#include "Sub.h" #include "GCS_Mavlink.h" // default sensors are present and healthy: gyro, accelerometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control #define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS | MAV_SYS_STATUS_AHRS | MAV_SYS_STATUS_SENSOR_BATTERY) void Sub::gcs_send_heartbeat() { gcs().send_message(MSG_HEARTBEAT); } /* * !!NOTE!! * * the use of NOINLINE separate functions for each message type avoids * a compiler bug in gcc that would cause it to use far more stack * space than is needed. Without the NOINLINE we use the sum of the * stack needed for each message type. Please be careful to follow the * pattern below when adding any new messages */ MAV_TYPE GCS_MAVLINK_Sub::frame_type() const { return MAV_TYPE_SUBMARINE; } MAV_MODE GCS_MAVLINK_Sub::base_mode() const { uint8_t _base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED; // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation switch (sub.control_mode) { case AUTO: case GUIDED: case CIRCLE: case POSHOLD: _base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED; // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // APM does in any mode, as that is defined as "system finds its own goal // positions", which APM does not currently do break; default: break; } // all modes except INITIALISING have some form of manual // override if stick mixing is enabled _base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; if (sub.motors.armed()) { _base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode _base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; return (MAV_MODE)_base_mode; } uint32_t GCS_MAVLINK_Sub::custom_mode() const { return sub.control_mode; } MAV_STATE GCS_MAVLINK_Sub::system_status() const { // set system as critical if any failsafe have triggered if (sub.any_failsafe_triggered()) { return MAV_STATE_CRITICAL; } if (sub.motors.armed()) { return MAV_STATE_ACTIVE; } return MAV_STATE_STANDBY; } NOINLINE void Sub::send_extended_status1(mavlink_channel_t chan) { uint32_t control_sensors_present; uint32_t control_sensors_enabled; uint32_t control_sensors_health; // default sensors present control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT; // first what sensors/controllers we have if (g.compass_enabled) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present } if (ap.depth_sensor_present) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE; } if (gps.status() > AP_GPS::NO_GPS) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS; } #if OPTFLOW == ENABLED if (optflow.enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW; } #endif // all present sensors enabled by default except altitude and position control and motors which we will set individually control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & ~MAV_SYS_STATUS_SENSOR_BATTERY); switch (control_mode) { case ALT_HOLD: case AUTO: case GUIDED: case CIRCLE: case SURFACE: case POSHOLD: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; break; default: break; } // set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED) if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; } if (battery.num_instances() > 0) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_BATTERY; } // default to all healthy except baro, compass, gps and receiver which we set individually control_sensors_health = control_sensors_present & ~(MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_3D_MAG | MAV_SYS_STATUS_SENSOR_GPS | MAV_SYS_STATUS_SENSOR_RC_RECEIVER); if (sensor_health.depth) { // check the internal barometer only control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE; } if (g.compass_enabled && compass.healthy() && ahrs.use_compass()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG; } if (gps.is_healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS; } #if OPTFLOW == ENABLED if (optflow.healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW; } #endif if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO; } if (!ins.get_accel_health_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL; } if (ahrs.initialised() && !ahrs.healthy()) { // AHRS subsystem is unhealthy control_sensors_health &= ~MAV_SYS_STATUS_AHRS; } if (!battery.healthy() || battery.has_failsafed()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_BATTERY; } int16_t battery_current = -1; int8_t battery_remaining = -1; if (battery.has_current() && battery.healthy()) { // percent remaining is not necessarily accurate at the moment //battery_remaining = battery.capacity_remaining_pct(); battery_current = battery.current_amps() * 100; } #if AP_TERRAIN_AVAILABLE && AC_TERRAIN switch (terrain.status()) { case AP_Terrain::TerrainStatusDisabled: break; case AP_Terrain::TerrainStatusUnhealthy: // To-Do: restore unhealthy terrain status reporting once terrain is used in Sub //control_sensors_present |= MAV_SYS_STATUS_TERRAIN; //control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN; //break; case AP_Terrain::TerrainStatusOK: control_sensors_present |= MAV_SYS_STATUS_TERRAIN; control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN; control_sensors_health |= MAV_SYS_STATUS_TERRAIN; break; } #endif #if RANGEFINDER_ENABLED == ENABLED if (rangefinder_state.enabled) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; if (rangefinder.has_data_orient(ROTATION_PITCH_270)) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; } } #endif if (!ap.initialised || ins.calibrating()) { // while initialising the gyros and accels are not enabled control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); } mavlink_msg_sys_status_send( chan, control_sensors_present, control_sensors_enabled, control_sensors_health, (uint16_t)(scheduler.load_average() * 1000), battery.voltage() * 1000, // mV battery_current, // in 10mA units battery_remaining, // in % 0, // comm drops %, 0, // comm drops in pkts, 0, 0, 0, 0); } void NOINLINE Sub::send_nav_controller_output(mavlink_channel_t chan) { const Vector3f &targets = attitude_control.get_att_target_euler_cd(); mavlink_msg_nav_controller_output_send( chan, targets.x * 1.0e-2f, targets.y * 1.0e-2f, targets.z * 1.0e-2f, wp_nav.get_wp_bearing_to_destination() * 1.0e-2f, MIN(wp_nav.get_wp_distance_to_destination() * 1.0e-2f, UINT16_MAX), pos_control.get_alt_error() * 1.0e-2f, 0, 0); } int16_t GCS_MAVLINK_Sub::vfr_hud_throttle() const { return (int16_t)(sub.motors.get_throttle() * 100); } /* send RPM packet */ #if RPM_ENABLED == ENABLED void NOINLINE Sub::send_rpm(mavlink_channel_t chan) { if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) { mavlink_msg_rpm_send( chan, rpm_sensor.get_rpm(0), rpm_sensor.get_rpm(1)); } } #endif // Work around to get temperature sensor data out void GCS_MAVLINK_Sub::send_scaled_pressure3() { if (!sub.celsius.healthy()) { return; } mavlink_msg_scaled_pressure3_send( chan, AP_HAL::millis(), 0, 0, sub.celsius.temperature() * 100); } bool GCS_MAVLINK_Sub::send_info() { // Just do this all at once, hopefully the hard-wire telemetry requirement means this is ok // Name is char[10] CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT); send_named_float("CamTilt", 1 - (SRV_Channels::get_output_norm(SRV_Channel::k_mount_tilt) / 2.0f + 0.5f)); CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT); send_named_float("CamPan", 1 - (SRV_Channels::get_output_norm(SRV_Channel::k_mount_pan) / 2.0f + 0.5f)); CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT); send_named_float("TetherTrn", sub.quarter_turn_count/4); CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT); send_named_float("Lights1", SRV_Channels::get_output_norm(SRV_Channel::k_rcin9) / 2.0f + 0.5f); CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT); send_named_float("Lights2", SRV_Channels::get_output_norm(SRV_Channel::k_rcin10) / 2.0f + 0.5f); CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT); send_named_float("PilotGain", sub.gain); CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT); send_named_float("InputHold", sub.input_hold_engaged); return true; } /* send PID tuning message */ void Sub::send_pid_tuning(mavlink_channel_t chan) { const Vector3f &gyro = ahrs.get_gyro(); if (g.gcs_pid_mask & 1) { const DataFlash_Class::PID_Info &pid_info = attitude_control.get_rate_roll_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_ROLL, pid_info.desired*0.01f, degrees(gyro.x), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } if (g.gcs_pid_mask & 2) { const DataFlash_Class::PID_Info &pid_info = attitude_control.get_rate_pitch_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_PITCH, pid_info.desired*0.01f, degrees(gyro.y), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } if (g.gcs_pid_mask & 4) { const DataFlash_Class::PID_Info &pid_info = attitude_control.get_rate_yaw_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_YAW, pid_info.desired*0.01f, degrees(gyro.z), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } if (g.gcs_pid_mask & 8) { const DataFlash_Class::PID_Info &pid_info = pos_control.get_accel_z_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_ACCZ, pid_info.desired*0.01f, -(ahrs.get_accel_ef_blended().z + GRAVITY_MSS), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } } uint8_t GCS_MAVLINK_Sub::sysid_my_gcs() const { return sub.g.sysid_my_gcs; } // try to send a message, return false if it won't fit in the serial tx buffer bool GCS_MAVLINK_Sub::try_send_message(enum ap_message id) { if (telemetry_delayed()) { return false; } // if we don't have at least 250 micros remaining before the main loop // wants to fire then don't send a mavlink message. We want to // prioritise the main flight control loop over communications if (sub.scheduler.time_available_usec() < 250 && sub.motors.armed()) { gcs().set_out_of_time(true); return false; } switch (id) { case MSG_NAMED_FLOAT: send_info(); break; case MSG_EXTENDED_STATUS1: // send extended status only once vehicle has been initialised // to avoid unnecessary errors being reported to user if (sub.ap.initialised) { CHECK_PAYLOAD_SIZE(SYS_STATUS); sub.send_extended_status1(chan); CHECK_PAYLOAD_SIZE(POWER_STATUS); send_power_status(); } break; case MSG_NAV_CONTROLLER_OUTPUT: CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT); sub.send_nav_controller_output(chan); break; case MSG_RPM: #if RPM_ENABLED == ENABLED CHECK_PAYLOAD_SIZE(RPM); sub.send_rpm(chan); #endif break; case MSG_TERRAIN: #if AP_TERRAIN_AVAILABLE && AC_TERRAIN CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST); sub.terrain.send_request(chan); #endif break; case MSG_FENCE_STATUS: #if AC_FENCE == ENABLED CHECK_PAYLOAD_SIZE(FENCE_STATUS); sub.fence_send_mavlink_status(chan); #endif break; case MSG_PID_TUNING: CHECK_PAYLOAD_SIZE(PID_TUNING); sub.send_pid_tuning(chan); break; default: return GCS_MAVLINK::try_send_message(id); } return true; } const AP_Param::GroupInfo GCS_MAVLINK::var_info[] = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Stream rate of RAW_IMU, SCALED_IMU2, SCALED_PRESSURE, and SENSOR_OFFSETS to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[STREAM_RAW_SENSORS], 0), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Stream rate of SYS_STATUS, MEMINFO, MISSION_CURRENT, GPS_RAW_INT, NAV_CONTROLLER_OUTPUT, and LIMITS_STATUS to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[STREAM_EXTENDED_STATUS], 0), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS_RAW to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[STREAM_RC_CHANNELS], 0), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Stream rate of GLOBAL_POSITION_INT to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[STREAM_POSITION], 0), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Stream rate of ATTITUDE and SIMSTATE (SITL only) to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[STREAM_EXTRA1], 0), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Stream rate of VFR_HUD to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[STREAM_EXTRA2], 0), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Stream rate of AHRS, HWSTATUS, and SYSTEM_TIME to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[STREAM_EXTRA3], 0), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Stream rate of PARAM_VALUE to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[STREAM_PARAMS], 0), AP_GROUPEND }; static const ap_message STREAM_RAW_SENSORS_msgs[] = { MSG_RAW_IMU1, // RAW_IMU, SCALED_IMU2, SCALED_IMU3 MSG_RAW_IMU2, // SCALED_PRESSURE, SCALED_PRESSURE2, SCALED_PRESSURE3 MSG_RAW_IMU3 // SENSOR_OFFSETS }; static const ap_message STREAM_EXTENDED_STATUS_msgs[] = { MSG_EXTENDED_STATUS1, // SYS_STATUS, POWER_STATUS MSG_EXTENDED_STATUS2, // MEMINFO MSG_CURRENT_WAYPOINT, MSG_GPS_RAW, MSG_GPS_RTK, MSG_GPS2_RAW, MSG_GPS2_RTK, MSG_NAV_CONTROLLER_OUTPUT, MSG_FENCE_STATUS, MSG_NAMED_FLOAT }; static const ap_message STREAM_POSITION_msgs[] = { MSG_LOCATION, MSG_LOCAL_POSITION }; static const ap_message STREAM_RAW_CONTROLLER_msgs[] = { }; static const ap_message STREAM_RC_CHANNELS_msgs[] = { MSG_SERVO_OUTPUT_RAW, MSG_RADIO_IN }; static const ap_message STREAM_EXTRA1_msgs[] = { MSG_ATTITUDE, MSG_SIMSTATE, // SIMSTATE, AHRS2 MSG_PID_TUNING }; static const ap_message STREAM_EXTRA2_msgs[] = { MSG_VFR_HUD }; static const ap_message STREAM_EXTRA3_msgs[] = { MSG_AHRS, MSG_HWSTATUS, MSG_SYSTEM_TIME, MSG_RANGEFINDER, #if AP_TERRAIN_AVAILABLE && AC_TERRAIN MSG_TERRAIN, #endif MSG_BATTERY2, MSG_BATTERY_STATUS, MSG_MOUNT_STATUS, MSG_OPTICAL_FLOW, MSG_GIMBAL_REPORT, MSG_MAG_CAL_REPORT, MSG_MAG_CAL_PROGRESS, MSG_EKF_STATUS_REPORT, MSG_VIBRATION, #if RPM_ENABLED == ENABLED MSG_RPM, #endif MSG_ESC_TELEMETRY, }; const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = { MAV_STREAM_ENTRY(STREAM_RAW_SENSORS), MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS), MAV_STREAM_ENTRY(STREAM_POSITION), MAV_STREAM_ENTRY(STREAM_RC_CHANNELS), MAV_STREAM_ENTRY(STREAM_EXTRA1), MAV_STREAM_ENTRY(STREAM_EXTRA2), MAV_STREAM_ENTRY(STREAM_EXTRA3), MAV_STREAM_TERMINATOR // must have this at end of stream_entries }; bool GCS_MAVLINK_Sub::handle_guided_request(AP_Mission::Mission_Command &cmd) { return sub.do_guided(cmd); } void GCS_MAVLINK_Sub::handle_change_alt_request(AP_Mission::Mission_Command &cmd) { // add home alt if needed if (cmd.content.location.flags.relative_alt) { cmd.content.location.alt += sub.ahrs.get_home().alt; } // To-Do: update target altitude for loiter or waypoint controller depending upon nav mode } MAV_RESULT GCS_MAVLINK_Sub::_handle_command_preflight_calibration_baro() { if (sub.motors.armed()) { gcs().send_text(MAV_SEVERITY_INFO, "Disarm before calibration."); return MAV_RESULT_FAILED; } if (!sub.control_check_barometer()) { return MAV_RESULT_FAILED; } AP::baro().calibrate(true); return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK_Sub::_handle_command_preflight_calibration(const mavlink_command_long_t &packet) { if (is_equal(packet.param6,1.0f)) { // compassmot calibration //result = sub.mavlink_compassmot(chan); gcs().send_text(MAV_SEVERITY_INFO, "#CompassMot calibration not supported"); return MAV_RESULT_UNSUPPORTED; } return GCS_MAVLINK::_handle_command_preflight_calibration(packet); } MAV_RESULT GCS_MAVLINK_Sub::handle_command_do_set_roi(const Location &roi_loc) { if (!check_latlng(roi_loc)) { return MAV_RESULT_FAILED; } sub.set_auto_yaw_roi(roi_loc); return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK_Sub::handle_command_int_packet(const mavlink_command_int_t &packet) { switch (packet.command) { case MAV_CMD_DO_SET_HOME: { // assume failure if (is_equal(packet.param1, 1.0f)) { // if param1 is 1, use current location if (sub.set_home_to_current_location(true)) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } // ensure param1 is zero if (!is_zero(packet.param1)) { return MAV_RESULT_FAILED; } // check frame type is supported if (packet.frame != MAV_FRAME_GLOBAL && packet.frame != MAV_FRAME_GLOBAL_INT && packet.frame != MAV_FRAME_GLOBAL_RELATIVE_ALT && packet.frame != MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) { return MAV_RESULT_FAILED; } // sanity check location if (!check_latlng(packet.x, packet.y)) { return MAV_RESULT_FAILED; } Location new_home_loc {}; new_home_loc.lat = packet.x; new_home_loc.lng = packet.y; new_home_loc.alt = packet.z * 100; // handle relative altitude if (packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT || packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) { if (!AP::ahrs().home_is_set()) { // cannot use relative altitude if home is not set return MAV_RESULT_FAILED; } new_home_loc.alt += sub.ahrs.get_home().alt; } if (sub.set_home(new_home_loc, true)) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } default: return GCS_MAVLINK::handle_command_int_packet(packet); } } MAV_RESULT GCS_MAVLINK_Sub::handle_command_long_packet(const mavlink_command_long_t &packet) { switch (packet.command) { case MAV_CMD_NAV_LOITER_UNLIM: if (!sub.set_mode(POSHOLD, MODE_REASON_GCS_COMMAND)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; case MAV_CMD_NAV_LAND: if (!sub.set_mode(SURFACE, MODE_REASON_GCS_COMMAND)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; case MAV_CMD_CONDITION_YAW: // param1 : target angle [0-360] // param2 : speed during change [deg per second] // param3 : direction (-1:ccw, +1:cw) // param4 : relative offset (1) or absolute angle (0) if ((packet.param1 >= 0.0f) && (packet.param1 <= 360.0f) && (is_zero(packet.param4) || is_equal(packet.param4,1.0f))) { sub.set_auto_yaw_look_at_heading(packet.param1, packet.param2, (int8_t)packet.param3, (uint8_t)packet.param4); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; case MAV_CMD_DO_CHANGE_SPEED: // param1 : unused // param2 : new speed in m/s // param3 : unused // param4 : unused if (packet.param2 > 0.0f) { sub.wp_nav.set_speed_xy(packet.param2 * 100.0f); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; case MAV_CMD_DO_SET_HOME: // param1 : use current (1=use current location, 0=use specified location) // param5 : latitude // param6 : longitude // param7 : altitude (absolute) if (is_equal(packet.param1,1.0f) || (is_zero(packet.param5) && is_zero(packet.param6) && is_zero(packet.param7))) { if (sub.set_home_to_current_location(true)) { return MAV_RESULT_ACCEPTED; } } else { // ensure param1 is zero if (!is_zero(packet.param1)) { return MAV_RESULT_FAILED; } // sanity check location if (!check_latlng(packet.param5, packet.param6)) { return MAV_RESULT_FAILED; } Location new_home_loc; new_home_loc.lat = (int32_t)(packet.param5 * 1.0e7f); new_home_loc.lng = (int32_t)(packet.param6 * 1.0e7f); new_home_loc.alt = (int32_t)(packet.param7 * 100.0f); if (!sub.far_from_EKF_origin(new_home_loc)) { if (sub.set_home(new_home_loc, true)) { return MAV_RESULT_ACCEPTED; } } } return MAV_RESULT_FAILED; case MAV_CMD_MISSION_START: if (sub.motors.armed() && sub.set_mode(AUTO, MODE_REASON_GCS_COMMAND)) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; case MAV_CMD_COMPONENT_ARM_DISARM: if (is_equal(packet.param1,1.0f)) { // attempt to arm and return success or failure if (sub.init_arm_motors(AP_Arming::ArmingMethod::MAVLINK)) { return MAV_RESULT_ACCEPTED; } } else if (is_zero(packet.param1)) { // force disarming by setting param2 = 21196 is deprecated // see COMMAND_LONG DO_FLIGHTTERMINATION sub.init_disarm_motors(); return MAV_RESULT_ACCEPTED; } else { return MAV_RESULT_UNSUPPORTED; } return MAV_RESULT_FAILED; #if AC_FENCE == ENABLED case MAV_CMD_DO_FENCE_ENABLE: switch ((uint16_t)packet.param1) { case 0: sub.fence.enable(false); return MAV_RESULT_ACCEPTED; case 1: sub.fence.enable(true); return MAV_RESULT_ACCEPTED; default: break; } return MAV_RESULT_FAILED; #endif case MAV_CMD_DO_MOTOR_TEST: // param1 : motor sequence number (a number from 1 to max number of motors on the vehicle) // param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum) // param3 : throttle (range depends upon param2) // param4 : timeout (in seconds) if (!sub.handle_do_motor_test(packet)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; default: return GCS_MAVLINK::handle_command_long_packet(packet); } } void GCS_MAVLINK_Sub::handleMessage(mavlink_message_t* msg) { switch (msg->msgid) { case MAVLINK_MSG_ID_HEARTBEAT: { // MAV ID: 0 // We keep track of the last time we received a heartbeat from our GCS for failsafe purposes if (msg->sysid != sub.g.sysid_my_gcs) { break; } sub.failsafe.last_heartbeat_ms = AP_HAL::millis(); break; } case MAVLINK_MSG_ID_MANUAL_CONTROL: { // MAV ID: 69 if (msg->sysid != sub.g.sysid_my_gcs) { break; // Only accept control from our gcs } mavlink_manual_control_t packet; mavlink_msg_manual_control_decode(msg, &packet); if (packet.target != sub.g.sysid_this_mav) { break; // only accept control aimed at us } sub.transform_manual_control_to_rc_override(packet.x,packet.y,packet.z,packet.r,packet.buttons); sub.failsafe.last_pilot_input_ms = AP_HAL::millis(); // a RC override message is considered to be a 'heartbeat' from the ground station for failsafe purposes sub.failsafe.last_heartbeat_ms = AP_HAL::millis(); break; } case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: { // MAV ID: 70 // allow override of RC input if (msg->sysid != sub.g.sysid_my_gcs) { break; // Only accept control from our gcs } uint32_t tnow = AP_HAL::millis(); mavlink_rc_channels_override_t packet; mavlink_msg_rc_channels_override_decode(msg, &packet); RC_Channels::set_override(0, packet.chan1_raw, tnow); RC_Channels::set_override(1, packet.chan2_raw, tnow); RC_Channels::set_override(2, packet.chan3_raw, tnow); RC_Channels::set_override(3, packet.chan4_raw, tnow); RC_Channels::set_override(4, packet.chan5_raw, tnow); RC_Channels::set_override(5, packet.chan6_raw, tnow); RC_Channels::set_override(6, packet.chan7_raw, tnow); RC_Channels::set_override(7, packet.chan8_raw, tnow); sub.failsafe.last_pilot_input_ms = tnow; // a RC override message is considered to be a 'heartbeat' from the ground station for failsafe purposes sub.failsafe.last_heartbeat_ms = tnow; break; } case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: { // MAV ID: 82 // decode packet mavlink_set_attitude_target_t packet; mavlink_msg_set_attitude_target_decode(msg, &packet); // ensure type_mask specifies to use attitude // the thrust can be used from the altitude hold if (packet.type_mask & (1<<6)) { sub.set_attitude_target_no_gps = {AP_HAL::millis(), packet}; } // ensure type_mask specifies to use attitude and thrust if ((packet.type_mask & ((1<<7)|(1<<6))) != 0) { break; } // convert thrust to climb rate packet.thrust = constrain_float(packet.thrust, 0.0f, 1.0f); float climb_rate_cms = 0.0f; if (is_equal(packet.thrust, 0.5f)) { climb_rate_cms = 0.0f; } else if (packet.thrust > 0.5f) { // climb at up to WPNAV_SPEED_UP climb_rate_cms = (packet.thrust - 0.5f) * 2.0f * sub.wp_nav.get_speed_up(); } else { // descend at up to WPNAV_SPEED_DN climb_rate_cms = (packet.thrust - 0.5f) * 2.0f * fabsf(sub.wp_nav.get_speed_down()); } sub.guided_set_angle(Quaternion(packet.q[0],packet.q[1],packet.q[2],packet.q[3]), climb_rate_cms); break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: { // MAV ID: 84 // decode packet mavlink_set_position_target_local_ned_t packet; mavlink_msg_set_position_target_local_ned_decode(msg, &packet); // exit if vehicle is not in Guided mode or Auto-Guided mode if ((sub.control_mode != GUIDED) && !(sub.control_mode == AUTO && sub.auto_mode == Auto_NavGuided)) { break; } // check for supported coordinate frames if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED && packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED && packet.coordinate_frame != MAV_FRAME_BODY_NED && packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED) { break; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; /* * for future use: * bool force = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE; * bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; * bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; */ // prepare position Vector3f pos_vector; if (!pos_ignore) { // convert to cm pos_vector = Vector3f(packet.x * 100.0f, packet.y * 100.0f, -packet.z * 100.0f); // rotate to body-frame if necessary if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { sub.rotate_body_frame_to_NE(pos_vector.x, pos_vector.y); } // add body offset if necessary if (packet.coordinate_frame == MAV_FRAME_LOCAL_OFFSET_NED || packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { pos_vector += sub.inertial_nav.get_position(); } else { // convert from alt-above-home to alt-above-ekf-origin pos_vector.z = sub.pv_alt_above_origin(pos_vector.z); } } // prepare velocity Vector3f vel_vector; if (!vel_ignore) { // convert to cm vel_vector = Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f); // rotate to body-frame if necessary if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { sub.rotate_body_frame_to_NE(vel_vector.x, vel_vector.y); } } // send request if (!pos_ignore && !vel_ignore && acc_ignore) { sub.guided_set_destination_posvel(pos_vector, vel_vector); } else if (pos_ignore && !vel_ignore && acc_ignore) { sub.guided_set_velocity(vel_vector); } else if (!pos_ignore && vel_ignore && acc_ignore) { sub.guided_set_destination(pos_vector); } break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: { // MAV ID: 86 // decode packet mavlink_set_position_target_global_int_t packet; mavlink_msg_set_position_target_global_int_decode(msg, &packet); // exit if vehicle is not in Guided mode or Auto-Guided mode if ((sub.control_mode != GUIDED) && !(sub.control_mode == AUTO && sub.auto_mode == Auto_NavGuided)) { break; } // check for supported coordinate frames if (packet.coordinate_frame != MAV_FRAME_GLOBAL && packet.coordinate_frame != MAV_FRAME_GLOBAL_INT && packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT && // solo shot manager incorrectly sends RELATIVE_ALT instead of RELATIVE_ALT_INT packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT_INT && packet.coordinate_frame != MAV_FRAME_GLOBAL_TERRAIN_ALT && packet.coordinate_frame != MAV_FRAME_GLOBAL_TERRAIN_ALT_INT) { break; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; /* * for future use: * bool force = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE; * bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; * bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; */ Vector3f pos_neu_cm; // position (North, East, Up coordinates) in centimeters if (!pos_ignore) { // sanity check location if (!check_latlng(packet.lat_int, packet.lon_int)) { break; } Location loc; loc.lat = packet.lat_int; loc.lng = packet.lon_int; loc.alt = packet.alt*100; switch (packet.coordinate_frame) { case MAV_FRAME_GLOBAL_RELATIVE_ALT: // solo shot manager incorrectly sends RELATIVE_ALT instead of RELATIVE_ALT_INT case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT: loc.flags.relative_alt = true; loc.flags.terrain_alt = false; break; case MAV_FRAME_GLOBAL_TERRAIN_ALT: case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT: loc.flags.relative_alt = true; loc.flags.terrain_alt = true; break; case MAV_FRAME_GLOBAL: case MAV_FRAME_GLOBAL_INT: default: loc.flags.relative_alt = false; loc.flags.terrain_alt = false; break; } pos_neu_cm = sub.pv_location_to_vector(loc); } if (!pos_ignore && !vel_ignore && acc_ignore) { sub.guided_set_destination_posvel(pos_neu_cm, Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f)); } else if (pos_ignore && !vel_ignore && acc_ignore) { sub.guided_set_velocity(Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f)); } else if (!pos_ignore && vel_ignore && acc_ignore) { sub.guided_set_destination(pos_neu_cm); } break; } case MAVLINK_MSG_ID_DISTANCE_SENSOR: { sub.rangefinder.handle_msg(msg); break; } #if AC_FENCE == ENABLED // send or receive fence points with GCS case MAVLINK_MSG_ID_FENCE_POINT: // MAV ID: 160 case MAVLINK_MSG_ID_FENCE_FETCH_POINT: sub.fence.handle_msg(*this, msg); break; #endif // AC_FENCE == ENABLED case MAVLINK_MSG_ID_TERRAIN_DATA: case MAVLINK_MSG_ID_TERRAIN_CHECK: #if AP_TERRAIN_AVAILABLE && AC_TERRAIN sub.terrain.handle_data(chan, msg); #endif break; case MAVLINK_MSG_ID_SET_HOME_POSITION: { mavlink_set_home_position_t packet; mavlink_msg_set_home_position_decode(msg, &packet); if ((packet.latitude == 0) && (packet.longitude == 0) && (packet.altitude == 0)) { sub.set_home_to_current_location(true); } else { // sanity check location if (!check_latlng(packet.latitude, packet.longitude)) { break; } Location new_home_loc; new_home_loc.lat = packet.latitude; new_home_loc.lng = packet.longitude; new_home_loc.alt = packet.altitude / 10; if (sub.far_from_EKF_origin(new_home_loc)) { break; } sub.set_home(new_home_loc, true); } break; } // This adds support for leak detectors in a separate enclosure // connected to a mavlink enabled subsystem case MAVLINK_MSG_ID_SYS_STATUS: { uint32_t MAV_SENSOR_WATER = 0x20000000; mavlink_sys_status_t packet; mavlink_msg_sys_status_decode(msg, &packet); if ((packet.onboard_control_sensors_enabled & MAV_SENSOR_WATER) && !(packet.onboard_control_sensors_health & MAV_SENSOR_WATER)) { sub.leak_detector.set_detect(); } } break; default: handle_common_message(msg); break; } // end switch } // end handle mavlink /* * a delay() callback that processes MAVLink packets. We set this as the * callback in long running library initialisation routines to allow * MAVLink to process packets while waiting for the initialisation to * complete */ void Sub::mavlink_delay_cb() { static uint32_t last_1hz, last_50hz, last_5s; if (!gcs().chan(0).initialised) { return; } DataFlash.EnableWrites(false); uint32_t tnow = AP_HAL::millis(); if (tnow - last_1hz > 1000) { last_1hz = tnow; gcs_send_heartbeat(); gcs().send_message(MSG_EXTENDED_STATUS1); } if (tnow - last_50hz > 20) { last_50hz = tnow; gcs().update(); gcs().data_stream_send(); gcs().retry_deferred(); notify.update(); } if (tnow - last_5s > 5000) { last_5s = tnow; gcs().send_text(MAV_SEVERITY_INFO, "Initialising APM"); } DataFlash.EnableWrites(true); } AP_Mission *GCS_MAVLINK_Sub::get_mission() { return &sub.mission; } AP_Rally *GCS_MAVLINK_Sub::get_rally() const { #if AC_RALLY == ENABLED return &sub.rally; #else return nullptr; #endif } MAV_RESULT GCS_MAVLINK_Sub::handle_flight_termination(const mavlink_command_long_t &packet) { if (packet.param1 > 0.5f) { sub.init_disarm_motors(); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } bool GCS_MAVLINK_Sub::set_mode(uint8_t mode) { return sub.set_mode((control_mode_t)mode, MODE_REASON_GCS_COMMAND); } int32_t GCS_MAVLINK_Sub::global_position_int_alt() const { if (!sub.ap.depth_sensor_present) { return 0; } return GCS_MAVLINK::global_position_int_alt(); } int32_t GCS_MAVLINK_Sub::global_position_int_relative_alt() const { if (!sub.ap.depth_sensor_present) { return 0; } return GCS_MAVLINK::global_position_int_relative_alt(); } // dummy method to avoid linking AFS bool AP_AdvancedFailsafe::gcs_terminate(bool should_terminate, const char *reason) { return false; }