/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_MotorsMulticopter.h" #include #include extern const AP_HAL::HAL& hal; // parameters for the motor class const AP_Param::GroupInfo AP_MotorsMulticopter::var_info[] = { // 0 was used by TB_RATIO // 1,2,3 were used by throttle curve // 5 was SPIN_ARMED // @Param: YAW_HEADROOM // @DisplayName: Matrix Yaw Min // @Description: Yaw control is given at least this pwm in microseconds range // @Range: 0 500 // @Units: PWM // @User: Advanced AP_GROUPINFO("YAW_HEADROOM", 6, AP_MotorsMulticopter, _yaw_headroom, AP_MOTORS_YAW_HEADROOM_DEFAULT), // 7 was THR_LOW_CMP // @Param: THST_EXPO // @DisplayName: Thrust Curve Expo // @Description: Motor thrust curve exponent (0.0 for linear to 1.0 for second order curve) // @Range: -1.0 1.0 // @User: Advanced AP_GROUPINFO("THST_EXPO", 8, AP_MotorsMulticopter, _thrust_curve_expo, AP_MOTORS_THST_EXPO_DEFAULT), // @Param: SPIN_MAX // @DisplayName: Motor Spin maximum // @Description: Point at which the thrust saturates expressed as a number from 0 to 1 in the entire output range // @Values: 0.9:Low, 0.95:Default, 1.0:High // @User: Advanced AP_GROUPINFO("SPIN_MAX", 9, AP_MotorsMulticopter, _spin_max, AP_MOTORS_SPIN_MAX_DEFAULT), // @Param: BAT_VOLT_MAX // @DisplayName: Battery voltage compensation maximum voltage // @Description: Battery voltage compensation maximum voltage (voltage above this will have no additional scaling effect on thrust). Recommend 4.2 * cell count, 0 = Disabled // @Range: 6 53 // @Units: V // @User: Advanced AP_GROUPINFO("BAT_VOLT_MAX", 10, AP_MotorsMulticopter, _batt_voltage_max, AP_MOTORS_BAT_VOLT_MAX_DEFAULT), // @Param: BAT_VOLT_MIN // @DisplayName: Battery voltage compensation minimum voltage // @Description: Battery voltage compensation minimum voltage (voltage below this will have no additional scaling effect on thrust). Recommend 3.3 * cell count, 0 = Disabled // @Range: 6 42 // @Units: V // @User: Advanced AP_GROUPINFO("BAT_VOLT_MIN", 11, AP_MotorsMulticopter, _batt_voltage_min, AP_MOTORS_BAT_VOLT_MIN_DEFAULT), // @Param: BAT_CURR_MAX // @DisplayName: Motor Current Max // @Description: Maximum current over which maximum throttle is limited (0 = Disabled) // @Range: 0 200 // @Units: A // @User: Advanced AP_GROUPINFO("BAT_CURR_MAX", 12, AP_MotorsMulticopter, _batt_current_max, AP_MOTORS_BAT_CURR_MAX_DEFAULT), // 13, 14 were used by THR_MIX_MIN, THR_MIX_MAX // @Param: PWM_TYPE // @DisplayName: Output PWM type // @Description: This selects the output PWM type, allowing for normal PWM continuous output, OneShot, brushed or DShot motor output // @Values: 0:Normal,1:OneShot,2:OneShot125,3:Brushed,4:DShot150,5:DShot300,6:DShot600,7:DShot1200,8:PWMRange // @User: Advanced // @RebootRequired: True AP_GROUPINFO("PWM_TYPE", 15, AP_MotorsMulticopter, _pwm_type, PWM_TYPE_NORMAL), // @Param: PWM_MIN // @DisplayName: PWM output minimum // @Description: This sets the min PWM output value in microseconds that will ever be output to the motors, 0 = use input RC3_MIN // @Units: PWM // @Range: 0 2000 // @User: Advanced AP_GROUPINFO("PWM_MIN", 16, AP_MotorsMulticopter, _pwm_min, 0), // @Param: PWM_MAX // @DisplayName: PWM output maximum // @Description: This sets the max PWM value in microseconds that will ever be output to the motors, 0 = use input RC3_MAX // @Units: PWM // @Range: 0 2000 // @User: Advanced AP_GROUPINFO("PWM_MAX", 17, AP_MotorsMulticopter, _pwm_max, 0), // @Param: SPIN_MIN // @DisplayName: Motor Spin minimum // @Description: Point at which the thrust starts expressed as a number from 0 to 1 in the entire output range. Should be higher than MOT_SPIN_ARM. // @Values: 0.0:Low, 0.15:Default, 0.3:High // @User: Advanced AP_GROUPINFO("SPIN_MIN", 18, AP_MotorsMulticopter, _spin_min, AP_MOTORS_SPIN_MIN_DEFAULT), // @Param: SPIN_ARM // @DisplayName: Motor Spin armed // @Description: Point at which the motors start to spin expressed as a number from 0 to 1 in the entire output range. Should be lower than MOT_SPIN_MIN. // @Values: 0.0:Low, 0.1:Default, 0.2:High // @User: Advanced AP_GROUPINFO("SPIN_ARM", 19, AP_MotorsMulticopter, _spin_arm, AP_MOTORS_SPIN_ARM_DEFAULT), // @Param: BAT_CURR_TC // @DisplayName: Motor Current Max Time Constant // @Description: Time constant used to limit the maximum current // @Range: 0 10 // @Units: s // @User: Advanced AP_GROUPINFO("BAT_CURR_TC", 20, AP_MotorsMulticopter, _batt_current_time_constant, AP_MOTORS_BAT_CURR_TC_DEFAULT), // @Param: THST_HOVER // @DisplayName: Thrust Hover Value // @Description: Motor thrust needed to hover expressed as a number from 0 to 1 // @Range: 0.2 0.8 // @User: Advanced AP_GROUPINFO("THST_HOVER", 21, AP_MotorsMulticopter, _throttle_hover, AP_MOTORS_THST_HOVER_DEFAULT), // @Param: HOVER_LEARN // @DisplayName: Hover Value Learning // @Description: Enable/Disable automatic learning of hover throttle // @Values{Copter}: 0:Disabled, 1:Learn, 2:Learn and Save // @Values{Sub}: 0:Disabled // @Values{Plane}: 0:Disabled, 1:Learn, 2:Learn and Save // @User: Advanced AP_GROUPINFO("HOVER_LEARN", 22, AP_MotorsMulticopter, _throttle_hover_learn, HOVER_LEARN_AND_SAVE), // @Param: SAFE_DISARM // @DisplayName: Motor PWM output disabled when disarmed // @Description: Disables motor PWM output when disarmed // @Values: 0:PWM enabled while disarmed, 1:PWM disabled while disarmed // @User: Advanced AP_GROUPINFO("SAFE_DISARM", 23, AP_MotorsMulticopter, _disarm_disable_pwm, 0), // @Param: YAW_SV_ANGLE // @DisplayName: Yaw Servo Max Lean Angle // @Description: Yaw servo's maximum lean angle // @Range: 5 80 // @Units: deg // @Increment: 1 // @User: Standard AP_GROUPINFO_FRAME("YAW_SV_ANGLE", 35, AP_MotorsMulticopter, _yaw_servo_angle_max_deg, 30, AP_PARAM_FRAME_TRICOPTER), // @Param: SPOOL_TIME // @DisplayName: Spool up time // @Description: Time in seconds to spool up the motors from zero to min throttle. // @Range: 0 2 // @Units: s // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("SPOOL_TIME", 36, AP_MotorsMulticopter, _spool_up_time, AP_MOTORS_SPOOL_UP_TIME_DEFAULT), // @Param: BOOST_SCALE // @DisplayName: Motor boost scale // @Description: Booster motor output scaling factor vs main throttle. The output to the BoostThrottle servo will be the main throttle times this scaling factor. A higher scaling factor will put more of the load on the booster motor. A value of 1 will set the BoostThrottle equal to the main throttle. // @Range: 0 5 // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("BOOST_SCALE", 37, AP_MotorsMulticopter, _boost_scale, 0), // 38 RESERVED for BAT_POW_MAX // @Param: BAT_IDX // @DisplayName: Battery compensation index // @Description: Which battery monitor should be used for doing compensation // @Values: 0:First battery, 1:Second battery // @User: Advanced AP_GROUPINFO("BAT_IDX", 39, AP_MotorsMulticopter, _batt_idx, 0), // @Param: SLEW_UP_TIME // @DisplayName: Output slew time for increasing throttle // @Description: Time in seconds to slew output from zero to full. This is used to limit the rate at which output can change. Range is constrained between 0 and 0.5. // @Range: 0 .5 // @Units: s // @Increment: 0.001 // @User: Advanced AP_GROUPINFO("SLEW_UP_TIME", 40, AP_MotorsMulticopter, _slew_up_time, AP_MOTORS_SLEW_TIME_DEFAULT), // @Param: SLEW_DN_TIME // @DisplayName: Output slew time for decreasing throttle // @Description: Time in seconds to slew output from full to zero. This is used to limit the rate at which output can change. Range is constrained between 0 and 0.5. // @Range: 0 .5 // @Units: s // @Increment: 0.001 // @User: Advanced AP_GROUPINFO("SLEW_DN_TIME", 41, AP_MotorsMulticopter, _slew_dn_time, AP_MOTORS_SLEW_TIME_DEFAULT), // @Param: SAFE_TIME // @DisplayName: Time taken to disable and enable the motor PWM output when disarmed and armed. // @Description: Time taken to disable and enable the motor PWM output when disarmed and armed. // @Range: 0 5 // @Units: s // @Increment: 0.001 // @User: Advanced AP_GROUPINFO("SAFE_TIME", 42, AP_MotorsMulticopter, _safe_time, AP_MOTORS_SAFE_TIME_DEFAULT), AP_GROUPEND }; // Constructor AP_MotorsMulticopter::AP_MotorsMulticopter(uint16_t loop_rate, uint16_t speed_hz) : AP_Motors(loop_rate, speed_hz), _lift_max(1.0f), _throttle_limit(1.0f) { AP_Param::setup_object_defaults(this, var_info); // setup battery voltage filtering _batt_voltage_filt.set_cutoff_frequency(AP_MOTORS_BATT_VOLT_FILT_HZ); _batt_voltage_filt.reset(1.0f); // default throttle range _throttle_radio_min = 1100; _throttle_radio_max = 1900; }; // output - sends commands to the motors void AP_MotorsMulticopter::output() { // update throttle filter update_throttle_filter(); // calc filtered battery voltage and lift_max update_lift_max_from_batt_voltage(); // run spool logic output_logic(); // calculate thrust output_armed_stabilizing(); // apply any thrust compensation for the frame thrust_compensation(); // convert rpy_thrust values to pwm output_to_motors(); // output any booster throttle output_boost_throttle(); // output raw roll/pitch/yaw/thrust output_rpyt(); }; // output booster throttle, if any void AP_MotorsMulticopter::output_boost_throttle(void) { if (_boost_scale > 0) { float throttle = constrain_float(get_throttle() * _boost_scale, 0, 1); SRV_Channels::set_output_scaled(SRV_Channel::k_boost_throttle, throttle * 1000); } else { SRV_Channels::set_output_scaled(SRV_Channel::k_boost_throttle, 0); } } // output roll/pitch/yaw/thrust void AP_MotorsMulticopter::output_rpyt(void) { SRV_Channels::set_output_scaled(SRV_Channel::k_roll_out, _roll_in_ff * 4500); SRV_Channels::set_output_scaled(SRV_Channel::k_pitch_out, _pitch_in_ff * 4500); SRV_Channels::set_output_scaled(SRV_Channel::k_yaw_out, _yaw_in_ff * 4500); SRV_Channels::set_output_scaled(SRV_Channel::k_thrust_out, get_throttle() * 1000); } // sends minimum values out to the motors void AP_MotorsMulticopter::output_min() { set_desired_spool_state(DesiredSpoolState::SHUT_DOWN); _spool_state = SpoolState::SHUT_DOWN; output(); } // update the throttle input filter void AP_MotorsMulticopter::update_throttle_filter() { if (armed()) { _throttle_filter.apply(_throttle_in, 1.0f / _loop_rate); // constrain filtered throttle if (_throttle_filter.get() < 0.0f) { _throttle_filter.reset(0.0f); } if (_throttle_filter.get() > 1.0f) { _throttle_filter.reset(1.0f); } } else { _throttle_filter.reset(0.0f); } } // return current_limit as a number from 0 ~ 1 in the range throttle_min to throttle_max float AP_MotorsMulticopter::get_current_limit_max_throttle() { AP_BattMonitor &battery = AP::battery(); float _batt_current; if (_batt_current_max <= 0 || // return maximum if current limiting is disabled !armed() || // remove throttle limit if disarmed !battery.current_amps(_batt_current, _batt_idx)) { // no current monitoring is available _throttle_limit = 1.0f; return 1.0f; } float _batt_resistance = battery.get_resistance(_batt_idx); if (is_zero(_batt_resistance)) { _throttle_limit = 1.0f; return 1.0f; } // calculate the maximum current to prevent voltage sag below _batt_voltage_min float batt_current_max = MIN(_batt_current_max, _batt_current + (battery.voltage(_batt_idx) - _batt_voltage_min) / _batt_resistance); float batt_current_ratio = _batt_current / batt_current_max; float loop_interval = 1.0f / _loop_rate; _throttle_limit += (loop_interval / (loop_interval + _batt_current_time_constant)) * (1.0f - batt_current_ratio); // throttle limit drops to 20% between hover and full throttle _throttle_limit = constrain_float(_throttle_limit, 0.2f, 1.0f); // limit max throttle return get_throttle_hover() + ((1.0 - get_throttle_hover()) * _throttle_limit); } // apply_thrust_curve_and_volt_scaling - returns throttle in the range 0 ~ 1 float AP_MotorsMulticopter::apply_thrust_curve_and_volt_scaling(float thrust) const { float battery_scale = 1.0; if (is_positive(_batt_voltage_filt.get())) { battery_scale = 1.0 / _batt_voltage_filt.get(); } // apply thrust curve - domain -1.0 to 1.0, range -1.0 to 1.0 float thrust_curve_expo = constrain_float(_thrust_curve_expo, -1.0f, 1.0f); if (is_zero(thrust_curve_expo)) { // zero expo means linear, avoid floating point exception for small values return _lift_max * thrust * battery_scale; } float throttle_ratio = ((thrust_curve_expo - 1.0f) + safe_sqrt((1.0f - thrust_curve_expo) * (1.0f - thrust_curve_expo) + 4.0f * thrust_curve_expo * _lift_max * thrust)) / (2.0f * thrust_curve_expo); return constrain_float(throttle_ratio * battery_scale, 0.0f, 1.0f); } // inverse of above, tested with AP_Motors/examples/expo_inverse_test // used to calculate equivelent motor throttle level to direct ouput, used in tailsitter transtions float AP_MotorsMulticopter::remove_thrust_curve_and_volt_scaling(float throttle) const { float battery_scale = 1.0; if (is_positive(_batt_voltage_filt.get())) { battery_scale = 1.0 / _batt_voltage_filt.get(); } // apply thrust curve - domain -1.0 to 1.0, range -1.0 to 1.0 float thrust_curve_expo = constrain_float(_thrust_curve_expo, -1.0f, 1.0f); if (is_zero(thrust_curve_expo)) { // zero expo means linear, avoid floating point exception for small values return throttle / (_lift_max * battery_scale); } float thrust = ((throttle / battery_scale) * (2.0f * thrust_curve_expo)) - (thrust_curve_expo - 1.0f); thrust = (thrust * thrust) - ((1.0f - thrust_curve_expo) * (1.0f - thrust_curve_expo)); thrust /= 4.0f * thrust_curve_expo * _lift_max; return constrain_float(thrust, 0.0f, 1.0f); } // update_lift_max from battery voltage - used for voltage compensation void AP_MotorsMulticopter::update_lift_max_from_batt_voltage() { // sanity check battery_voltage_min is not too small // if disabled or misconfigured exit immediately float _batt_voltage_resting_estimate = AP::battery().voltage_resting_estimate(_batt_idx); if ((_batt_voltage_max <= 0) || (_batt_voltage_min >= _batt_voltage_max) || (_batt_voltage_resting_estimate < 0.25f * _batt_voltage_min)) { _batt_voltage_filt.reset(1.0f); _lift_max = 1.0f; return; } _batt_voltage_min = MAX(_batt_voltage_min, _batt_voltage_max * 0.6f); // contrain resting voltage estimate (resting voltage is actual voltage with sag removed based on current draw and resistance) _batt_voltage_resting_estimate = constrain_float(_batt_voltage_resting_estimate, _batt_voltage_min, _batt_voltage_max); // filter at 0.5 Hz float batt_voltage_filt = _batt_voltage_filt.apply(_batt_voltage_resting_estimate / _batt_voltage_max, 1.0f / _loop_rate); // calculate lift max float thrust_curve_expo = constrain_float(_thrust_curve_expo, -1.0f, 1.0f); _lift_max = batt_voltage_filt * (1 - thrust_curve_expo) + thrust_curve_expo * batt_voltage_filt * batt_voltage_filt; } float AP_MotorsMulticopter::get_compensation_gain() const { // avoid divide by zero if (_lift_max <= 0.0f) { return 1.0f; } float ret = 1.0f / _lift_max; #if AP_MOTORS_DENSITY_COMP == 1 // air density ratio is increasing in density / decreasing in altitude if (_air_density_ratio > 0.3f && _air_density_ratio < 1.5f) { ret *= 1.0f / constrain_float(_air_density_ratio, 0.5f, 1.25f); } #endif return ret; } // convert actuator output (0~1) range to pwm range int16_t AP_MotorsMulticopter::output_to_pwm(float actuator) { float pwm_output; if (_spool_state == SpoolState::SHUT_DOWN) { // in shutdown mode, use PWM 0 or minimum PWM if (_disarm_disable_pwm && !armed()) { pwm_output = 0; } else { pwm_output = get_pwm_output_min(); } } else { // in all other spool modes, covert to desired PWM pwm_output = get_pwm_output_min() + (get_pwm_output_max() - get_pwm_output_min()) * actuator; } return pwm_output; } // converts desired thrust to linearized actuator output in a range of 0~1 float AP_MotorsMulticopter::thrust_to_actuator(float thrust_in) const { thrust_in = constrain_float(thrust_in, 0.0f, 1.0f); return _spin_min + (_spin_max - _spin_min) * apply_thrust_curve_and_volt_scaling(thrust_in); } // inverse of above, tested with AP_Motors/examples/expo_inverse_test // used to calculate equivelent motor throttle level to direct ouput, used in tailsitter transtions float AP_MotorsMulticopter::actuator_to_thrust(float actuator) const { actuator = (actuator - _spin_min) / (_spin_max - _spin_min); return constrain_float(remove_thrust_curve_and_volt_scaling(actuator), 0.0f, 1.0f); } // adds slew rate limiting to actuator output void AP_MotorsMulticopter::set_actuator_with_slew(float& actuator_output, float input) { /* If MOT_SLEW_UP_TIME is 0 (default), no slew limit is applied to increasing output. If MOT_SLEW_DN_TIME is 0 (default), no slew limit is applied to decreasing output. MOT_SLEW_UP_TIME and MOT_SLEW_DN_TIME are constrained to 0.0~0.5 for sanity. If spool mode is shutdown, no slew limit is applied to allow immediate disarming of motors. */ // Output limits with no slew time applied float output_slew_limit_up = 1.0f; float output_slew_limit_dn = 0.0f; // If MOT_SLEW_UP_TIME is set, calculate the highest allowed new output value, constrained 0.0~1.0 if (is_positive(_slew_up_time)) { float output_delta_up_max = 1.0f / (constrain_float(_slew_up_time, 0.0f, 0.5f) * _loop_rate); output_slew_limit_up = constrain_float(actuator_output + output_delta_up_max, 0.0f, 1.0f); } // If MOT_SLEW_DN_TIME is set, calculate the lowest allowed new output value, constrained 0.0~1.0 if (is_positive(_slew_dn_time)) { float output_delta_dn_max = 1.0f / (constrain_float(_slew_dn_time, 0.0f, 0.5f) * _loop_rate); output_slew_limit_dn = constrain_float(actuator_output - output_delta_dn_max, 0.0f, 1.0f); } // Constrain change in output to within the above limits actuator_output = constrain_float(input, output_slew_limit_dn, output_slew_limit_up); } // gradually increase actuator output to spin_min float AP_MotorsMulticopter::actuator_spin_up_to_ground_idle() const { return constrain_float(_spin_up_ratio, 0.0f, 1.0f) * _spin_min; } // get minimum pwm value that can be output to motors int16_t AP_MotorsMulticopter::get_pwm_output_min() const { // return _pwm_min if both PWM_MIN and PWM_MAX parameters are defined and valid if ((_pwm_min > 0) && (_pwm_max > 0) && (_pwm_max > _pwm_min)) { return _pwm_min; } return _throttle_radio_min; } // get maximum pwm value that can be output to motors int16_t AP_MotorsMulticopter::get_pwm_output_max() const { // return _pwm_max if both PWM_MIN and PWM_MAX parameters are defined and valid if ((_pwm_min > 0) && (_pwm_max > 0) && (_pwm_max > _pwm_min)) { return _pwm_max; } return _throttle_radio_max; } // parameter checks for MOT_PWM_MIN/MAX, returns true if parameters are valid bool AP_MotorsMulticopter::check_mot_pwm_params() const { // both must be zero or both non-zero: if (_pwm_min == 0 && _pwm_max != 0) { return false; } if (_pwm_min != 0 && _pwm_max == 0) { return false; } // sanity says that minimum should be less than maximum: if (_pwm_min != 0 && _pwm_min >= _pwm_max) { return false; } // negative values are out-of-range: if (_pwm_min < 0 || _pwm_max < 0) { return false; } return true; } // set_throttle_range - sets the minimum throttle that will be sent to the engines when they're not off (i.e. to prevents issues with some motors spinning and some not at very low throttle) // also sets throttle channel minimum and maximum pwm void AP_MotorsMulticopter::set_throttle_range(int16_t radio_min, int16_t radio_max) { // sanity check if (radio_max <= radio_min) { return; } _throttle_radio_min = radio_min; _throttle_radio_max = radio_max; // if all outputs are digital adjust the range. We also do this for type PWM_RANGE, as those use the // scaled output, which is then mapped to PWM via the SRV_Channel library if (SRV_Channels::have_digital_outputs(get_motor_mask()) || (_pwm_type == PWM_TYPE_PWM_RANGE)) { _pwm_min = 1000; _pwm_max = 2000; } hal.rcout->set_esc_scaling(get_pwm_output_min(), get_pwm_output_max()); } // update the throttle input filter. should be called at 100hz void AP_MotorsMulticopter::update_throttle_hover(float dt) { if (_throttle_hover_learn != HOVER_LEARN_DISABLED) { // we have chosen to constrain the hover throttle to be within the range reachable by the third order expo polynomial. _throttle_hover = constrain_float(_throttle_hover + (dt / (dt + AP_MOTORS_THST_HOVER_TC)) * (get_throttle() - _throttle_hover), AP_MOTORS_THST_HOVER_MIN, AP_MOTORS_THST_HOVER_MAX); } } // run spool logic void AP_MotorsMulticopter::output_logic() { if (armed()) { if (_disarm_disable_pwm && (_disarm_safe_timer < _safe_time)) { _disarm_safe_timer += 1.0f/_loop_rate; } else { _disarm_safe_timer = _safe_time; } } else { _disarm_safe_timer = 0.0f; } // force desired and current spool mode if disarmed or not interlocked if (!armed() || !get_interlock()) { _spool_desired = DesiredSpoolState::SHUT_DOWN; _spool_state = SpoolState::SHUT_DOWN; } if (_spool_up_time < 0.05) { // prevent float exception _spool_up_time.set(0.05); } switch (_spool_state) { case SpoolState::SHUT_DOWN: // Motors should be stationary. // Servos set to their trim values or in a test condition. // set limits flags limit.roll = true; limit.pitch = true; limit.yaw = true; limit.throttle_lower = true; limit.throttle_upper = true; // make sure the motors are spooling in the correct direction if (_spool_desired != DesiredSpoolState::SHUT_DOWN && _disarm_safe_timer >= _safe_time.get()) { _spool_state = SpoolState::GROUND_IDLE; break; } // set and increment ramp variables _spin_up_ratio = 0.0f; _throttle_thrust_max = 0.0f; // initialise motor failure variables _thrust_boost = false; _thrust_boost_ratio = 0.0f; break; case SpoolState::GROUND_IDLE: { // Motors should be stationary or at ground idle. // Servos should be moving to correct the current attitude. // set limits flags limit.roll = true; limit.pitch = true; limit.yaw = true; limit.throttle_lower = true; limit.throttle_upper = true; // set and increment ramp variables float spool_step = 1.0f / (_spool_up_time * _loop_rate); switch (_spool_desired) { case DesiredSpoolState::SHUT_DOWN: _spin_up_ratio -= spool_step; // constrain ramp value and update mode if (_spin_up_ratio <= 0.0f) { _spin_up_ratio = 0.0f; _spool_state = SpoolState::SHUT_DOWN; } break; case DesiredSpoolState::THROTTLE_UNLIMITED: _spin_up_ratio += spool_step; // constrain ramp value and update mode if (_spin_up_ratio >= 1.0f) { _spin_up_ratio = 1.0f; _spool_state = SpoolState::SPOOLING_UP; } break; case DesiredSpoolState::GROUND_IDLE: float spin_up_armed_ratio = 0.0f; if (_spin_min > 0.0f) { spin_up_armed_ratio = _spin_arm / _spin_min; } _spin_up_ratio += constrain_float(spin_up_armed_ratio - _spin_up_ratio, -spool_step, spool_step); break; } _throttle_thrust_max = 0.0f; // initialise motor failure variables _thrust_boost = false; _thrust_boost_ratio = 0.0f; break; } case SpoolState::SPOOLING_UP: // Maximum throttle should move from minimum to maximum. // Servos should exhibit normal flight behavior. // initialize limits flags limit.roll = false; limit.pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; // make sure the motors are spooling in the correct direction if (_spool_desired != DesiredSpoolState::THROTTLE_UNLIMITED) { _spool_state = SpoolState::SPOOLING_DOWN; break; } // set and increment ramp variables _spin_up_ratio = 1.0f; _throttle_thrust_max += 1.0f / (_spool_up_time * _loop_rate); // constrain ramp value and update mode if (_throttle_thrust_max >= MIN(get_throttle(), get_current_limit_max_throttle())) { _throttle_thrust_max = get_current_limit_max_throttle(); _spool_state = SpoolState::THROTTLE_UNLIMITED; } else if (_throttle_thrust_max < 0.0f) { _throttle_thrust_max = 0.0f; } // initialise motor failure variables _thrust_boost = false; _thrust_boost_ratio = MAX(0.0, _thrust_boost_ratio - 1.0 / (_spool_up_time * _loop_rate)); break; case SpoolState::THROTTLE_UNLIMITED: // Throttle should exhibit normal flight behavior. // Servos should exhibit normal flight behavior. // initialize limits flags limit.roll = false; limit.pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; // make sure the motors are spooling in the correct direction if (_spool_desired != DesiredSpoolState::THROTTLE_UNLIMITED) { _spool_state = SpoolState::SPOOLING_DOWN; break; } // set and increment ramp variables _spin_up_ratio = 1.0f; _throttle_thrust_max = get_current_limit_max_throttle(); if (_thrust_boost && !_thrust_balanced) { _thrust_boost_ratio = MIN(1.0, _thrust_boost_ratio + 1.0f / (_spool_up_time * _loop_rate)); } else { _thrust_boost_ratio = MAX(0.0, _thrust_boost_ratio - 1.0f / (_spool_up_time * _loop_rate)); } break; case SpoolState::SPOOLING_DOWN: // Maximum throttle should move from maximum to minimum. // Servos should exhibit normal flight behavior. // initialize limits flags limit.roll = false; limit.pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; // make sure the motors are spooling in the correct direction if (_spool_desired == DesiredSpoolState::THROTTLE_UNLIMITED) { _spool_state = SpoolState::SPOOLING_UP; break; } // set and increment ramp variables _spin_up_ratio = 1.0f; _throttle_thrust_max -= 1.0f / (_spool_up_time * _loop_rate); // constrain ramp value and update mode if (_throttle_thrust_max <= 0.0f) { _throttle_thrust_max = 0.0f; } if (_throttle_thrust_max >= get_current_limit_max_throttle()) { _throttle_thrust_max = get_current_limit_max_throttle(); } else if (is_zero(_throttle_thrust_max)) { _spool_state = SpoolState::GROUND_IDLE; } _thrust_boost_ratio = MAX(0.0, _thrust_boost_ratio - 1.0f / (_spool_up_time * _loop_rate)); break; } } // passes throttle directly to all motors for ESC calibration. // throttle_input is in the range of 0 ~ 1 where 0 will send get_pwm_output_min() and 1 will send get_pwm_output_max() void AP_MotorsMulticopter::set_throttle_passthrough_for_esc_calibration(float throttle_input) { if (armed()) { uint16_t pwm_out = get_pwm_output_min() + constrain_float(throttle_input, 0.0f, 1.0f) * (get_pwm_output_max() - get_pwm_output_min()); // send the pilot's input directly to each enabled motor for (uint16_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { rc_write(i, pwm_out); } } // send pwm output to channels used by bicopter SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, pwm_out); SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, pwm_out); } } // output a thrust to all motors that match a given motor mask. This // is used to control tiltrotor motors in forward flight. Thrust is in // the range 0 to 1 void AP_MotorsMulticopter::output_motor_mask(float thrust, uint8_t mask, float rudder_dt) { const int16_t pwm_min = get_pwm_output_min(); const int16_t pwm_range = get_pwm_output_max() - pwm_min; for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { if ((mask & (1U << i)) && armed()) { /* apply rudder mixing differential thrust copter frame roll is plane frame yaw as this only apples to either tilted motors or tailsitters */ float diff_thrust = get_roll_factor(i) * rudder_dt * 0.5f; set_actuator_with_slew(_actuator[i], thrust + diff_thrust); int16_t pwm_output = pwm_min + pwm_range * _actuator[i]; rc_write(i, pwm_output); } else { rc_write(i, pwm_min); } } } } // get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t AP_MotorsMulticopter::get_motor_mask() { return SRV_Channels::get_output_channel_mask(SRV_Channel::k_boost_throttle); } // save parameters as part of disarming void AP_MotorsMulticopter::save_params_on_disarm() { // save hover throttle if (_throttle_hover_learn == HOVER_LEARN_AND_SAVE) { _throttle_hover.save(); } }