeed so sending an obviously invalid value return -1.0; } return state[i].raw_airspeed; } // return the differential pressure in Pascal for the last airspeed reading float AP_Airspeed::get_differential_pressure(uint8_t i) const { if (!enabled(i)) { return 0.0; } return state[i].last_pressure; } // return the current corrected pressure float AP_Airspeed::get_corrected_pressure(uint8_t i) const { if (!enabled(i)) { return 0.0; } return state[i].corrected_pressure; } #if AP_AIRSPEED_HYGROMETER_ENABLE bool AP_Airspeed::get_hygrometer(uint8_t i, uint32_t &last_sample_ms, float &temperature, float &humidity) const { if (!enabled(i) || sensor[i] == nullptr) { return false; } return sensor[i]->get_hygrometer(last_sample_ms, temperature, humidity); } #endif // AP_AIRSPEED_HYGROMETER_ENABLE #else // build type is not appropriate; provide a dummy implementation: const AP_Param::GroupInfo AP_Airspeed::var_info[] = { AP_GROUPEND }; void AP_Airspeed::update() {}; bool AP_Airspeed::get_temperature(uint8_t i, float &temperature) { return false; } void AP_Airspeed::calibrate(bool in_startup) {} bool AP_Airspeed::use(uint8_t i) const { return false; } bool AP_Airspeed::enabled(uint8_t i) const { return false; } bool AP_Airspeed::healthy(uint8_t i) const { return false; } float AP_Airspeed::get_airspeed(uint8_t i) const { return 0.0; } float AP_Airspeed::get_differential_pressure(uint8_t i) const { return 0.0; } #if AP_AIRSPEED_MSP_ENABLED void AP_Airspeed::handle_msp(const MSP::msp_airspeed_data_message_t &pkt) {} #endif bool AP_Airspeed::all_healthy(void) const { return false; } void AP_Airspeed::init(void) {}; AP_Airspeed::AP_Airspeed() {} #endif // #if AP_AIRSPEED_DUMMY_METHODS_ENABLED // singleton instance AP_Airspeed *AP_Airspeed::_singleton; namespace AP { AP_Airspeed *airspeed() { return AP_Airspeed::get_singleton(); } };