/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * ArduPlane parameter definitions * */ #define GSCALAR(v, name, def) { g.v.vtype, name, Parameters::k_param_ ## v, &g.v, {def_value : def} } #define ASCALAR(v, name, def) { aparm.v.vtype, name, Parameters::k_param_ ## v, &aparm.v, {def_value : def} } #define GGROUP(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &g.v, {group_info : class::var_info} } #define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &v, {group_info : class::var_info} } #define GOBJECTN(v, pname, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## pname, &v, {group_info : class::var_info} } const AP_Param::Info var_info[] PROGMEM = { // @Param: FORMAT_VERSION // @DisplayName: Eeprom format version number // @Description: This value is incremented when changes are made to the eeprom format // @User: Advanced GSCALAR(format_version, "FORMAT_VERSION", 0), // @Param: SYSID_SW_TYPE // @DisplayName: Software Type // @Description: This is used by the ground station to recognise the software type (eg ArduPlane vs ArduCopter) // @User: Advanced GSCALAR(software_type, "SYSID_SW_TYPE", Parameters::k_software_type), // @Param: SYSID_THISMAV // @DisplayName: MAVLink system ID // @Description: The identifier of this device in the MAVLink protocol // @Range: 1 255 // @User: Advanced GSCALAR(sysid_this_mav, "SYSID_THISMAV", MAV_SYSTEM_ID), // @Param: SYSID_MYGCS // @DisplayName: Ground station MAVLink system ID // @Description: The identifier of the ground station in the MAVLink protocol. Don't change this unless you also modify the ground station to match. // @Range: 1 255 // @User: Advanced GSCALAR(sysid_my_gcs, "SYSID_MYGCS", 255), // @Param: SERIAL0_BAUD // @DisplayName: USB Console Baud Rate // @Description: The baud rate used on the USB console. The APM2 can support all baudrates up to 115, and also can support 500. The PX4 can support rates of up to 1500. If you setup a rate you cannot support on APM2 and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults. // @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200,500:500000,921:921600,1500:1500000 // @User: Standard GSCALAR(serial0_baud, "SERIAL0_BAUD", SERIAL0_BAUD/1000), // @Param: SERIAL1_BAUD // @DisplayName: Telemetry Baud Rate // @Description: The baud rate used on the first telemetry port. The APM2 can support all baudrates up to 115, and also can support 500. The PX4 can support rates of up to 1500. If you setup a rate you cannot support on APM2 and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults. // @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200,500:500000,921:921600,1500:1500000 // @User: Standard GSCALAR(serial1_baud, "SERIAL1_BAUD", SERIAL1_BAUD/1000), #if MAVLINK_COMM_NUM_BUFFERS > 2 // @Param: SERIAL2_BAUD // @DisplayName: Telemetry Baud Rate // @Description: The baud rate used on the second telemetry port. The APM2 can support all baudrates up to 115, and also can support 500. The PX4 can support rates of up to 1500. If you setup a rate you cannot support on APM2 and then can't connect to your board you should load a firmware from a different vehicle type. That will reset all your parameters to defaults. // @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200,500:500000,921:921600,1500:1500000 // @User: Standard GSCALAR(serial2_baud, "SERIAL2_BAUD", SERIAL2_BAUD/1000), #if FRSKY_TELEM_ENABLED == ENABLED // @Param: SERIAL2_PROTOCOL // @DisplayName: SERIAL2 protocol selection // @Description: Control what protocol telemetry 2 port should be used for // @Values: 1:GCS Mavlink,2:Frsky D-PORT // @User: Standard GSCALAR(serial2_protocol, "SERIAL2_PROTOCOL", SERIAL2_MAVLINK), #endif // FRSKY_TELEM_ENABLED #endif // MAVLINK_COMM_NUM_BUFFERS // @Param: AUTOTUNE_LEVEL // @DisplayName: Autotune level // @Description: Level of agressiveness for autotune. When autotune is run a lower AUTOTUNE_LEVEL will result in a 'softer' tune, with less agressive gains. For most users a level of 5 is recommended. // @Range: 1 10 // @Increment: 1 // @User: Standard ASCALAR(autotune_level, "AUTOTUNE_LEVEL", 5), // @Param: TELEM_DELAY // @DisplayName: Telemetry startup delay // @Description: The amount of time (in seconds) to delay radio telemetry to prevent an Xbee bricking on power up // @User: Standard // @Units: seconds // @Range: 0 10 // @Increment: 1 GSCALAR(telem_delay, "TELEM_DELAY", 0), // @Param: KFF_RDDRMIX // @DisplayName: Rudder Mix // @Description: The amount of rudder mix to apply during aileron movement 0 = 0 %, 1 = 100% // @Range: 0 1 // @Increment: 0.01 // @User: Standard GSCALAR(kff_rudder_mix, "KFF_RDDRMIX", RUDDER_MIX), // @Param: KFF_THR2PTCH // @DisplayName: Throttle to Pitch Mix // @Description: Throttle to pitch feed-forward gain. // @Range: 0 5 // @Increment: 0.01 // @User: Advanced GSCALAR(kff_throttle_to_pitch, "KFF_THR2PTCH", 0), // @Param: STICK_MIXING // @DisplayName: Stick Mixing // @Description: When enabled, this adds user stick input to the control surfaces in auto modes, allowing the user to have some degree of flight control without changing modes. There are two types of stick mixing available. If you set STICK_MIXING to 1 then it will use "fly by wire" mixing, which controls the roll and pitch in the same way that the FBWA mode does. This is the safest option if you usually fly ArduPlane in FBWA or FBWB mode. If you set STICK_MIXING to 2 then it will enable direct mixing mode, which is what the STABILIZE mode uses. That will allow for much more extreme maneuvers while in AUTO mode. // @Values: 0:Disabled,1:FBWMixing,2:DirectMixing // @User: Advanced GSCALAR(stick_mixing, "STICK_MIXING", STICK_MIXING_FBW), // @Param: SKIP_GYRO_CAL // @DisplayName: Skip gyro calibration // @Description: When enabled this tells the APM to skip the normal gyroscope calibration at startup, and instead use the saved gyro calibration from the last flight. You should only enable this if you are careful to check that your aircraft has good attitude control before flying, as some boards may have significantly different gyro calibration between boots, especially if the temperature changes a lot. If gyro calibration is skipped then APM relies on using the gyro drift detection code to get the right gyro calibration in the few minutes after it boots. This option is mostly useful where the requirement to hold the plane still while it is booting is a significant problem. // @Values: 0:Disabled,1:Enabled // @User: Advanced GSCALAR(skip_gyro_cal, "SKIP_GYRO_CAL", 0), // @Param: AUTO_FBW_STEER // @DisplayName: Use FBWA steering in AUTO // @Description: When enabled this option gives FBWA navigation and steering in AUTO mode. This can be used to allow manual stabilised piloting with waypoint logic for triggering payloads. With this enabled the pilot has the same control over the plane as in FBWA mode, and the normal AUTO navigation is completely disabled. This option is not recommended for normal use. // @Values: 0:Disabled,1:Enabled // @User: Advanced GSCALAR(auto_fbw_steer, "AUTO_FBW_STEER", 0), // @Param: TKOFF_THR_MINSPD // @DisplayName: Takeoff throttle min speed // @Description: Minimum GPS ground speed in m/s used by the speed check that un-suppresses throttle in auto-takeoff. This can be be used for catapult launches where you want the motor to engage only after the plane leaves the catapult, but it is preferable to use the TKOFF_THR_MINACC and TKOFF_THR_DELAY parameters for cvatapult launches due to the errors associated with GPS measurements. For hand launches with a pusher prop it is strongly advised that this parameter be set to a value no less than 4 m/s to provide additional protection against premature motor start. Note that the GPS velocity will lag the real velocity by about 0.5 seconds. The ground speed check is delayed by the TKOFF_THR_DELAY parameter. // @Units: m/s // @Range: 0 30 // @Increment: 0.1 // @User: User GSCALAR(takeoff_throttle_min_speed, "TKOFF_THR_MINSPD", 0), // @Param: TKOFF_THR_MINACC // @DisplayName: Takeoff throttle min acceleration // @Description: Minimum forward acceleration in m/s/s before arming the ground speed check in auto-takeoff. This is meant to be used for hand launches. Setting this value to 0 disables the acceleration test which means the ground speed check will always be armed which could allow GPS velocity jumps to start the engine. For hand launches this should be set to 15. // @Units: m/s/s // @Range: 0 30 // @Increment: 0.1 // @User: User GSCALAR(takeoff_throttle_min_accel, "TKOFF_THR_MINACC", 0), // @Param: TKOFF_THR_DELAY // @DisplayName: Takeoff throttle delay // @Description: This parameter sets the time delay (in 1/10ths of a second) that the ground speed check is delayed after the forward acceleration check controlled by TKOFF_THR_MINACC has passed. For hand launches with pusher propellers it is essential that this is set to a value of no less than 2 (0.2 seconds) to ensure that the aircraft is safely clear of the throwers arm before the motor can start. // @Units: 0.1 seconds // @Range: 0 15 // @Increment: 1 // @User: User GSCALAR(takeoff_throttle_delay, "TKOFF_THR_DELAY", 2), // @Param: TKOFF_TDRAG_ELEV // @DisplayName: Takeoff tail dragger elevator // @Description: This parameter sets the amount of elevator to apply during the initial stage of a takeoff. It is used to hold the tail wheel of a taildragger on the ground during the initial takeoff stage to give maximum steering. This option should be conbined with the TKOFF_TDRAG_SPD1 option and the GROUND_STEER_ALT option along with tuning of the ground steering controller. A value of zero means to bypass the initial "tail hold" stage of takeoff. Set to zero for hand and catapult launch. For tail-draggers you should normally set this to 100, meaning full up elevator during the initial stage of takeoff. For most tricycle undercarriage aircraft a value of zero will work well, but for some tricycle aircraft a small negative value (say around -20 to -30) will apply down elevator which will hold the nose wheel firmly on the ground during initial acceleration. Only use a negative value if you find that the nosewheel doesn't grip well during takeoff. Too much down elevator on a tricycle undercarriage may cause instability in steering as the plane pivots around the nosewheel. Add down elevator 10 percent at a time. // @Units: Percent // @Range: -100 100 // @Increment: 1 // @User: User GSCALAR(takeoff_tdrag_elevator, "TKOFF_TDRAG_ELEV", 0), // @Param: TKOFF_TDRAG_SPD1 // @DisplayName: Takeoff tail dragger speed1 // @Description: This parameter sets the airspeed at which to stop holding the tail down and transition to rudder control of steering on the ground. When TKOFF_TDRAG_SPD1 is reached the pitch of the aircraft will be held level until TKOFF_ROTATE_SPD is reached, at which point the takeoff pitch specified in the mission will be used to "rotate" the pitch for takeoff climb. Set TKOFF_TDRAG_SPD1 to zero to go straight to rotation. This should be set to zero for hand launch and catapult launch. It should also be set to zero for tricycle undercarriages. For tail dragger aircraft it should be set just below the stall speed. // @Units: m/s // @Range: 0 30 // @Increment: 0.1 // @User: User GSCALAR(takeoff_tdrag_speed1, "TKOFF_TDRAG_SPD1", 0), // @Param: TKOFF_ROTATE_SPD // @DisplayName: Takeoff rotate speed // @Description: This parameter sets the airspeed at which the aircraft will "rotate", setting climb pitch specified in the mission. If TKOFF_ROTATE_SPD is zero then the climb pitch will be used as soon as takeoff is started. For hand launch and catapult launches a TKOFF_ROTATE_SPD of zero should be set. For all ground launches TKOFF_ROTATE_SPD should be set above the stall speed, usually by about 10 to 30 percent // @Units: m/s // @Range: 0 30 // @Increment: 0.1 // @User: User GSCALAR(takeoff_rotate_speed, "TKOFF_ROTATE_SPD", 0), // @Param: TKOFF_THR_SLEW // @DisplayName: Takeoff throttle slew rate // @Description: This parameter sets the slew rate for the throttle during auto takeoff. When this is zero the THR_SLEWRATE parameter is used during takeoff. For rolling takeoffs it can be a good idea to set a lower slewrate for takeoff to give a slower acceleration which can improve ground steering control. The value is a percentage throttle change per second, so a value of 20 means to advance the throttle over 5 seconds on takeoff. Values below 20 are not recommended as they may cause the plane to try to climb out with too little throttle. // @Units: percent // @Range: 0 100 // @Increment: 1 // @User: User GSCALAR(takeoff_throttle_slewrate, "TKOFF_THR_SLEW", 0), // @Param: LEVEL_ROLL_LIMIT // @DisplayName: Level flight roll limit // @Description: This controls the maximum bank angle in degrees during flight modes where level flight is desired, such as in the final stages of landing, and during auto takeoff. This should be a small angle (such as 5 degrees) to prevent a wing hitting the runway during takeoff or landing. Setting this to zero will completely disable heading hold on auto takeoff and final landing approach. // @Units: degrees // @Range: 0 45 // @Increment: 1 // @User: User GSCALAR(level_roll_limit, "LEVEL_ROLL_LIMIT", 5), // @Param: LAND_PITCH_CD // @DisplayName: Landing Pitch // @Description: Used in autoland for planes without airspeed sensors in hundredths of a degree // @Units: centi-Degrees // @User: Advanced GSCALAR(land_pitch_cd, "LAND_PITCH_CD", 0), // @Param: LAND_FLARE_ALT // @DisplayName: Landing flare altitude // @Description: Altitude in autoland at which to lock heading and flare to the LAND_PITCH_CD pitch // @Units: meters // @Increment: 0.1 // @User: Advanced GSCALAR(land_flare_alt, "LAND_FLARE_ALT", 3.0), // @Param: LAND_FLARE_SEC // @DisplayName: Landing flare time // @Description: Time before landing point at which to lock heading and flare to the LAND_PITCH_CD pitch // @Units: seconds // @Increment: 0.1 // @User: Advanced GSCALAR(land_flare_sec, "LAND_FLARE_SEC", 2.0), // @Param: NAV_CONTROLLER // @DisplayName: Navigation controller selection // @Description: Which navigation controller to enable. Currently the only navigation controller available is L1. From time to time other experimental conrtrollers will be added which are selected using this parameter. // @Values: 0:Default,1:L1Controller // @User: Standard GSCALAR(nav_controller, "NAV_CONTROLLER", AP_Navigation::CONTROLLER_L1), // @Param: ALT_MIX // @DisplayName: GPS to Baro Mix // @Description: The percent of mixing between GPS altitude and baro altitude. 0 = 100% gps, 1 = 100% baro. It is highly recommend that you not change this from the default of 1, as GPS altitude is notoriously unreliable. The only time I would recommend changing this is if you have a high altitude enabled GPS, and you are dropping a plane from a high altitude baloon many kilometers off the ground. // @Units: Percent // @Range: 0 1 // @Increment: 0.1 // @User: Advanced GSCALAR(altitude_mix, "ALT_MIX", ALTITUDE_MIX), // @Param: ALT_CTRL_ALG // @DisplayName: Altitude control algorithm // @Description: This sets what algorithm will be used for altitude control. The default is zero, which selects the most appropriate algorithm for your airframe. Currently the default is to use TECS (total energy control system). From time to time we will add other experimental altitude control algorithms which will be seleted using this parameter. // @Values: 0:Automatic // @User: Advanced GSCALAR(alt_control_algorithm, "ALT_CTRL_ALG", ALT_CONTROL_DEFAULT), // @Param: ALT_OFFSET // @DisplayName: Altitude offset // @Description: This is added to the target altitude in automatic flight. It can be used to add a global altitude offset to a mission // @Units: Meters // @Range: -32767 32767 // @Increment: 1 // @User: Advanced GSCALAR(alt_offset, "ALT_OFFSET", 0), // @Param: WP_RADIUS // @DisplayName: Waypoint Radius // @Description: Defines the distance from a waypoint that when crossed indicates the waypoint has been completed. To avoid the aircraft looping around the waypoint in case it misses by more than the WP_RADIUS an additional check is made to see if the aircraft has crossed a "finish line" passing through the waypoint and perpendicular to the flight path from the previous waypoint. If that finish line is crossed then the waypoint is considered complete. // @Units: Meters // @Range: 1 32767 // @Increment: 1 // @User: Standard GSCALAR(waypoint_radius, "WP_RADIUS", WP_RADIUS_DEFAULT), // @Param: WP_MAX_RADIUS // @DisplayName: Waypoint Maximum Radius // @Description: Sets the maximum distance to a waypoint for the waypoint to be considered complete. This overrides the "cross the finish line" logic that is normally used to consider a waypoint complete. For normal AUTO behaviour this parameter should be set to zero. Using a non-zero value is only recommended when it is critical that the aircraft does approach within the given radius, and should loop around until it has done so. This can cause the aircraft to loop forever if its turn radius is greater than the maximum radius set. // @Units: Meters // @Range: 0 32767 // @Increment: 1 // @User: Standard GSCALAR(waypoint_max_radius, "WP_MAX_RADIUS", 0), // @Param: WP_LOITER_RAD // @DisplayName: Waypoint Loiter Radius // @Description: Defines the distance from the waypoint center, the plane will maintain during a loiter. If you set this value to a negative number then the default loiter direction will be counter-clockwise instead of clockwise. // @Units: Meters // @Range: -32767 32767 // @Increment: 1 // @User: Standard GSCALAR(loiter_radius, "WP_LOITER_RAD", LOITER_RADIUS_DEFAULT), #if GEOFENCE_ENABLED == ENABLED // @Param: FENCE_ACTION // @DisplayName: Action on geofence breach // @Description: What to do on fence breach. If this is set to 0 then no action is taken, and geofencing is disabled. If this is set to 1 then the plane will enter GUIDED mode, with the target waypoint as the fence return point. If this is set to 2 then the fence breach is reported to the ground station, but no other action is taken. If set to 3 then the plane enters guided mode but the pilot retains manual throttle control. // @Values: 0:None,1:GuidedMode,2:ReportOnly,3:GuidedModeThrPass // @User: Standard GSCALAR(fence_action, "FENCE_ACTION", 0), // @Param: FENCE_TOTAL // @DisplayName: Fence Total // @Description: Number of geofence points currently loaded // @User: Advanced GSCALAR(fence_total, "FENCE_TOTAL", 0), // @Param: FENCE_CHANNEL // @DisplayName: Fence Channel // @Description: RC Channel to use to enable geofence. PWM input above 1750 enables the geofence // @User: Standard GSCALAR(fence_channel, "FENCE_CHANNEL", 0), // @Param: FENCE_MINALT // @DisplayName: Fence Minimum Altitude // @Description: Minimum altitude allowed before geofence triggers // @Units: meters // @Range: 0 32767 // @Increment: 1 // @User: Standard GSCALAR(fence_minalt, "FENCE_MINALT", 0), // @Param: FENCE_MAXALT // @DisplayName: Fence Maximum Altitude // @Description: Maximum altitude allowed before geofence triggers // @Units: meters // @Range: 0 32767 // @Increment: 1 // @User: Standard GSCALAR(fence_maxalt, "FENCE_MAXALT", 0), // @Param: FENCE_RETALT // @DisplayName: Fence Return Altitude // @Description: Altitude the aircraft will transit to when a fence breach occurs. If FENCE_RETALT is <= 0 then the midpoint between FENCE_MAXALT and FENCE_MINALT is used, unless FENCE_MAXALT < FENCE_MINALT. If FENCE_MAXALT < FENCE_MINALT AND FENCE_RETALT is <= 0 then ALT_HOLD_RTL is the altitude used on a fence breach. // @Units: meters // @Range: 0 32767 // @Increment: 1 // @User: Standard GSCALAR(fence_retalt, "FENCE_RETALT", 0), // @Param: FENCE_AUTOENABLE // @DisplayName: Fence automatic enable // @Description: When set to 1, gefence automatically enables after an auto takeoff and automatically disables at the beginning of an auto landing. When on the ground before takeoff the fence is disabled. // @Values: 0:NoAutoEnable,1:AutoEnable // @User: Standard GSCALAR(fence_autoenable, "FENCE_AUTOENABLE", 0), // @Param: FENCE_RET_RALLY // @DisplayName: Fence Return to Rally // @Description: When set to 1: on fence breach the plane will return to the nearest rally point rather than the fence return point. If no rally points have been defined the plane will return to the home point. // @Values: 0:FenceReturnPoint,1:NearestRallyPoint // @User: Standard GSCALAR(fence_ret_rally, "FENCE_RET_RALLY", 0), #endif // @Param: ARSPD_FBW_MIN // @DisplayName: Fly By Wire Minimum Airspeed // @Description: Airspeed corresponding to minimum throttle in auto throttle modes (FBWB, CRUISE, AUTO, GUIDED, LOITER, CIRCLE and RTL). This is a calibrated (apparent) airspeed. // @Units: m/s // @Range: 5 50 // @Increment: 1 // @User: Standard ASCALAR(airspeed_min, "ARSPD_FBW_MIN", AIRSPEED_FBW_MIN), // @Param: ARSPD_FBW_MAX // @DisplayName: Fly By Wire Maximum Airspeed // @Description: Airspeed corresponding to maximum throttle in auto throttle modes (FBWB, CRUISE, AUTO, GUIDED, LOITER, CIRCLE and RTL). This is a calibrated (apparent) airspeed. // @Units: m/s // @Range: 5 50 // @Increment: 1 // @User: Standard ASCALAR(airspeed_max, "ARSPD_FBW_MAX", AIRSPEED_FBW_MAX), // @Param: FBWB_ELEV_REV // @DisplayName: Fly By Wire elevator reverse // @Description: Reverse sense of elevator in FBWB and CRUISE modes. When set to 0 up elevator (pulling back on the stick) means to lower altitude. When set to 1, up elevator means to raise altitude. // @Values: 0:Disabled,1:Enabled // @User: Standard GSCALAR(flybywire_elev_reverse, "FBWB_ELEV_REV", 0), #if AP_TERRAIN_AVAILABLE // @Param: TERRAIN_FOLLOW // @DisplayName: Use terrain following // @Description: This enables terrain following for CRUISE mode, FBWB mode, RTL and for rally points. To use this option you also need to set TERRAIN_ENABLE to 1, which enables terrain data fetching from the GCS, and you need to have a GCS that supports sending terrain data to the aircraft. When terrain following is enabled then CRUISE and FBWB mode will hold height above terrain rather than height above home. In RTL the return to launch altitude will be considered to be a height above the terrain. Rally point altitudes will be taken as height above the terrain. This option does not affect mission items, which have a per-waypoint flag for whether they are height above home or height above the terrain. To use terrain following missions you need a ground station which can set the waypoint type to be a terrain height waypoint when creating the mission. // @Values: 0:Disabled,1:Enabled // @User: Standard GSCALAR(terrain_follow, "TERRAIN_FOLLOW", 0), #endif // @Param: FBWB_CLIMB_RATE // @DisplayName: Fly By Wire B altitude change rate // @Description: This sets the rate in m/s at which FBWB and CRUISE modes will change its target altitude for full elevator deflection. Note that the actual climb rate of the aircraft can be lower than this, depending on your airspeed and throttle control settings. If you have this parameter set to the default value of 2.0, then holding the elevator at maximum deflection for 10 seconds would change the target altitude by 20 meters. // @Range: 1-10 // @Increment: 0.1 // @User: Standard GSCALAR(flybywire_climb_rate, "FBWB_CLIMB_RATE", 2.0f), // @Param: THR_MIN // @DisplayName: Minimum Throttle // @Description: The minimum throttle setting to which the autopilot will apply. // @Units: Percent // @Range: 0 100 // @Increment: 1 // @User: Standard ASCALAR(throttle_min, "THR_MIN", THROTTLE_MIN), // @Param: THR_MAX // @DisplayName: Maximum Throttle // @Description: The maximum throttle setting as a percentage which the autopilot will apply. // @Units: Percent // @Range: 0 100 // @Increment: 1 // @User: Standard ASCALAR(throttle_max, "THR_MAX", THROTTLE_MAX), // @Param: TKOFF_THR_MAX // @DisplayName: Maximum Throttle for takeoff // @Description: The maximum throttle setting during automatic takeoff. If this is zero then THR_MAX is used for takeoff as well. // @Units: Percent // @Range: 0 100 // @Increment: 1 // @User: Advanced GSCALAR(takeoff_throttle_max, "TKOFF_THR_MAX", 0), // @Param: THR_SLEWRATE // @DisplayName: Throttle slew rate // @Description: maximum percentage change in throttle per second. A setting of 10 means to not change the throttle by more than 10% of the full throttle range in one second. // @Units: Percent // @Range: 0 100 // @Increment: 1 // @User: Standard ASCALAR(throttle_slewrate, "THR_SLEWRATE", 100), // @Param: THR_SUPP_MAN // @DisplayName: Throttle suppress manual passthru // @Description: When throttle is supressed in auto mode it is normally forced to zero. If you enable this option, then while suppressed it will be manual throttle. This is useful on petrol engines to hold the idle throttle manually while waiting for takeoff // @Values: 0:Disabled,1:Enabled // @User: Advanced GSCALAR(throttle_suppress_manual,"THR_SUPP_MAN", 0), // @Param: THR_PASS_STAB // @DisplayName: Throttle passthru in stabilize // @Description: If this is set then when in STABILIZE, FBWA or ACRO modes the throttle is a direct passthru from the transmitter. This means the THR_MIN and THR_MAX settings are not used in these modes. This is useful for petrol engines where you setup a throttle cut switch that suppresses the throttle below the normal minimum. // @Values: 0:Disabled,1:Enabled // @User: Advanced GSCALAR(throttle_passthru_stabilize,"THR_PASS_STAB", 0), // @Param: THR_FAILSAFE // @DisplayName: Throttle Failsafe Enable // @Description: The throttle failsafe allows you to configure a software failsafe activated by a setting on the throttle input channel // @Values: 0:Disabled,1:Enabled // @User: Standard GSCALAR(throttle_fs_enabled, "THR_FAILSAFE", THROTTLE_FAILSAFE), // @Param: THR_FS_VALUE // @DisplayName: Throttle Failsafe Value // @Description: The PWM level on channel 3 below which throttle sailsafe triggers // @Range: 925 1100 // @Increment: 1 // @User: Standard GSCALAR(throttle_fs_value, "THR_FS_VALUE", THROTTLE_FS_VALUE), // @Param: TRIM_THROTTLE // @DisplayName: Throttle cruise percentage // @Description: The target percentage of throttle to apply for normal flight // @Units: Percent // @Range: 0 100 // @Increment: 1 // @User: Standard ASCALAR(throttle_cruise, "TRIM_THROTTLE", THROTTLE_CRUISE), // @Param: THROTTLE_NUDGE // @DisplayName: Throttle nudge enable // @Description: When enabled, this uses the throttle input in auto-throttle modes to 'nudge' the throttle or airspeed to higher or lower values. When you have an airspeed sensor the nudge affects the target airspeed, so that throttle inputs above 50% will increase the target airspeed from TRIM_ARSPD_CM up to a maximum of ARSPD_FBW_MAX. When no airspeed sensor is enabled the throttle nudge will push up the target throttle for throttle inputs above 50%. // @Values: 0:Disabled,1:Enabled // @User: Standard // @User: Standard GSCALAR(throttle_nudge, "THROTTLE_NUDGE", 1), // @Param: FS_SHORT_ACTN // @DisplayName: Short failsafe action // @Description: The action to take on a short (FS_SHORT_TIMEOUT) failsafe event in AUTO, GUIDED or LOITER modes. A short failsafe event in stabilization modes will always cause an immediate change to CIRCLE mode. In AUTO mode you can choose whether it will enter CIRCLE mode or continue with the mission. If FS_SHORT_ACTN is 0 then it will continue with the mission, if it is 1 then it will enter CIRCLE mode, and then enter RTL if the failsafe condition persists for FS_LONG_TIMEOUT seconds. If it is set to 2 then the plane will enter FBWA mode with zero throttle and level attitude to glide in. // @Values: 0:Continue,1:Circle/ReturnToLaunch,2:Glide // @User: Standard GSCALAR(short_fs_action, "FS_SHORT_ACTN", SHORT_FAILSAFE_ACTION), // @Param: FS_SHORT_TIMEOUT // @DisplayName: Short failsafe timeout // @Description: The time in seconds that a failsafe condition has to persist before a short failsafe event will occor. This defaults to 1.5 seconds // @Units: seconds // @Range: 1 100 // @Increment: 0.5 // @User: Standard GSCALAR(short_fs_timeout, "FS_SHORT_TIMEOUT", 1.5f), // @Param: FS_LONG_ACTN // @DisplayName: Long failsafe action // @Description: The action to take on a long (FS_LONG_TIMEOUT seconds) failsafe event in AUTO, GUIDED or LOITER modes. A long failsafe event in stabilization modes will always cause an RTL (ReturnToLaunch). In AUTO modes you can choose whether it will RTL or continue with the mission. If FS_LONG_ACTN is 0 then it will continue with the mission, if it is 1 then it will enter RTL mode. Note that if FS_SHORT_ACTN is 1, then the aircraft will enter CIRCLE mode after FS_SHORT_TIMEOUT seconds of failsafe, and will always enter RTL after FS_LONG_TIMEOUT seconds of failsafe, regardless of the FS_LONG_ACTN setting. If FS_LONG_ACTN is set to 2 then instead of using RTL it will enter a FBWA glide with zero throttle. // @Values: 0:Continue,1:ReturnToLaunch,2:Glide // @User: Standard GSCALAR(long_fs_action, "FS_LONG_ACTN", LONG_FAILSAFE_ACTION), // @Param: FS_LONG_TIMEOUT // @DisplayName: Long failsafe timeout // @Description: The time in seconds that a failsafe condition has to persist before a long failsafe event will occor. This defaults to 20 seconds // @Units: seconds // @Range: 1 300 // @Increment: 0.5 // @User: Standard GSCALAR(long_fs_timeout, "FS_LONG_TIMEOUT", 20), // @Param: FS_BATT_VOLTAGE // @DisplayName: Failsafe battery voltage // @Description: Battery voltage to trigger failsafe. Set to 0 to disable battery voltage failsafe. If the battery voltage drops below this voltage continuously for 10 seconds then the plane will switch to RTL mode // @Units: Volts // @Increment: 0.1 // @User: Standard GSCALAR(fs_batt_voltage, "FS_BATT_VOLTAGE", 0), // @Param: FS_BATT_MAH // @DisplayName: Failsafe battery milliAmpHours // @Description: Battery capacity remaining to trigger failsafe. Set to 0 to disable battery remaining failsafe. If the battery remaining drops below this level then the plane will switch to RTL mode immediately // @Units: mAh // @Increment: 50 // @User: Standard GSCALAR(fs_batt_mah, "FS_BATT_MAH", 0), // @Param: FS_GCS_ENABL // @DisplayName: GCS failsafe enable // @Description: Enable ground control station telemetry failsafe. Failsafe will trigger after FS_LONG_TIMEOUT seconds of no MAVLink heartbeat messages. There are two possible enabled settings. Seeing FS_GCS_ENABL to 1 means that GCS failsafe will be triggered when the aircraft has not received a MAVLink HEARTBEAT message. Setting FS_GCS_ENABL to 2 means that GCS failsafe will be triggerded on either a loss of HEARTBEAT messages, or a RADIO_STATUS message from a MAVLink enabled 3DR radio indicating that the ground station is not receiving status updates from the aircraft, which is indicated by the RADIO_STATUS.remrssi field being zero (this may happen if you have a one way link due to asymmetric noise on the ground station and aircraft radios). WARNING: Enabling this option opens up the possibility of your plane going into failsafe mode and running the motor on the ground it it loses contact with your ground station. If this option is enabled on an electric plane then you should enable ARMING_REQUIRED. // @Values: 0:Disabled,1:Heartbeat,2:HeartbeatAndREMRSSI // @User: Standard GSCALAR(gcs_heartbeat_fs_enabled, "FS_GCS_ENABL", GCS_FAILSAFE_OFF), // @Param: FLTMODE_CH // @DisplayName: Flightmode channel // @Description: RC Channel to use for flight mode control // @User: Advanced GSCALAR(flight_mode_channel, "FLTMODE_CH", FLIGHT_MODE_CHANNEL), // @Param: FLTMODE1 // @DisplayName: FlightMode1 // @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,4:ACRO,5:FBWA,6:FBWB,7:CRUISE,8:AUTOTUNE,10:Auto,11:RTL,12:Loiter,15:Guided // @User: Standard // @Description: Flight mode for switch position 1 (910 to 1230 and above 2049) GSCALAR(flight_mode1, "FLTMODE1", FLIGHT_MODE_1), // @Param: FLTMODE2 // @DisplayName: FlightMode2 // @Description: Flight mode for switch position 2 (1231 to 1360) // @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,4:ACRO,5:FBWA,6:FBWB,7:CRUISE,8:AUTOTUNE,10:Auto,11:RTL,12:Loiter,15:Guided // @User: Standard GSCALAR(flight_mode2, "FLTMODE2", FLIGHT_MODE_2), // @Param: FLTMODE3 // @DisplayName: FlightMode3 // @Description: Flight mode for switch position 3 (1361 to 1490) // @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,4:ACRO,5:FBWA,6:FBWB,7:CRUISE,8:AUTOTUNE,10:Auto,11:RTL,12:Loiter,15:Guided // @User: Standard GSCALAR(flight_mode3, "FLTMODE3", FLIGHT_MODE_3), // @Param: FLTMODE4 // @DisplayName: FlightMode4 // @Description: Flight mode for switch position 4 (1491 to 1620) // @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,4:ACRO,5:FBWA,6:FBWB,7:CRUISE,8:AUTOTUNE,10:Auto,11:RTL,12:Loiter,15:Guided // @User: Standard GSCALAR(flight_mode4, "FLTMODE4", FLIGHT_MODE_4), // @Param: FLTMODE5 // @DisplayName: FlightMode5 // @Description: Flight mode for switch position 5 (1621 to 1749) // @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,4:ACRO,5:FBWA,6:FBWB,7:CRUISE,8:AUTOTUNE,10:Auto,11:RTL,12:Loiter,15:Guided // @User: Standard GSCALAR(flight_mode5, "FLTMODE5", FLIGHT_MODE_5), // @Param: FLTMODE6 // @DisplayName: FlightMode6 // @Description: Flight mode for switch position 6 (1750 to 2049) // @Values: 0:Manual,1:CIRCLE,2:STABILIZE,3:TRAINING,4:ACRO,5:FBWA,6:FBWB,7:CRUISE,8:AUTOTUNE,10:Auto,11:RTL,12:Loiter,15:Guided // @User: Standard GSCALAR(flight_mode6, "FLTMODE6", FLIGHT_MODE_6), // @Param: LIM_ROLL_CD // @DisplayName: Maximum Bank Angle // @Description: The maximum commanded bank angle in either direction // @Units: centi-Degrees // @Range: 0 9000 // @Increment: 1 // @User: Standard GSCALAR(roll_limit_cd, "LIM_ROLL_CD", HEAD_MAX_CENTIDEGREE), // @Param: LIM_PITCH_MAX // @DisplayName: Maximum Pitch Angle // @Description: The maximum commanded pitch up angle // @Units: centi-Degrees // @Range: 0 9000 // @Increment: 1 // @User: Standard ASCALAR(pitch_limit_max_cd, "LIM_PITCH_MAX", PITCH_MAX_CENTIDEGREE), // @Param: LIM_PITCH_MIN // @DisplayName: Minimum Pitch Angle // @Description: The minimum commanded pitch down angle // @Units: centi-Degrees // @Range: -9000 0 // @Increment: 1 // @User: Standard ASCALAR(pitch_limit_min_cd, "LIM_PITCH_MIN", PITCH_MIN_CENTIDEGREE), // @Param: ACRO_ROLL_RATE // @DisplayName: ACRO mode roll rate // @Description: The maximum roll rate at full stick deflection in ACRO mode // @Units: degrees/second // @Range: 10 500 // @Increment: 1 // @User: Standard GSCALAR(acro_roll_rate, "ACRO_ROLL_RATE", 180), // @Param: ACRO_PITCH_RATE // @DisplayName: ACRO mode pitch rate // @Description: The maximum pitch rate at full stick deflection in ACRO mode // @Units: degrees/second // @Range: 10 500 // @Increment: 1 // @User: Standard GSCALAR(acro_pitch_rate, "ACRO_PITCH_RATE", 180), // @Param: ACRO_LOCKING // @DisplayName: ACRO mode attitude locking // @Description: Enable attitude locking when sticks are released // @Values: 0:Disabled,1:Enabled // @User: Standard GSCALAR(acro_locking, "ACRO_LOCKING", 0), // @Param: GROUND_STEER_ALT // @DisplayName: Ground steer altitude // @Description: Altitude at which to use the ground steering controller on the rudder. If non-zero then the STEER2SRV controller will be used to control the rudder for altitudes within this limit of the home altitude. // @Units: Meters // @Range: -100 100 // @Increment: 0.1 // @User: Standard GSCALAR(ground_steer_alt, "GROUND_STEER_ALT", 0), // @Param: GROUND_STEER_DPS // @DisplayName: Ground steer rate // @Description: Ground steering rate in degrees per second for full rudder stick deflection // @Units: degrees/second // @Range: 10 360 // @Increment: 1 // @User: Advanced GSCALAR(ground_steer_dps, "GROUND_STEER_DPS", 90), // @Param: TRIM_AUTO // @DisplayName: Automatic trim adjustment // @Description: Set RC trim PWM levels to current levels when switching away from manual mode. When this option is enabled and you change from MANUAL to any other mode then the APM will take the current position of the control sticks as the trim values for aileron, elevator and rudder. It will use those to set RC1_TRIM, RC2_TRIM and RC4_TRIM. This option is disabled by default as if a pilot is not aware of this option and changes from MANUAL to another mode while control inputs are not centered then the trim could be changed to a dangerously bad value. You can enable this option to assist with trimming your plane, by enabling it before takeoff then switching briefly to MANUAL in flight, and seeing how the plane reacts. You can then switch back to FBWA, trim the surfaces then again test MANUAL mode. Each time you switch from MANUAL the APM will take your control inputs as the new trim. After you have good trim on your aircraft you can disable TRIM_AUTO for future flights. // @Values: 0:Disabled,1:Enabled // @User: Standard GSCALAR(auto_trim, "TRIM_AUTO", AUTO_TRIM), // @Param: ELEVON_MIXING // @DisplayName: Elevon mixing // @Description: Enable elevon mixing on both input and output. To enable just output mixing see the ELEVON_OUTPUT option. // @Values: 0:Disabled,1:Enabled // @User: User GSCALAR(mix_mode, "ELEVON_MIXING", ELEVON_MIXING), // @Param: ELEVON_REVERSE // @DisplayName: Elevon reverse // @Description: Reverse elevon mixing // @Values: 0:Disabled,1:Enabled // @User: User GSCALAR(reverse_elevons, "ELEVON_REVERSE", ELEVON_REVERSE), // @Param: ELEVON_CH1_REV // @DisplayName: Elevon reverse // @Description: Reverse elevon channel 1 // @Values: -1:Disabled,1:Enabled // @User: User GSCALAR(reverse_ch1_elevon, "ELEVON_CH1_REV", ELEVON_CH1_REVERSE), // @Param: ELEVON_CH2_REV // @DisplayName: Elevon reverse // @Description: Reverse elevon channel 2 // @Values: -1:Disabled,1:Enabled // @User: User GSCALAR(reverse_ch2_elevon, "ELEVON_CH2_REV", ELEVON_CH2_REVERSE), // @Param: VTAIL_OUTPUT // @DisplayName: VTail output // @Description: Enable VTail output in software. If enabled then the APM will provide software VTail mixing on the elevator and rudder channels. There are 4 different mixing modes available, which refer to the 4 ways the elevator can be mapped to the two VTail servos. Note that you must not use VTail output mixing with hardware pass-through of RC values, such as with channel 8 manual control on an APM1. So if you use an APM1 then set FLTMODE_CH to something other than 8 before you enable VTAIL_OUTPUT. Please also see the MIXING_GAIN parameter for the output gain of the mixer. // @Values: 0:Disabled,1:UpUp,2:UpDown,3:DownUp,4:DownDown // @User: User GSCALAR(vtail_output, "VTAIL_OUTPUT", 0), // @Param: ELEVON_OUTPUT // @DisplayName: Elevon output // @Description: Enable software elevon output mixer. If enabled then the APM will provide software elevon mixing on the aileron and elevator channels. There are 4 different mixing modes available, which refer to the 4 ways the elevator can be mapped to the two elevon servos. Note that you must not use elevon output mixing with hardware pass-through of RC values, such as with channel 8 manual control on an APM1. So if you use an APM1 then set FLTMODE_CH to something other than 8 before you enable ELEVON_OUTPUT. Please also see the MIXING_GAIN parameter for the output gain of the mixer. // @Values: 0:Disabled,1:UpUp,2:UpDown,3:DownUp,4:DownDown // @User: User GSCALAR(elevon_output, "ELEVON_OUTPUT", 0), // @Param: MIXING_GAIN // @DisplayName: Mixing Gain // @Description: The gain for the Vtail and elevon output mixers. The default is 0.5, which ensures that the mixer doesn't saturate, allowing both input channels to go to extremes while retaining control over the output. Hardware mixers often have a 1.0 gain, which gives more servo throw, but can saturate. If you don't have enough throw on your servos with VTAIL_OUTPUT or ELEVON_OUTPUT enabled then you can raise the gain using MIXING_GAIN. The mixer allows outputs in the range 900 to 2100 microseconds. // @Range: 0.5 1.2 // @User: User GSCALAR(mixing_gain, "MIXING_GAIN", 0.5f), // @Param: SYS_NUM_RESETS // @DisplayName: Num Resets // @Description: Number of APM board resets // @User: Advanced GSCALAR(num_resets, "SYS_NUM_RESETS", 0), // @Param: LOG_BITMASK // @DisplayName: Log bitmask // @Description: Bitmap of what log types to enable in dataflash. This values is made up of the sum of each of the log types you want to be saved on dataflash. On a PX4 or Pixhawk the large storage size of a microSD card means it is usually best just to enable all log types by setting this to 65535. On APM2 the smaller 4 MByte dataflash means you need to be more selective in your logging or you may run out of log space while flying (in which case it will wrap and overwrite the start of the log). The individual bits are ATTITUDE_FAST=1, ATTITUDE_MEDIUM=2, GPS=4, PerformanceMonitoring=8, ControlTuning=16, NavigationTuning=32, Mode=64, IMU=128, Commands=256, Battery=512, Compass=1024, TECS=2048, Camera=4096, RCandServo=8192, Sonar=16384, Arming=32768, LogWhenDisarmed=65536 // @Values: 0:Disabled,5190:APM2-Default,65535:PX4/Pixhawk-Default // @User: Advanced GSCALAR(log_bitmask, "LOG_BITMASK", DEFAULT_LOG_BITMASK), // @Param: RST_SWITCH_CH // @DisplayName: Reset Switch Channel // @Description: RC channel to use to reset to last flight mode after geofence takeover. // @User: Advanced GSCALAR(reset_switch_chan, "RST_SWITCH_CH", 0), // @Param: RST_MISSION_CH // @DisplayName: Reset Mission Channel // @Description: RC channel to use to reset the mission to the first waypoint. When this channel goes above 1750 the mission is reset. Set RST_MISSION_CH to 0 to disable. // @User: Advanced GSCALAR(reset_mission_chan, "RST_MISSION_CH", 0), // @Param: TRIM_ARSPD_CM // @DisplayName: Target airspeed // @Description: Airspeed in cm/s to aim for when airspeed is enabled in auto mode. This is a calibrated (apparent) airspeed. // @Units: cm/s // @User: User GSCALAR(airspeed_cruise_cm, "TRIM_ARSPD_CM", AIRSPEED_CRUISE_CM), // @Param: SCALING_SPEED // @DisplayName: speed used for speed scaling calculations // @Description: Airspeed in m/s to use when calculating surface speed scaling. Note that changing this value will affect all PID values // @Units: m/s // @User: Advanced GSCALAR(scaling_speed, "SCALING_SPEED", SCALING_SPEED), // @Param: MIN_GNDSPD_CM // @DisplayName: Minimum ground speed // @Description: Minimum ground speed in cm/s when under airspeed control // @Units: cm/s // @User: Advanced GSCALAR(min_gndspeed_cm, "MIN_GNDSPD_CM", MIN_GNDSPEED_CM), // @Param: TRIM_PITCH_CD // @DisplayName: Pitch angle offset // @Description: offset to add to pitch - used for in-flight pitch trimming. It is recommended that instead of using this parameter you level your plane correctly on the ground for good flight attitude. // @Units: centi-Degrees // @User: Advanced GSCALAR(pitch_trim_cd, "TRIM_PITCH_CD", 0), // @Param: ALT_HOLD_RTL // @DisplayName: RTL altitude // @Description: Return to launch target altitude. This is the altitude the plane will aim for and loiter at when returning home. If this is negative (usually -1) then the plane will use the current altitude at the time of entering RTL. Note that when transiting to a Rally Point the alitude of the Rally Point is used instead of ALT_HOLD_RTL. // @Units: centimeters // @User: User GSCALAR(RTL_altitude_cm, "ALT_HOLD_RTL", ALT_HOLD_HOME_CM), // @Param: ALT_HOLD_FBWCM // @DisplayName: Minimum altitude for FBWB mode // @Description: This is the minimum altitude in centimeters that FBWB and CRUISE modes will allow. If you attempt to descend below this altitude then the plane will level off. A value of zero means no limit. // @Units: centimeters // @User: User GSCALAR(FBWB_min_altitude_cm, "ALT_HOLD_FBWCM", ALT_HOLD_FBW_CM), // @Param: MAG_ENABLE // @DisplayName: Enable Compass // @Description: Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass. Note that this is separate from COMPASS_USE. This will enable the low level senor, and will enable logging of magnetometer data. To use the compass for navigation you must also set COMPASS_USE to 1. // @Values: 0:Disabled,1:Enabled // @User: Standard GSCALAR(compass_enabled, "MAG_ENABLE", 1), // @Param: FLAP_IN_CHANNEL // @DisplayName: Flap input channel // @Description: An RC input channel to use for flaps control. If this is set to a RC channel number then that channel will be used for manual flaps control. When enabled, the percentage of flaps is taken as the percentage travel from the TRIM value of the channel to the MIN value of the channel. A value above the TRIM values will give inverse flaps (spoilers). This option needs to be enabled in conjunction with a FUNCTION setting on an output channel to one of the flap functions. When a FLAP_IN_CHANNEL is combined with auto-flaps the higher of the two flap percentages is taken. You must also enable a FLAPERON_OUTPUT flaperon mixer setting. // @User: User GSCALAR(flapin_channel, "FLAP_IN_CHANNEL", 0), // @Param: FLAPERON_OUTPUT // @DisplayName: Flaperon output // @Description: Enable flaperon output in software. If enabled then the APM will provide software flaperon mixing on the FLAPERON1 and FLAPERON2 output channels specified using the FUNCTION on two auxillary channels. There are 4 different mixing modes available, which refer to the 4 ways the flap and aileron outputs can be mapped to the two flaperon servos. Note that you must not use flaperon output mixing with hardware pass-through of RC values, such as with channel 8 manual control on an APM1. So if you use an APM1 then set FLTMODE_CH to something other than 8 before you enable FLAPERON_OUTPUT. Please also see the MIXING_GAIN parameter for the output gain of the mixer. FLAPERON_OUTPUT cannot be combined with ELEVON_OUTPUT or ELEVON_MIXING. // @Values: 0:Disabled,1:UpUp,2:UpDown,3:DownUp,4:DownDown // @User: User GSCALAR(flaperon_output, "FLAPERON_OUTPUT", 0), // @Param: FLAP_1_PERCNT // @DisplayName: Flap 1 percentage // @Description: The percentage change in flap position when FLAP_1_SPEED is reached. Use zero to disable flaps // @Range: 0 100 // @Units: Percent // @User: Advanced GSCALAR(flap_1_percent, "FLAP_1_PERCNT", FLAP_1_PERCENT), // @Param: FLAP_1_SPEED // @DisplayName: Flap 1 speed // @Description: The speed in meters per second at which to engage FLAP_1_PERCENT of flaps. Note that FLAP_1_SPEED should be greater than or equal to FLAP_2_SPEED // @Range: 0 100 // @Increment: 1 // @Units: m/s // @User: Advanced GSCALAR(flap_1_speed, "FLAP_1_SPEED", FLAP_1_SPEED), // @Param: FLAP_2_PERCNT // @DisplayName: Flap 2 percentage // @Description: The percentage change in flap position when FLAP_2_SPEED is reached. Use zero to disable flaps // @Range: 0 100 // @Units: Percent // @User: Advanced GSCALAR(flap_2_percent, "FLAP_2_PERCNT", FLAP_2_PERCENT), // @Param: FLAP_2_SPEED // @DisplayName: Flap 2 speed // @Description: The speed in meters per second at which to engage FLAP_2_PERCENT of flaps. Note that FLAP_1_SPEED should be greater than or equal to FLAP_2_SPEED // @Range: 0 100 // @Units: m/s // @Increment: 1 // @User: Advanced GSCALAR(flap_2_speed, "FLAP_2_SPEED", FLAP_2_SPEED), // @Param: RSSI_PIN // @DisplayName: Receiver RSSI sensing pin // @Description: This selects an analog pin for the receiver RSSI voltage. It assumes the voltage is 5V for max rssi, 0V for minimum // @Values: -1:Disabled, 0:APM2 A0, 1:APM2 A1, 13:APM2 A13, 103:Pixhawk SBUS // @User: Standard GSCALAR(rssi_pin, "RSSI_PIN", -1), // @Param: RSSI_RANGE // @DisplayName: Receiver RSSI voltage range // @Description: Receiver RSSI voltage range // @Units: Volt // @Values: 3.3:3.3V, 5.0:5V // @User: Standard GSCALAR(rssi_range, "RSSI_RANGE", 5.0), // @Param: INVERTEDFLT_CH // @DisplayName: Inverted flight channel // @Description: A RC input channel number to enable inverted flight. If this is non-zero then the APM will monitor the correcponding RC input channel and will enable inverted flight when the channel goes above 1750. // @Values: 0:Disabled,1:Channel1,2:Channel2,3:Channel3,4:Channel4,5:Channel5,6:Channel6,7:Channel7,8:Channel8 // @User: Standard GSCALAR(inverted_flight_ch, "INVERTEDFLT_CH", 0), #if HIL_MODE != HIL_MODE_DISABLED // @Param: HIL_SERVOS // @DisplayName: HIL Servos enable // @Description: This controls whether real servo controls are used in HIL mode. If you enable this then the APM will control the real servos in HIL mode. If disabled it will report servo values, but will not output to the real servos. Be careful that your motor and propeller are not connected if you enable this option. // @Values: 0:Disabled,1:Enabled // @User: Advanced GSCALAR(hil_servos, "HIL_SERVOS", 0), // @Param: HIL_ERR_LIMIT // @DisplayName: Limit of error in HIL attitude before reset // @Description: This controls the maximum error in degrees on any axis before HIL will reset the DCM attitude to match the HIL_STATE attitude. This limit will prevent poor timing on HIL from causing a major attitude error. If the value is zero then no limit applies. // @Units: degrees // @Range: 0 90 // @Increment: 0.1 // @User: Advanced GSCALAR(hil_err_limit, "HIL_ERR_LIMIT", 5), #endif // barometer ground calibration. The GND_ prefix is chosen for // compatibility with previous releases of ArduPlane // @Group: GND_ // @Path: ../libraries/AP_Baro/AP_Baro.cpp GOBJECT(barometer, "GND_", AP_Baro), // GPS driver // @Group: GPS_ // @Path: ../libraries/AP_GPS/AP_GPS.cpp GOBJECT(gps, "GPS_", AP_GPS), #if CAMERA == ENABLED // @Group: CAM_ // @Path: ../libraries/AP_Camera/AP_Camera.cpp GOBJECT(camera, "CAM_", AP_Camera), #endif // @Group: ARMING_ // @Path: ../libraries/AP_Arming/AP_Arming.cpp GOBJECT(arming, "ARMING_", AP_Arming), // @Group: RELAY_ // @Path: ../libraries/AP_Relay/AP_Relay.cpp GOBJECT(relay, "RELAY_", AP_Relay), // @Group: RNGFND // @Path: ../libraries/AP_RangeFinder/RangeFinder.cpp GOBJECT(sonar, "RNGFND", RangeFinder), #if AP_TERRAIN_AVAILABLE // @Group: TERRAIN_ // @Path: ../libraries/AP_Terrain/AP_Terrain.cpp GOBJECT(terrain, "TERRAIN_", AP_Terrain), #endif // RC channel //----------- // @Group: RC1_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp GGROUP(rc_1, "RC1_", RC_Channel), // @Group: RC2_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp GGROUP(rc_2, "RC2_", RC_Channel), // @Group: RC3_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp GGROUP(rc_3, "RC3_", RC_Channel), // @Group: RC4_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp GGROUP(rc_4, "RC4_", RC_Channel), // @Group: RC5_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_5, "RC5_", RC_Channel_aux), // @Group: RC6_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_6, "RC6_", RC_Channel_aux), // @Group: RC7_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_7, "RC7_", RC_Channel_aux), // @Group: RC8_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_8, "RC8_", RC_Channel_aux), #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN // @Group: RC9_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_9, "RC9_", RC_Channel_aux), #endif #if CONFIG_HAL_BOARD == HAL_BOARD_APM2 || CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN // @Group: RC10_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_10, "RC10_", RC_Channel_aux), // @Group: RC11_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_11, "RC11_", RC_Channel_aux), #endif #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN // @Group: RC12_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_12, "RC12_", RC_Channel_aux), // @Group: RC13_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_13, "RC13_", RC_Channel_aux), // @Group: RC14_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp GGROUP(rc_14, "RC14_", RC_Channel_aux), #endif // @Group: RLL2SRV_ // @Path: ../libraries/APM_Control/AP_RollController.cpp GOBJECT(rollController, "RLL2SRV_", AP_RollController), // @Group: PTCH2SRV_ // @Path: ../libraries/APM_Control/AP_PitchController.cpp GOBJECT(pitchController, "PTCH2SRV_", AP_PitchController), // @Group: YAW2SRV_ // @Path: ../libraries/APM_Control/AP_YawController.cpp GOBJECT(yawController, "YAW2SRV_", AP_YawController), // @Group: STEER2SRV_ // @Path: ../libraries/APM_Control/AP_SteerController.cpp GOBJECT(steerController, "STEER2SRV_", AP_SteerController), // variables not in the g class which contain EEPROM saved variables // @Group: COMPASS_ // @Path: ../libraries/AP_Compass/Compass.cpp GOBJECT(compass, "COMPASS_", Compass), // @Group: SCHED_ // @Path: ../libraries/AP_Scheduler/AP_Scheduler.cpp GOBJECT(scheduler, "SCHED_", AP_Scheduler), // @Group: RCMAP_ // @Path: ../libraries/AP_RCMapper/AP_RCMapper.cpp GOBJECT(rcmap, "RCMAP_", RCMapper), // @Group: SR0_ // @Path: GCS_Mavlink.pde GOBJECTN(gcs[0], gcs0, "SR0_", GCS_MAVLINK), // @Group: SR1_ // @Path: GCS_Mavlink.pde GOBJECTN(gcs[1], gcs1, "SR1_", GCS_MAVLINK), #if MAVLINK_COMM_NUM_BUFFERS > 2 // @Group: SR2_ // @Path: GCS_Mavlink.pde GOBJECTN(gcs[2], gcs2, "SR2_", GCS_MAVLINK), #endif // @Group: INS_ // @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp GOBJECT(ins, "INS_", AP_InertialSensor), // @Group: AHRS_ // @Path: ../libraries/AP_AHRS/AP_AHRS.cpp GOBJECT(ahrs, "AHRS_", AP_AHRS), // @Group: ARSPD_ // @Path: ../libraries/AP_Airspeed/AP_Airspeed.cpp GOBJECT(airspeed, "ARSPD_", AP_Airspeed), // @Group: NAVL1_ // @Path: ../libraries/AP_L1_Control/AP_L1_Control.cpp GOBJECT(L1_controller, "NAVL1_", AP_L1_Control), // @Group: TECS_ // @Path: ../libraries/AP_TECS/AP_TECS.cpp GOBJECT(TECS_controller, "TECS_", AP_TECS), #if MOUNT == ENABLED // @Group: MNT_ // @Path: ../libraries/AP_Mount/AP_Mount.cpp GOBJECT(camera_mount, "MNT_", AP_Mount), #endif #if MOUNT2 == ENABLED // @Group: MNT2_ // @Path: ../libraries/AP_Mount/AP_Mount.cpp GOBJECT(camera_mount2, "MNT2_", AP_Mount), #endif // @Group: BATT_ // @Path: ../libraries/AP_BattMonitor/AP_BattMonitor.cpp GOBJECT(battery, "BATT_", AP_BattMonitor), // @Group: BRD_ // @Path: ../libraries/AP_BoardConfig/AP_BoardConfig.cpp GOBJECT(BoardConfig, "BRD_", AP_BoardConfig), #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL // @Group: SIM_ // @Path: ../libraries/SITL/SITL.cpp GOBJECT(sitl, "SIM_", SITL), #endif #if OBC_FAILSAFE == ENABLED GOBJECT(obc, "FS_", APM_OBC), #endif #if AP_AHRS_NAVEKF_AVAILABLE // @Group: EKF_ // @Path: ../libraries/AP_NavEKF/AP_NavEKF.cpp GOBJECTN(ahrs.get_NavEKF(), NavEKF, "EKF_", NavEKF), #endif // @Group: MIS_ // @Path: ../libraries/AP_Mission/AP_Mission.cpp GOBJECT(mission, "MIS_", AP_Mission), // @Group: RALLY_ // @Path: ../libraries/AP_Rally/AP_Rally.cpp GOBJECT(rally, "RALLY_", AP_Rally), AP_VAREND }; /* This is a conversion table from old parameter values to new parameter names. The startup code looks for saved values of the old parameters and will copy them across to the new parameters if the new parameter does not yet have a saved value. It then saves the new value. Note that this works even if the old parameter has been removed. It relies on the old k_param index not being removed The second column below is the index in the var_info[] table for the old object. This should be zero for top level parameters. */ const AP_Param::ConversionInfo conversion_table[] PROGMEM = { { Parameters::k_param_pidServoRoll, 0, AP_PARAM_FLOAT, "RLL2SRV_P" }, { Parameters::k_param_pidServoRoll, 1, AP_PARAM_FLOAT, "RLL2SRV_I" }, { Parameters::k_param_pidServoRoll, 2, AP_PARAM_FLOAT, "RLL2SRV_D" }, { Parameters::k_param_pidServoRoll, 3, AP_PARAM_FLOAT, "RLL2SRV_IMAX" }, { Parameters::k_param_pidServoPitch, 0, AP_PARAM_FLOAT, "PTCH2SRV_P" }, { Parameters::k_param_pidServoPitch, 1, AP_PARAM_FLOAT, "PTCH2SRV_I" }, { Parameters::k_param_pidServoPitch, 2, AP_PARAM_FLOAT, "PTCH2SRV_D" }, { Parameters::k_param_pidServoPitch, 3, AP_PARAM_FLOAT, "PTCH2SRV_IMAX" }, { Parameters::k_param_battery_monitoring, 0, AP_PARAM_INT8, "BATT_MONITOR" }, { Parameters::k_param_battery_volt_pin, 0, AP_PARAM_INT8, "BATT_VOLT_PIN" }, { Parameters::k_param_battery_curr_pin, 0, AP_PARAM_INT8, "BATT_CURR_PIN" }, { Parameters::k_param_volt_div_ratio, 0, AP_PARAM_FLOAT, "BATT_VOLT_MULT" }, { Parameters::k_param_curr_amp_per_volt, 0, AP_PARAM_FLOAT, "BATT_AMP_PERVOLT" }, { Parameters::k_param_curr_amp_offset, 0, AP_PARAM_FLOAT, "BATT_AMP_OFFSET" }, { Parameters::k_param_pack_capacity, 0, AP_PARAM_INT32, "BATT_CAPACITY" }, { Parameters::k_param_log_bitmask_old, 0, AP_PARAM_INT16, "LOG_BITMASK" }, { Parameters::k_param_rally_limit_km_old, 0, AP_PARAM_FLOAT, "RALLY_LIMIT_KM" }, { Parameters::k_param_rally_total_old, 0, AP_PARAM_INT8, "RALLY_TOTAL" }, }; static void load_parameters(void) { if (!AP_Param::check_var_info()) { cliSerial->printf_P(PSTR("Bad parameter table\n")); hal.scheduler->panic(PSTR("Bad parameter table")); } if (!g.format_version.load() || g.format_version != Parameters::k_format_version) { // erase all parameters cliSerial->printf_P(PSTR("Firmware change: erasing EEPROM...\n")); AP_Param::erase_all(); // save the current format version g.format_version.set_and_save(Parameters::k_format_version); cliSerial->println_P(PSTR("done.")); } else { uint32_t before = micros(); // Load all auto-loaded EEPROM variables AP_Param::load_all(); AP_Param::convert_old_parameters(&conversion_table[0], sizeof(conversion_table)/sizeof(conversion_table[0])); cliSerial->printf_P(PSTR("load_all took %luus\n"), micros() - before); } }