/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define THISFIRMWARE "ArduCopter V3.2-dev"
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* ArduCopter Version 3.0
* Creator: Jason Short
* Lead Developer: Randy Mackay
* Lead Tester: Marco Robustini
* Based on code and ideas from the Arducopter team: Leonard Hall, Andrew Tridgell, Robert Lefebvre, Pat Hickey, Michael Oborne, Jani Hirvinen,
Olivier Adler, Kevin Hester, Arthur Benemann, Jonathan Challinger, John Arne Birkeland,
Jean-Louis Naudin, Mike Smith, and more
* Thanks to: Chris Anderson, Jordi Munoz, Jason Short, Doug Weibel, Jose Julio
*
* Special Thanks to contributors (in alphabetical order by first name):
*
* Adam M Rivera :Auto Compass Declination
* Amilcar Lucas :Camera mount library
* Andrew Tridgell :General development, Mavlink Support
* Angel Fernandez :Alpha testing
* AndreasAntonopoulous:GeoFence
* Arthur Benemann :DroidPlanner GCS
* Benjamin Pelletier :Libraries
* Bill King :Single Copter
* Christof Schmid :Alpha testing
* Craig Elder :Release Management, Support
* Dani Saez :V Octo Support
* Doug Weibel :DCM, Libraries, Control law advice
* Gregory Fletcher :Camera mount orientation math
* Guntars :Arming safety suggestion
* HappyKillmore :Mavlink GCS
* Hein Hollander :Octo Support, Heli Testing
* Igor van Airde :Control Law optimization
* Jack Dunkle :Alpha testing
* James Goppert :Mavlink Support
* Jani Hiriven :Testing feedback
* Jean-Louis Naudin :Auto Landing
* John Arne Birkeland :PPM Encoder
* Jose Julio :Stabilization Control laws, MPU6k driver
* Julian Oes :Pixhawk
* Jonathan Challinger :Inertial Navigation, CompassMot, Spin-When-Armed
* Kevin Hester :Andropilot GCS
* Max Levine :Tri Support, Graphics
* Leonard Hall :Flight Dynamics, Throttle, Loiter and Navigation Controllers
* Marco Robustini :Lead tester
* Michael Oborne :Mission Planner GCS
* Mike Smith :Pixhawk driver, coding support
* Olivier Adler :PPM Encoder, piezo buzzer
* Pat Hickey :Hardware Abstraaction Layer (HAL)
* Robert Lefebvre :Heli Support, Copter LEDs
* Roberto Navoni :Library testing, Porting to VRBrain
* Sandro Benigno :Camera support, MinimOSD
* ..and many more.
*
* Code commit statistics can be found here: https://github.com/diydrones/ardupilot/graphs/contributors
* Wiki: http://copter.ardupilot.com/
* Requires modified version of Arduino, which can be found here: http://ardupilot.com/downloads/?category=6
*
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
#include
#include
#include
// Common dependencies
#include
#include
#include
#include
// AP_HAL
#include
#include
#include
#include
#include
#include
#include
// Application dependencies
#include // MAVLink GCS definitions
#include // ArduPilot GPS library
#include // GPS glitch protection library
#include // ArduPilot Mega Flash Memory Library
#include // ArduPilot Mega Analog to Digital Converter Library
#include
#include
#include // ArduPilot Mega Magnetometer Library
#include // ArduPilot Mega Vector/Matrix math Library
#include // Curve used to linearlise throttle pwm to thrust
#include // ArduPilot Mega Inertial Sensor (accel & gyro) Library
#include
#include // PI library
#include // PID library
#include // Attitude control library
#include // Position control library
#include // RC Channel Library
#include // AP Motors library
#include // Range finder library
#include // Optical Flow library
#include // Filter library
#include // APM FIFO Buffer
#include // APM relay
#include
#include // Photo or video camera
#include // Camera/Antenna mount
#include // needed for AHRS build
#include // needed for AHRS build
#include // ArduPilot Mega inertial navigation library
#include // ArduCopter waypoint navigation library
#include // ArduPilot Mega Declination Helper Library
#include // Arducopter Fence library
#include // software in the loop support
#include // main loop scheduler
#include // RC input mapping library
#include // Notify library
#include // Battery monitor library
#include // board configuration library
#if SPRAYER == ENABLED
#include // crop sprayer library
#endif
#if EPM_ENABLED == ENABLED
#include // EPM cargo gripper stuff
#endif
// AP_HAL to Arduino compatibility layer
#include "compat.h"
// Configuration
#include "defines.h"
#include "config.h"
#include "config_channels.h"
// key aircraft parameters passed to multiple libraries
static AP_Vehicle::MultiCopter aparm;
// Local modules
#include "Parameters.h"
#include "GCS.h"
////////////////////////////////////////////////////////////////////////////////
// cliSerial
////////////////////////////////////////////////////////////////////////////////
// cliSerial isn't strictly necessary - it is an alias for hal.console. It may
// be deprecated in favor of hal.console in later releases.
static AP_HAL::BetterStream* cliSerial;
// N.B. we need to keep a static declaration which isn't guarded by macros
// at the top to cooperate with the prototype mangler.
////////////////////////////////////////////////////////////////////////////////
// AP_HAL instance
////////////////////////////////////////////////////////////////////////////////
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
////////////////////////////////////////////////////////////////////////////////
// Parameters
////////////////////////////////////////////////////////////////////////////////
//
// Global parameters are all contained within the 'g' class.
//
static Parameters g;
// main loop scheduler
static AP_Scheduler scheduler;
// AP_Notify instance
static AP_Notify notify;
////////////////////////////////////////////////////////////////////////////////
// prototypes
////////////////////////////////////////////////////////////////////////////////
static void update_events(void);
static void print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode);
////////////////////////////////////////////////////////////////////////////////
// Dataflash
////////////////////////////////////////////////////////////////////////////////
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
static DataFlash_APM2 DataFlash;
#elif CONFIG_HAL_BOARD == HAL_BOARD_APM1
static DataFlash_APM1 DataFlash;
#elif CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
static DataFlash_File DataFlash("logs");
//static DataFlash_SITL DataFlash;
#elif CONFIG_HAL_BOARD == HAL_BOARD_PX4
static DataFlash_File DataFlash("/fs/microsd/APM/LOGS");
#elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX
static DataFlash_File DataFlash("logs");
#else
static DataFlash_Empty DataFlash;
#endif
////////////////////////////////////////////////////////////////////////////////
// the rate we run the main loop at
////////////////////////////////////////////////////////////////////////////////
#if MAIN_LOOP_RATE == 400
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_400HZ;
#else
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_100HZ;
#endif
////////////////////////////////////////////////////////////////////////////////
// Sensors
////////////////////////////////////////////////////////////////////////////////
//
// There are three basic options related to flight sensor selection.
//
// - Normal flight mode. Real sensors are used.
// - HIL Attitude mode. Most sensors are disabled, as the HIL
// protocol supplies attitude information directly.
// - HIL Sensors mode. Synthetic sensors are configured that
// supply data from the simulation.
//
// All GPS access should be through this pointer.
static GPS *g_gps;
static GPS_Glitch gps_glitch(g_gps);
// flight modes convenience array
static AP_Int8 *flight_modes = &g.flight_mode1;
#if HIL_MODE == HIL_MODE_DISABLED
#if CONFIG_ADC == ENABLED
static AP_ADC_ADS7844 adc;
#endif
#if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000
static AP_InertialSensor_MPU6000 ins;
#elif CONFIG_IMU_TYPE == CONFIG_IMU_OILPAN
static AP_InertialSensor_Oilpan ins(&adc);
#elif CONFIG_IMU_TYPE == CONFIG_IMU_SITL
static AP_InertialSensor_HIL ins;
#elif CONFIG_IMU_TYPE == CONFIG_IMU_PX4
static AP_InertialSensor_PX4 ins;
#elif CONFIG_IMU_TYPE == CONFIG_IMU_FLYMAPLE
AP_InertialSensor_Flymaple ins;
#elif CONFIG_IMU_TYPE == CONFIG_IMU_L3G4200D
AP_InertialSensor_L3G4200D ins;
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
// When building for SITL we use the HIL barometer and compass drivers
static AP_Baro_HIL barometer;
static AP_Compass_HIL compass;
static SITL sitl;
#else
// Otherwise, instantiate a real barometer and compass driver
#if CONFIG_BARO == AP_BARO_BMP085
static AP_Baro_BMP085 barometer;
#elif CONFIG_BARO == AP_BARO_PX4
static AP_Baro_PX4 barometer;
#elif CONFIG_BARO == AP_BARO_MS5611
#if CONFIG_MS5611_SERIAL == AP_BARO_MS5611_SPI
static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::spi);
#elif CONFIG_MS5611_SERIAL == AP_BARO_MS5611_I2C
static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::i2c);
#else
#error Unrecognized CONFIG_MS5611_SERIAL setting.
#endif
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
static AP_Compass_PX4 compass;
#else
static AP_Compass_HMC5843 compass;
#endif
#endif
// real GPS selection
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
AP_GPS_Auto g_gps_driver(&g_gps);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
AP_GPS_NMEA g_gps_driver;
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
AP_GPS_SIRF g_gps_driver;
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
AP_GPS_UBLOX g_gps_driver;
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
AP_GPS_MTK g_gps_driver;
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK19
AP_GPS_MTK19 g_gps_driver;
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
AP_GPS_None g_gps_driver;
#else
#error Unrecognised GPS_PROTOCOL setting.
#endif // GPS PROTOCOL
static AP_AHRS_DCM ahrs(ins, g_gps);
#elif HIL_MODE == HIL_MODE_SENSORS
// sensor emulators
static AP_ADC_HIL adc;
static AP_Baro_HIL barometer;
static AP_Compass_HIL compass;
static AP_GPS_HIL g_gps_driver;
static AP_InertialSensor_HIL ins;
static AP_AHRS_DCM ahrs(ins, g_gps);
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
// When building for SITL we use the HIL barometer and compass drivers
static SITL sitl;
#endif
#elif HIL_MODE == HIL_MODE_ATTITUDE
static AP_ADC_HIL adc;
static AP_InertialSensor_HIL ins;
static AP_AHRS_HIL ahrs(ins, g_gps);
static AP_GPS_HIL g_gps_driver;
static AP_Compass_HIL compass; // never used
static AP_Baro_HIL barometer;
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
// When building for SITL we use the HIL barometer and compass drivers
static SITL sitl;
#endif
#else
#error Unrecognised HIL_MODE setting.
#endif // HIL MODE
////////////////////////////////////////////////////////////////////////////////
// Optical flow sensor
////////////////////////////////////////////////////////////////////////////////
#if OPTFLOW == ENABLED
static AP_OpticalFlow_ADNS3080 optflow;
#endif
////////////////////////////////////////////////////////////////////////////////
// GCS selection
////////////////////////////////////////////////////////////////////////////////
static const uint8_t num_gcs = MAVLINK_COMM_NUM_BUFFERS;
static GCS_MAVLINK gcs[MAVLINK_COMM_NUM_BUFFERS];
////////////////////////////////////////////////////////////////////////////////
// SONAR selection
////////////////////////////////////////////////////////////////////////////////
//
ModeFilterInt16_Size3 sonar_mode_filter(1);
#if CONFIG_SONAR == ENABLED
static AP_HAL::AnalogSource *sonar_analog_source;
static AP_RangeFinder_MaxsonarXL *sonar;
#endif
////////////////////////////////////////////////////////////////////////////////
// User variables
////////////////////////////////////////////////////////////////////////////////
#ifdef USERHOOK_VARIABLES
#include USERHOOK_VARIABLES
#endif
////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////
/* Radio values
* Channel assignments
* 1 Ailerons (rudder if no ailerons)
* 2 Elevator
* 3 Throttle
* 4 Rudder (if we have ailerons)
* 5 Mode - 3 position switch
* 6 User assignable
* 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
* 8 TBD
* Each Aux channel can be configured to have any of the available auxiliary functions assigned to it.
* See libraries/RC_Channel/RC_Channel_aux.h for more information
*/
//Documentation of GLobals:
static union {
struct {
uint8_t home_is_set : 1; // 0
uint8_t simple_mode : 2; // 1,2 // This is the state of simple mode : 0 = disabled ; 1 = SIMPLE ; 2 = SUPERSIMPLE
uint8_t pre_arm_rc_check : 1; // 3 // true if rc input pre-arm checks have been completed successfully
uint8_t pre_arm_check : 1; // 4 // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed
uint8_t auto_armed : 1; // 5 // stops auto missions from beginning until throttle is raised
uint8_t logging_started : 1; // 6 // true if dataflash logging has started
uint8_t do_flip : 1; // 7 // Used to enable flip code
uint8_t takeoff_complete : 1; // 8
uint8_t land_complete : 1; // 9 // true if we have detected a landing
uint8_t new_radio_frame : 1; // 10 // Set true if we have new PWM data to act on from the Radio
uint8_t CH7_flag : 2; // 11,12 // ch7 aux switch : 0 is low or false, 1 is center or true, 2 is high
uint8_t CH8_flag : 2; // 13,14 // ch8 aux switch : 0 is low or false, 1 is center or true, 2 is high
uint8_t usb_connected : 1; // 15 // true if APM is powered from USB connection
uint8_t yaw_stopped : 1; // 16 // Used to manage the Yaw hold capabilities
uint8_t disable_stab_rate_limit : 1; // 17 // disables limits rate request from the stability controller
uint8_t rc_receiver_present : 1; // 18 // true if we have an rc receiver present (i.e. if we've ever received an update
};
uint32_t value;
} ap;
////////////////////////////////////////////////////////////////////////////////
// Radio
////////////////////////////////////////////////////////////////////////////////
// This is the state of the flight control system
// There are multiple states defined such as STABILIZE, ACRO,
static int8_t control_mode = STABILIZE;
// Used to maintain the state of the previous control switch position
// This is set to -1 when we need to re-read the switch
static uint8_t oldSwitchPosition;
static RCMapper rcmap;
// board specific config
static AP_BoardConfig BoardConfig;
// receiver RSSI
static uint8_t receiver_rssi;
////////////////////////////////////////////////////////////////////////////////
// Failsafe
////////////////////////////////////////////////////////////////////////////////
static struct {
uint8_t rc_override_active : 1; // 0 // true if rc control are overwritten by ground station
uint8_t radio : 1; // 1 // A status flag for the radio failsafe
uint8_t battery : 1; // 2 // A status flag for the battery failsafe
uint8_t gps : 1; // 3 // A status flag for the gps failsafe
uint8_t gcs : 1; // 4 // A status flag for the ground station failsafe
int8_t radio_counter; // number of iterations with throttle below throttle_fs_value
uint32_t last_heartbeat_ms; // the time when the last HEARTBEAT message arrived from a GCS - used for triggering gcs failsafe
} failsafe;
////////////////////////////////////////////////////////////////////////////////
// Motor Output
////////////////////////////////////////////////////////////////////////////////
#if FRAME_CONFIG == QUAD_FRAME
#define MOTOR_CLASS AP_MotorsQuad
#elif FRAME_CONFIG == TRI_FRAME
#define MOTOR_CLASS AP_MotorsTri
#elif FRAME_CONFIG == HEXA_FRAME
#define MOTOR_CLASS AP_MotorsHexa
#elif FRAME_CONFIG == Y6_FRAME
#define MOTOR_CLASS AP_MotorsY6
#elif FRAME_CONFIG == OCTA_FRAME
#define MOTOR_CLASS AP_MotorsOcta
#elif FRAME_CONFIG == OCTA_QUAD_FRAME
#define MOTOR_CLASS AP_MotorsOctaQuad
#elif FRAME_CONFIG == HELI_FRAME
#define MOTOR_CLASS AP_MotorsHeli
#elif FRAME_CONFIG == SINGLE_FRAME
#define MOTOR_CLASS AP_MotorsSingle
#elif FRAME_CONFIG == COAX_FRAME
#define MOTOR_CLASS AP_MotorsCoax
#else
#error Unrecognised frame type
#endif
#if FRAME_CONFIG == HELI_FRAME // helicopter constructor requires more arguments
static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_7, &g.rc_8, &g.heli_servo_1, &g.heli_servo_2, &g.heli_servo_3, &g.heli_servo_4);
#elif FRAME_CONFIG == TRI_FRAME // tri constructor requires additional rc_7 argument to allow tail servo reversing
static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_7);
#elif FRAME_CONFIG == SINGLE_FRAME // single constructor requires extra servos for flaps
static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.single_servo_1, &g.single_servo_2, &g.single_servo_3, &g.single_servo_4);
#elif FRAME_CONFIG == COAX_FRAME // single constructor requires extra servos for flaps
static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.single_servo_1, &g.single_servo_2);
#else
static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4);
#endif
////////////////////////////////////////////////////////////////////////////////
// PIDs
////////////////////////////////////////////////////////////////////////////////
// This is a convienience accessor for the IMU roll rates. It's currently the raw IMU rates
// and not the adjusted omega rates, but the name is stuck
static Vector3f omega;
// This is used to hold radio tuning values for in-flight CH6 tuning
float tuning_value;
////////////////////////////////////////////////////////////////////////////////
// GPS variables
////////////////////////////////////////////////////////////////////////////////
// This is used to scale GPS values for EEPROM storage
// 10^7 times Decimal GPS means 1 == 1cm
// This approximation makes calculations integer and it's easy to read
static const float t7 = 10000000.0;
// We use atan2 and other trig techniques to calaculate angles
// We need to scale the longitude up to make these calcs work
// to account for decreasing distance between lines of longitude away from the equator
static float scaleLongUp = 1;
// Sometimes we need to remove the scaling for distance calcs
static float scaleLongDown = 1;
////////////////////////////////////////////////////////////////////////////////
// Location & Navigation
////////////////////////////////////////////////////////////////////////////////
// This is the angle from the copter to the next waypoint in centi-degrees
static int32_t wp_bearing;
// The original bearing to the next waypoint. used to point the nose of the copter at the next waypoint
static int32_t original_wp_bearing;
// The location of home in relation to the copter in centi-degrees
static int32_t home_bearing;
// distance between plane and home in cm
static int32_t home_distance;
// distance between plane and next waypoint in cm.
static uint32_t wp_distance;
// navigation mode - options include NAV_NONE, NAV_LOITER, NAV_CIRCLE, NAV_WP
static uint8_t nav_mode;
// Register containing the index of the current navigation command in the mission script
static int16_t command_nav_index;
// Register containing the index of the previous navigation command in the mission script
// Used to manage the execution of conditional commands
static uint8_t prev_nav_index;
// Register containing the index of the current conditional command in the mission script
static uint8_t command_cond_index;
// Used to track the required WP navigation information
// options include
// NAV_ALTITUDE - have we reached the desired altitude?
// NAV_LOCATION - have we reached the desired location?
// NAV_DELAY - have we waited at the waypoint the desired time?
static float lon_error, lat_error; // Used to report how many cm we are from the next waypoint or loiter target position
static int16_t control_roll; // desired roll angle of copter in centi-degrees
static int16_t control_pitch; // desired pitch angle of copter in centi-degrees
static uint8_t rtl_state; // records state of rtl (initial climb, returning home, etc)
static uint8_t land_state; // records state of land (flying to location, descending)
////////////////////////////////////////////////////////////////////////////////
// SIMPLE Mode
////////////////////////////////////////////////////////////////////////////////
// Used to track the orientation of the copter for Simple mode. This value is reset at each arming
// or in SuperSimple mode when the copter leaves a 20m radius from home.
static float simple_cos_yaw = 1.0;
static float simple_sin_yaw;
static int32_t super_simple_last_bearing;
static float super_simple_cos_yaw = 1.0;
static float super_simple_sin_yaw;
// Stores initial bearing when armed - initial simple bearing is modified in super simple mode so not suitable
static int32_t initial_armed_bearing;
////////////////////////////////////////////////////////////////////////////////
// Rate contoller targets
////////////////////////////////////////////////////////////////////////////////
static uint8_t rate_targets_frame = EARTH_FRAME; // indicates whether rate targets provided in earth or body frame
static int32_t roll_rate_target_ef;
static int32_t pitch_rate_target_ef;
static int32_t yaw_rate_target_ef;
static int32_t roll_rate_target_bf; // body frame roll rate target
static int32_t pitch_rate_target_bf; // body frame pitch rate target
static int32_t yaw_rate_target_bf; // body frame yaw rate target
////////////////////////////////////////////////////////////////////////////////
// Throttle variables
////////////////////////////////////////////////////////////////////////////////
static int16_t throttle_accel_target_ef; // earth frame throttle acceleration target
static bool throttle_accel_controller_active; // true when accel based throttle controller is active, false when higher level throttle controllers are providing throttle output directly
static float throttle_avg; // g.throttle_cruise as a float
static int16_t desired_climb_rate; // pilot desired climb rate - for logging purposes only
static float target_alt_for_reporting; // target altitude in cm for reporting (logs and ground station)
////////////////////////////////////////////////////////////////////////////////
// ACRO Mode
////////////////////////////////////////////////////////////////////////////////
// Used to control Axis lock
static int32_t acro_roll; // desired roll angle while sport mode
static int32_t acro_roll_rate; // desired roll rate while in acro mode
static int32_t acro_pitch; // desired pitch angle while sport mode
static int32_t acro_pitch_rate; // desired pitch rate while acro mode
static int32_t acro_yaw_rate; // desired yaw rate while acro mode
static float acro_level_mix; // scales back roll, pitch and yaw inversely proportional to input from pilot
// Filters
#if FRAME_CONFIG == HELI_FRAME
//static LowPassFilterFloat rate_roll_filter; // Rate Roll filter
//static LowPassFilterFloat rate_pitch_filter; // Rate Pitch filter
#endif // HELI_FRAME
////////////////////////////////////////////////////////////////////////////////
// Circle Mode / Loiter control
////////////////////////////////////////////////////////////////////////////////
Vector3f circle_center; // circle position expressed in cm from home location. x = lat, y = lon
// angle from the circle center to the copter's desired location. Incremented at circle_rate / second
static float circle_angle;
// the total angle (in radians) travelled
static float circle_angle_total;
// deg : how many times to circle as specified by mission command
static uint8_t circle_desired_rotations;
static float circle_angular_acceleration; // circle mode's angular acceleration
static float circle_angular_velocity; // circle mode's angular velocity
static float circle_angular_velocity_max; // circle mode's max angular velocity
// How long we should stay in Loiter Mode for mission scripting (time in seconds)
static uint16_t loiter_time_max;
// How long have we been loitering - The start time in millis
static uint32_t loiter_time;
////////////////////////////////////////////////////////////////////////////////
// CH7 and CH8 save waypoint control
////////////////////////////////////////////////////////////////////////////////
// This register tracks the current Mission Command index when writing
// a mission using Ch7 or Ch8 aux switches in flight
static int8_t aux_switch_wp_index;
////////////////////////////////////////////////////////////////////////////////
// Battery Sensors
////////////////////////////////////////////////////////////////////////////////
static AP_BattMonitor battery;
////////////////////////////////////////////////////////////////////////////////
// Altitude
////////////////////////////////////////////////////////////////////////////////
// The (throttle) controller desired altitude in cm
static float controller_desired_alt;
// The cm we are off in altitude from next_WP.alt – Positive value means we are below the WP
static int32_t altitude_error;
// The cm/s we are moving up or down based on filtered data - Positive = UP
static int16_t climb_rate;
// The altitude as reported by Sonar in cm – Values are 20 to 700 generally.
static int16_t sonar_alt;
static uint8_t sonar_alt_health; // true if we can trust the altitude from the sonar
static float target_sonar_alt; // desired altitude in cm above the ground
// The altitude as reported by Baro in cm – Values can be quite high
static int32_t baro_alt;
////////////////////////////////////////////////////////////////////////////////
// flight modes
////////////////////////////////////////////////////////////////////////////////
// Flight modes are combinations of Roll/Pitch, Yaw and Throttle control modes
// Each Flight mode is a unique combination of these modes
//
// The current desired control scheme for Yaw
static uint8_t yaw_mode = STABILIZE_YAW;
// The current desired control scheme for roll and pitch / navigation
static uint8_t roll_pitch_mode = STABILIZE_RP;
// The current desired control scheme for altitude hold
static uint8_t throttle_mode = STABILIZE_THR;
////////////////////////////////////////////////////////////////////////////////
// flight specific
////////////////////////////////////////////////////////////////////////////////
// An additional throttle added to keep the copter at the same altitude when banking
static int16_t angle_boost;
// counter to verify landings
static uint16_t land_detector;
////////////////////////////////////////////////////////////////////////////////
// 3D Location vectors
////////////////////////////////////////////////////////////////////////////////
// home location is stored when we have a good GPS lock and arm the copter
// Can be reset each the copter is re-armed
static struct Location home;
// Current location of the copter
static struct Location current_loc;
// Holds the current loaded command from the EEPROM for navigation
static struct Location command_nav_queue;
// Holds the current loaded command from the EEPROM for conditional scripts
static struct Location command_cond_queue;
////////////////////////////////////////////////////////////////////////////////
// Navigation Roll/Pitch functions
////////////////////////////////////////////////////////////////////////////////
// The Commanded ROll from the autopilot based on optical flow sensor.
static int32_t of_roll;
// The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward.
static int32_t of_pitch;
////////////////////////////////////////////////////////////////////////////////
// Navigation Throttle control
////////////////////////////////////////////////////////////////////////////////
// The Commanded Throttle from the autopilot.
static int16_t nav_throttle; // 0-1000 for throttle control
// This is a simple counter to track the amount of throttle used during flight
// This could be useful later in determining and debuging current usage and predicting battery life
static uint32_t throttle_integrator;
////////////////////////////////////////////////////////////////////////////////
// Navigation Yaw control
////////////////////////////////////////////////////////////////////////////////
// The Commanded Yaw from the autopilot.
static int32_t control_yaw;
// Yaw will point at this location if yaw_mode is set to YAW_LOOK_AT_LOCATION
static Vector3f yaw_look_at_WP;
// bearing from current location to the yaw_look_at_WP
static int32_t yaw_look_at_WP_bearing;
// yaw used for YAW_LOOK_AT_HEADING yaw_mode
static int32_t yaw_look_at_heading;
// Deg/s we should turn
static int16_t yaw_look_at_heading_slew;
////////////////////////////////////////////////////////////////////////////////
// Delay Mission Scripting Command
////////////////////////////////////////////////////////////////////////////////
static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
static uint32_t condition_start;
////////////////////////////////////////////////////////////////////////////////
// IMU variables
////////////////////////////////////////////////////////////////////////////////
// Integration time (in seconds) for the gyros (DCM algorithm)
// Updated with the fast loop
static float G_Dt = 0.02;
////////////////////////////////////////////////////////////////////////////////
// Inertial Navigation
////////////////////////////////////////////////////////////////////////////////
static AP_InertialNav inertial_nav(&ahrs, &barometer, g_gps, gps_glitch);
////////////////////////////////////////////////////////////////////////////////
// Attitude, Position and Waypoint navigation objects
// To-Do: move inertial nav up or other navigation variables down here
////////////////////////////////////////////////////////////////////////////////
AC_AttitudeControl attitude_control(ahrs, ins, aparm, motors, g.pi_stabilize_roll, g.pi_stabilize_pitch, g.pi_stabilize_yaw,
g.pid_rate_roll, g.pid_rate_pitch, g.pid_rate_yaw,
g.rc_1.servo_out, g.rc_2.servo_out, g.rc_4.servo_out, g.rc_3.servo_out);
AC_PosControl pos_control(ahrs, inertial_nav, motors, attitude_control,
g.pi_alt_hold, g.pid_throttle_rate, g.pid_throttle_accel,
g.pi_loiter_lat, g.pi_loiter_lon, g.pid_loiter_rate_lat, g.pid_loiter_rate_lon,
g.rc_3.servo_out);
static AC_WPNav wp_nav(&inertial_nav, &ahrs, &g.pi_loiter_lat, &g.pi_loiter_lon, &g.pid_loiter_rate_lat, &g.pid_loiter_rate_lon);
////////////////////////////////////////////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////////////////////////////////////////////
static int16_t pmTest1;
// System Timers
// --------------
// Time in microseconds of main control loop
static uint32_t fast_loopTimer;
// Counter of main loop executions. Used for performance monitoring and failsafe processing
static uint16_t mainLoop_count;
// Loiter timer - Records how long we have been in loiter
static uint32_t rtl_loiter_start_time;
// Used to exit the roll and pitch auto trim function
static uint8_t auto_trim_counter;
// Reference to the relay object (APM1 -> PORTL 2) (APM2 -> PORTB 7)
static AP_Relay relay;
// handle repeated servo and relay events
static AP_ServoRelayEvents ServoRelayEvents(relay);
//Reference to the camera object (it uses the relay object inside it)
#if CAMERA == ENABLED
static AP_Camera camera(&relay);
#endif
// a pin for reading the receiver RSSI voltage.
static AP_HAL::AnalogSource* rssi_analog_source;
#if CLI_ENABLED == ENABLED
static int8_t setup_show (uint8_t argc, const Menu::arg *argv);
#endif
// Camera/Antenna mount tracking and stabilisation stuff
// --------------------------------------
#if MOUNT == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
static AP_Mount camera_mount(¤t_loc, g_gps, ahrs, 0);
#endif
#if MOUNT2 == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
static AP_Mount camera_mount2(¤t_loc, g_gps, ahrs, 1);
#endif
////////////////////////////////////////////////////////////////////////////////
// AC_Fence library to reduce fly-aways
////////////////////////////////////////////////////////////////////////////////
#if AC_FENCE == ENABLED
AC_Fence fence(&inertial_nav);
#endif
////////////////////////////////////////////////////////////////////////////////
// Crop Sprayer
////////////////////////////////////////////////////////////////////////////////
#if SPRAYER == ENABLED
static AC_Sprayer sprayer(&inertial_nav);
#endif
////////////////////////////////////////////////////////////////////////////////
// EPM Cargo Griper
////////////////////////////////////////////////////////////////////////////////
#if EPM_ENABLED == ENABLED
static AP_EPM epm;
#endif
////////////////////////////////////////////////////////////////////////////////
// function definitions to keep compiler from complaining about undeclared functions
////////////////////////////////////////////////////////////////////////////////
void get_throttle_althold(int32_t target_alt, int16_t min_climb_rate, int16_t max_climb_rate);
static void pre_arm_checks(bool display_failure);
////////////////////////////////////////////////////////////////////////////////
// Top-level logic
////////////////////////////////////////////////////////////////////////////////
// setup the var_info table
AP_Param param_loader(var_info, WP_START_BYTE);
#if MAIN_LOOP_RATE == 400
/*
scheduler table for fast CPUs - all regular tasks apart from the fast_loop()
should be listed here, along with how often they should be called
(in 2.5ms units) and the maximum time they are expected to take (in
microseconds)
1 = 400hz
2 = 200hz
4 = 100hz
8 = 50hz
20 = 20hz
40 = 10hz
133 = 3hz
400 = 1hz
4000 = 0.1hz
*/
static const AP_Scheduler::Task scheduler_tasks[] PROGMEM = {
{ rc_loop, 4, 10 },
{ throttle_loop, 8, 45 },
{ update_GPS, 8, 90 },
{ update_nav_mode, 4, 40 },
{ update_batt_compass, 40, 72 },
{ read_aux_switches, 40, 5 },
{ arm_motors_check, 40, 1 },
{ auto_trim, 40, 14 },
{ update_altitude, 40, 100 },
{ run_nav_updates, 40, 80 },
{ three_hz_loop, 133, 9 },
{ compass_accumulate, 8, 42 },
{ barometer_accumulate, 8, 25 },
#if FRAME_CONFIG == HELI_FRAME
{ check_dynamic_flight, 8, 10 },
#endif
{ update_notify, 8, 10 },
{ one_hz_loop, 400, 42 },
{ crash_check, 40, 2 },
{ gcs_check_input, 8, 550 },
{ gcs_send_heartbeat, 400, 150 },
{ gcs_send_deferred, 8, 720 },
{ gcs_data_stream_send, 8, 950 },
#if COPTER_LEDS == ENABLED
{ update_copter_leds, 40, 5 },
#endif
{ update_mount, 8, 45 },
{ ten_hz_logging_loop, 40, 30 },
{ fifty_hz_logging_loop, 2, 22 },
{ perf_update, 4000, 20 },
{ read_receiver_rssi, 40, 5 },
#ifdef USERHOOK_FASTLOOP
{ userhook_FastLoop, 4, 10 },
#endif
#ifdef USERHOOK_50HZLOOP
{ userhook_50Hz, 8, 10 },
#endif
#ifdef USERHOOK_MEDIUMLOOP
{ userhook_MediumLoop, 40, 10 },
#endif
#ifdef USERHOOK_SLOWLOOP
{ userhook_SlowLoop, 120, 10 },
#endif
#ifdef USERHOOK_SUPERSLOWLOOP
{ userhook_SuperSlowLoop,400, 10 },
#endif
};
#else
/*
scheduler table - all regular tasks apart from the fast_loop()
should be listed here, along with how often they should be called
(in 10ms units) and the maximum time they are expected to take (in
microseconds)
*/
static const AP_Scheduler::Task scheduler_tasks[] PROGMEM = {
{ rc_loop, 1, 100 },
{ throttle_loop, 2, 450 },
{ update_GPS, 2, 900 },
{ update_nav_mode, 1, 400 },
{ update_batt_compass, 10, 720 },
{ read_aux_switches, 10, 50 },
{ arm_motors_check, 10, 10 },
{ auto_trim, 10, 140 },
{ update_altitude, 10, 1000 },
{ run_nav_updates, 10, 800 },
{ three_hz_loop, 33, 90 },
{ compass_accumulate, 2, 420 },
{ barometer_accumulate, 2, 250 },
#if FRAME_CONFIG == HELI_FRAME
{ check_dynamic_flight, 2, 100 },
#endif
{ update_notify, 2, 100 },
{ one_hz_loop, 100, 420 },
{ crash_check, 10, 20 },
{ gcs_check_input, 2, 550 },
{ gcs_send_heartbeat, 100, 150 },
{ gcs_send_deferred, 2, 720 },
{ gcs_data_stream_send, 2, 950 },
{ update_mount, 2, 450 },
{ ten_hz_logging_loop, 10, 300 },
{ fifty_hz_logging_loop, 2, 220 },
{ perf_update, 1000, 200 },
{ read_receiver_rssi, 10, 50 },
#ifdef USERHOOK_FASTLOOP
{ userhook_FastLoop, 1, 100 },
#endif
#ifdef USERHOOK_50HZLOOP
{ userhook_50Hz, 2, 100 },
#endif
#ifdef USERHOOK_MEDIUMLOOP
{ userhook_MediumLoop, 10, 100 },
#endif
#ifdef USERHOOK_SLOWLOOP
{ userhook_SlowLoop, 30, 100 },
#endif
#ifdef USERHOOK_SUPERSLOWLOOP
{ userhook_SuperSlowLoop,100, 100 },
#endif
};
#endif
void setup()
{
cliSerial = hal.console;
// Load the default values of variables listed in var_info[]s
AP_Param::setup_sketch_defaults();
init_ardupilot();
// initialise the main loop scheduler
scheduler.init(&scheduler_tasks[0], sizeof(scheduler_tasks)/sizeof(scheduler_tasks[0]));
}
/*
if the compass is enabled then try to accumulate a reading
*/
static void compass_accumulate(void)
{
if (g.compass_enabled) {
compass.accumulate();
}
}
/*
try to accumulate a baro reading
*/
static void barometer_accumulate(void)
{
barometer.accumulate();
}
static void perf_update(void)
{
if (g.log_bitmask & MASK_LOG_PM)
Log_Write_Performance();
if (scheduler.debug()) {
cliSerial->printf_P(PSTR("PERF: %u/%u %lu\n"),
(unsigned)perf_info_get_num_long_running(),
(unsigned)perf_info_get_num_loops(),
(unsigned long)perf_info_get_max_time());
}
perf_info_reset();
pmTest1 = 0;
}
void loop()
{
// wait for an INS sample
if (!ins.wait_for_sample(1000)) {
Log_Write_Error(ERROR_SUBSYSTEM_MAIN, ERROR_CODE_MAIN_INS_DELAY);
return;
}
uint32_t timer = micros();
// check loop time
perf_info_check_loop_time(timer - fast_loopTimer);
// used by PI Loops
G_Dt = (float)(timer - fast_loopTimer) / 1000000.f;
fast_loopTimer = timer;
// for mainloop failure monitoring
mainLoop_count++;
// Execute the fast loop
// ---------------------
fast_loop();
// tell the scheduler one tick has passed
scheduler.tick();
// run all the tasks that are due to run. Note that we only
// have to call this once per loop, as the tasks are scheduled
// in multiples of the main loop tick. So if they don't run on
// the first call to the scheduler they won't run on a later
// call until scheduler.tick() is called again
uint32_t time_available = (timer + MAIN_LOOP_MICROS) - micros();
scheduler.run(time_available);
}
// Main loop - 100hz
static void fast_loop()
{
// IMU DCM Algorithm
// --------------------
read_AHRS();
// Acrobatic control
if (ap.do_flip) {
if(abs(g.rc_1.control_in) < 4000) {
// calling roll_flip will override the desired roll rate and throttle output
roll_flip();
}else{
// force an exit from the loop if we are not hands off sticks.
ap.do_flip = false;
Log_Write_Event(DATA_EXIT_FLIP);
}
}
// run low level rate controllers that only require IMU data
attitude_control.rate_controller_run();
// write out the servo PWM values
// ------------------------------
set_servos_4();
// Inertial Nav
// --------------------
read_inertia();
// optical flow
// --------------------
#if OPTFLOW == ENABLED
if(g.optflow_enabled) {
update_optical_flow();
}
#endif // OPTFLOW == ENABLED
}
// rc_loops - reads user input from transmitter/receiver
// called at 100hz
static void rc_loop()
{
// Read radio and 3-position switch on radio
// -----------------------------------------
read_radio();
read_control_switch();
// run the attitude controllers
update_flight_mode();
}
// throttle_loop - should be run at 50 hz
// ---------------------------
static void throttle_loop()
{
// get altitude and climb rate from inertial lib
read_inertial_altitude();
// check if we've landed
update_land_detector();
// check auto_armed status
update_auto_armed();
#if FRAME_CONFIG == HELI_FRAME
// update rotor speed
heli_update_rotor_speed_targets();
// update trad heli swash plate movement
heli_update_landing_swash();
#endif
}
// update_mount - update camera mount position
// should be run at 50hz
static void update_mount()
{
#if MOUNT == ENABLED
// update camera mount's position
camera_mount.update_mount_position();
#endif
#if MOUNT2 == ENABLED
// update camera mount's position
camera_mount2.update_mount_position();
#endif
#if CAMERA == ENABLED
camera.trigger_pic_cleanup();
#endif
}
// update_batt_compass - read battery and compass
// should be called at 10hz
static void update_batt_compass(void)
{
// read battery before compass because it may be used for motor interference compensation
read_battery();
#if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode
if(g.compass_enabled) {
if (compass.read()) {
compass.null_offsets();
}
// log compass information
if (g.log_bitmask & MASK_LOG_COMPASS) {
Log_Write_Compass();
}
}
#endif
// record throttle output
throttle_integrator += g.rc_3.servo_out;
}
// ten_hz_logging_loop
// should be run at 10hz
static void ten_hz_logging_loop()
{
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) {
Log_Write_Attitude();
}
if (g.log_bitmask & MASK_LOG_RCIN) {
DataFlash.Log_Write_RCIN();
}
if (g.log_bitmask & MASK_LOG_RCOUT) {
DataFlash.Log_Write_RCOUT();
}
}
// fifty_hz_logging_loop
// should be run at 50hz
static void fifty_hz_logging_loop()
{
#if HIL_MODE != HIL_MODE_DISABLED
// HIL for a copter needs very fast update of the servo values
gcs_send_message(MSG_RADIO_OUT);
#endif
#if HIL_MODE == HIL_MODE_DISABLED
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) {
Log_Write_Attitude();
}
if (g.log_bitmask & MASK_LOG_IMU) {
DataFlash.Log_Write_IMU(ins);
}
#endif
}
// three_hz_loop - 3.3hz loop
static void three_hz_loop()
{
// check if we've lost contact with the ground station
failsafe_gcs_check();
#if AC_FENCE == ENABLED
// check if we have breached a fence
fence_check();
#endif // AC_FENCE_ENABLED
#if SPRAYER == ENABLED
sprayer.update();
#endif
update_events();
if(g.radio_tuning > 0)
tuning();
}
// one_hz_loop - runs at 1Hz
static void one_hz_loop()
{
if (g.log_bitmask != 0) {
Log_Write_Data(DATA_AP_STATE, ap.value);
}
// pass latest alt hold kP value to navigation controller
wp_nav.set_althold_kP(g.pi_alt_hold.kP());
// update latest lean angle to navigation controller
wp_nav.set_lean_angle_max(aparm.angle_max);
// log battery info to the dataflash
if (g.log_bitmask & MASK_LOG_CURRENT) {
Log_Write_Current();
}
// perform pre-arm checks & display failures every 30 seconds
static uint8_t pre_arm_display_counter = 15;
pre_arm_display_counter++;
if (pre_arm_display_counter >= 30) {
pre_arm_checks(true);
pre_arm_display_counter = 0;
}else{
pre_arm_checks(false);
}
// auto disarm checks
auto_disarm_check();
if (!motors.armed()) {
// make it possible to change ahrs orientation at runtime during initial config
ahrs.set_orientation();
// check the user hasn't updated the frame orientation
motors.set_frame_orientation(g.frame_orientation);
}
// update assigned functions and enable auxiliar servos
RC_Channel_aux::enable_aux_servos();
#if MOUNT == ENABLED
camera_mount.update_mount_type();
#endif
#if MOUNT2 == ENABLED
camera_mount2.update_mount_type();
#endif
check_usb_mux();
}
// called at 100hz but data from sensor only arrives at 20 Hz
#if OPTFLOW == ENABLED
static void update_optical_flow(void)
{
static uint32_t last_of_update = 0;
static uint8_t of_log_counter = 0;
// if new data has arrived, process it
if( optflow.last_update != last_of_update ) {
last_of_update = optflow.last_update;
optflow.update_position(ahrs.roll, ahrs.pitch, ahrs.sin_yaw(), ahrs.cos_yaw(), current_loc.alt); // updates internal lon and lat with estimation based on optical flow
// write to log at 5hz
of_log_counter++;
if( of_log_counter >= 4 ) {
of_log_counter = 0;
if (g.log_bitmask & MASK_LOG_OPTFLOW) {
Log_Write_Optflow();
}
}
}
}
#endif // OPTFLOW == ENABLED
// called at 50hz
static void update_GPS(void)
{
static uint32_t last_gps_reading; // time of last gps message
static uint8_t ground_start_count = 10; // counter used to grab at least 10 reads before commiting the Home location
bool report_gps_glitch;
g_gps->update();
// logging and glitch protection run after every gps message
if (g_gps->last_message_time_ms() != last_gps_reading) {
last_gps_reading = g_gps->last_message_time_ms();
// log GPS message
if (g.log_bitmask & MASK_LOG_GPS) {
DataFlash.Log_Write_GPS(g_gps, current_loc.alt);
}
// run glitch protection and update AP_Notify if home has been initialised
if (ap.home_is_set) {
gps_glitch.check_position();
report_gps_glitch = (gps_glitch.glitching() && !ap.usb_connected);
if (AP_Notify::flags.gps_glitching != report_gps_glitch) {
if (gps_glitch.glitching()) {
Log_Write_Error(ERROR_SUBSYSTEM_GPS, ERROR_CODE_GPS_GLITCH);
}else{
Log_Write_Error(ERROR_SUBSYSTEM_GPS, ERROR_CODE_ERROR_RESOLVED);
}
AP_Notify::flags.gps_glitching = report_gps_glitch;
}
}
}
// checks to initialise home and take location based pictures
if (g_gps->new_data && g_gps->status() >= GPS::GPS_OK_FIX_3D) {
// clear new data flag
g_gps->new_data = false;
// check if we can initialise home yet
if (!ap.home_is_set) {
// if we have a 3d lock and valid location
if(g_gps->status() >= GPS::GPS_OK_FIX_3D && g_gps->latitude != 0) {
if( ground_start_count > 0 ) {
ground_start_count--;
}else{
// after 10 successful reads store home location
// ap.home_is_set will be true so this will only happen once
ground_start_count = 0;
init_home();
// set system clock for log timestamps
hal.util->set_system_clock(g_gps->time_epoch_usec());
if (g.compass_enabled) {
// Set compass declination automatically
compass.set_initial_location(g_gps->latitude, g_gps->longitude);
}
}
}else{
// start again if we lose 3d lock
ground_start_count = 10;
}
}
#if CAMERA == ENABLED
if (camera.update_location(current_loc) == true) {
do_take_picture();
}
#endif
}
// check for loss of gps
failsafe_gps_check();
}
// set_yaw_mode - update yaw mode and initialise any variables required
bool set_yaw_mode(uint8_t new_yaw_mode)
{
// boolean to ensure proper initialisation of throttle modes
bool yaw_initialised = false;
// return immediately if no change
if( new_yaw_mode == yaw_mode ) {
return true;
}
switch( new_yaw_mode ) {
case YAW_HOLD:
yaw_initialised = true;
break;
case YAW_ACRO:
yaw_initialised = true;
acro_yaw_rate = 0;
break;
case YAW_LOOK_AT_NEXT_WP:
if( ap.home_is_set ) {
yaw_initialised = true;
}
break;
case YAW_LOOK_AT_LOCATION:
if( ap.home_is_set ) {
// update bearing - assumes yaw_look_at_WP has been intialised before set_yaw_mode was called
yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), yaw_look_at_WP);
yaw_initialised = true;
}
break;
case YAW_CIRCLE:
if( ap.home_is_set ) {
// set yaw to point to center of circle
yaw_look_at_WP = circle_center;
// initialise bearing to current heading
yaw_look_at_WP_bearing = ahrs.yaw_sensor;
yaw_initialised = true;
}
break;
case YAW_LOOK_AT_HEADING:
yaw_initialised = true;
break;
case YAW_LOOK_AT_HOME:
if( ap.home_is_set ) {
yaw_initialised = true;
}
break;
case YAW_LOOK_AHEAD:
if( ap.home_is_set ) {
yaw_initialised = true;
}
break;
case YAW_DRIFT:
yaw_initialised = true;
break;
case YAW_RESETTOARMEDYAW:
control_yaw = ahrs.yaw_sensor; // store current yaw so we can start rotating back to correct one
yaw_initialised = true;
break;
}
// if initialisation has been successful update the yaw mode
if( yaw_initialised ) {
yaw_mode = new_yaw_mode;
}
// return success or failure
return yaw_initialised;
}
// update_yaw_mode - run high level yaw controllers
// 100hz update rate
void update_yaw_mode(void)
{
int16_t pilot_yaw = g.rc_4.control_in;
// do not process pilot's yaw input during radio failsafe
if (failsafe.radio) {
pilot_yaw = 0;
}
switch(yaw_mode) {
case YAW_HOLD:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
control_yaw = ahrs.yaw_sensor;
}
// heading hold at heading held in control_yaw but allow input from pilot
get_yaw_rate_stabilized_ef(pilot_yaw);
break;
case YAW_ACRO:
// pilot controlled yaw using rate controller
get_yaw_rate_stabilized_bf(pilot_yaw);
break;
case YAW_LOOK_AT_NEXT_WP:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
control_yaw = ahrs.yaw_sensor;
}else{
// point towards next waypoint (no pilot input accepted)
// we don't use wp_bearing because we don't want the copter to turn too much during flight
control_yaw = get_yaw_slew(control_yaw, original_wp_bearing, AUTO_YAW_SLEW_RATE);
}
get_stabilize_yaw(control_yaw);
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
if (pilot_yaw != 0) {
set_yaw_mode(YAW_HOLD);
}
break;
case YAW_LOOK_AT_LOCATION:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
control_yaw = ahrs.yaw_sensor;
}
// point towards a location held in yaw_look_at_WP
get_look_at_yaw();
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
if (pilot_yaw != 0) {
set_yaw_mode(YAW_HOLD);
}
break;
case YAW_CIRCLE:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
control_yaw = ahrs.yaw_sensor;
}
// points toward the center of the circle or does a panorama
get_circle_yaw();
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
if (pilot_yaw != 0) {
set_yaw_mode(YAW_HOLD);
}
break;
case YAW_LOOK_AT_HOME:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
control_yaw = ahrs.yaw_sensor;
}else{
// keep heading always pointing at home with no pilot input allowed
control_yaw = get_yaw_slew(control_yaw, home_bearing, AUTO_YAW_SLEW_RATE);
}
get_stabilize_yaw(control_yaw);
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
if (pilot_yaw != 0) {
set_yaw_mode(YAW_HOLD);
}
break;
case YAW_LOOK_AT_HEADING:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
control_yaw = ahrs.yaw_sensor;
}else{
// keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed
control_yaw = get_yaw_slew(control_yaw, yaw_look_at_heading, yaw_look_at_heading_slew);
}
get_stabilize_yaw(control_yaw);
break;
case YAW_LOOK_AHEAD:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
control_yaw = ahrs.yaw_sensor;
}
// Commanded Yaw to automatically look ahead.
get_look_ahead_yaw(pilot_yaw);
break;
case YAW_DRIFT:
// if we have landed reset yaw target to current heading
if (ap.land_complete) {
control_yaw = ahrs.yaw_sensor;
}
get_yaw_drift();
break;
case YAW_RESETTOARMEDYAW:
// if we are landed reset yaw target to current heading
if (ap.land_complete) {
control_yaw = ahrs.yaw_sensor;
}else{
// changes yaw to be same as when quad was armed
control_yaw = get_yaw_slew(control_yaw, initial_armed_bearing, AUTO_YAW_SLEW_RATE);
}
get_stabilize_yaw(control_yaw);
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
if (pilot_yaw != 0) {
set_yaw_mode(YAW_HOLD);
}
break;
}
}
// get yaw mode based on WP_YAW_BEHAVIOR parameter
// set rtl parameter to true if this is during an RTL
uint8_t get_wp_yaw_mode(bool rtl)
{
switch (g.wp_yaw_behavior) {
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP:
return YAW_LOOK_AT_NEXT_WP;
break;
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP_EXCEPT_RTL:
if( rtl ) {
return YAW_HOLD;
}else{
return YAW_LOOK_AT_NEXT_WP;
}
break;
case WP_YAW_BEHAVIOR_LOOK_AHEAD:
return YAW_LOOK_AHEAD;
break;
default:
return YAW_HOLD;
break;
}
}
// set_roll_pitch_mode - update roll/pitch mode and initialise any variables as required
bool set_roll_pitch_mode(uint8_t new_roll_pitch_mode)
{
// boolean to ensure proper initialisation of throttle modes
bool roll_pitch_initialised = false;
// return immediately if no change
if( new_roll_pitch_mode == roll_pitch_mode ) {
return true;
}
switch( new_roll_pitch_mode ) {
case ROLL_PITCH_STABLE:
reset_roll_pitch_in_filters(g.rc_1.control_in, g.rc_2.control_in);
roll_pitch_initialised = true;
break;
case ROLL_PITCH_ACRO:
// reset acro level rates
acro_roll_rate = 0;
acro_pitch_rate = 0;
roll_pitch_initialised = true;
break;
case ROLL_PITCH_STABLE_OF:
case ROLL_PITCH_DRIFT:
reset_roll_pitch_in_filters(g.rc_1.control_in, g.rc_2.control_in);
roll_pitch_initialised = true;
break;
case ROLL_PITCH_AUTO:
case ROLL_PITCH_LOITER:
case ROLL_PITCH_SPORT:
roll_pitch_initialised = true;
break;
#if AUTOTUNE == ENABLED
case ROLL_PITCH_AUTOTUNE:
// only enter autotune mode from stabilized roll-pitch mode when armed and flying
if (roll_pitch_mode == ROLL_PITCH_STABLE && motors.armed() && !ap.land_complete) {
reset_roll_pitch_in_filters(g.rc_1.control_in, g.rc_2.control_in);
// auto_tune_start returns true if it wants the roll-pitch mode changed to autotune
roll_pitch_initialised = auto_tune_start();
}
break;
#endif
}
// if initialisation has been successful update the yaw mode
if( roll_pitch_initialised ) {
exit_roll_pitch_mode(roll_pitch_mode);
roll_pitch_mode = new_roll_pitch_mode;
}
// return success or failure
return roll_pitch_initialised;
}
// exit_roll_pitch_mode - peforms any code required when exiting the current roll-pitch mode
void exit_roll_pitch_mode(uint8_t old_roll_pitch_mode)
{
#if AUTOTUNE == ENABLED
if (old_roll_pitch_mode == ROLL_PITCH_AUTOTUNE) {
auto_tune_stop();
}
#endif
}
// update_flight_mode - calls the appropriate attitude controllers based on flight mode
// called at 100hz or more
static void update_flight_mode()
{
switch (control_mode) {
case ACRO:
acro_run();
break;
case STABILIZE:
stabilize_run();
break;
case ALT_HOLD:
althold_run();
break;
case AUTO:
auto_run();
break;
case CIRCLE:
circle_run();
break;
case LOITER:
loiter_run();
break;
case GUIDED:
guided_run();
break;
case LAND:
land_run();
break;
case RTL:
rtl_run();
break;
case OF_LOITER:
ofloiter_run();
break;
case DRIFT:
drift_run();
break;
case SPORT:
sport_run();
break;
}
}
// update_roll_pitch_mode - run high level roll and pitch controllers
// 100hz update rate
void update_roll_pitch_mode(void)
{
switch(roll_pitch_mode) {
case ROLL_PITCH_ACRO:
// copy user input for reporting purposes
control_roll = g.rc_1.control_in;
control_pitch = g.rc_2.control_in;
#if FRAME_CONFIG == HELI_FRAME
// ACRO does not get SIMPLE mode ability
if (motors.has_flybar()) {
g.rc_1.servo_out = g.rc_1.control_in;
g.rc_2.servo_out = g.rc_2.control_in;
}else{
acro_level_mix = constrain_float(1-max(max(abs(g.rc_1.control_in), abs(g.rc_2.control_in)), abs(g.rc_4.control_in))/4500.0, 0, 1)*ahrs.cos_pitch();
get_roll_rate_stabilized_bf(g.rc_1.control_in);
get_pitch_rate_stabilized_bf(g.rc_2.control_in);
get_acro_level_rates();
}
#else // !HELI_FRAME
acro_level_mix = constrain_float(1-max(max(abs(g.rc_1.control_in), abs(g.rc_2.control_in)), abs(g.rc_4.control_in))/4500.0, 0, 1)*ahrs.cos_pitch();
get_roll_rate_stabilized_bf(g.rc_1.control_in);
get_pitch_rate_stabilized_bf(g.rc_2.control_in);
get_acro_level_rates();
#endif // HELI_FRAME
break;
case ROLL_PITCH_AUTO:
// copy latest output from nav controller to stabilize controller
control_roll = wp_nav.get_desired_roll();
control_pitch = wp_nav.get_desired_pitch();
get_stabilize_roll(control_roll);
get_stabilize_pitch(control_pitch);
break;
case ROLL_PITCH_STABLE_OF:
// apply SIMPLE mode transform
update_simple_mode();
// convert pilot input to lean angles
get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, control_roll, control_pitch);
// mix in user control with optical flow
control_roll = get_of_roll(control_roll);
control_pitch = get_of_pitch(control_pitch);
// call stabilize controller
get_stabilize_roll(control_roll);
get_stabilize_pitch(control_pitch);
break;
case ROLL_PITCH_DRIFT:
get_roll_pitch_drift();
break;
case ROLL_PITCH_LOITER:
// apply SIMPLE mode transform
update_simple_mode();
// update loiter target from user controls
wp_nav.move_loiter_target(g.rc_1.control_in, g.rc_2.control_in, 0.01f);
// copy latest output from nav controller to stabilize controller
control_roll = wp_nav.get_desired_roll();
control_pitch = wp_nav.get_desired_pitch();
get_stabilize_roll(control_roll);
get_stabilize_pitch(control_pitch);
break;
case ROLL_PITCH_SPORT:
// apply SIMPLE mode transform
update_simple_mode();
// copy user input for reporting purposes
control_roll = g.rc_1.control_in;
control_pitch = g.rc_2.control_in;
get_roll_rate_stabilized_ef(g.rc_1.control_in);
get_pitch_rate_stabilized_ef(g.rc_2.control_in);
break;
#if AUTOTUNE == ENABLED
case ROLL_PITCH_AUTOTUNE:
// apply SIMPLE mode transform
if(ap.simple_mode && ap.new_radio_frame) {
update_simple_mode();
}
// convert pilot input to lean angles
get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, control_roll, control_pitch);
// pass desired roll, pitch to stabilize attitude controllers
get_stabilize_roll(control_roll);
get_stabilize_pitch(control_pitch);
// copy user input for reporting purposes
get_autotune_roll_pitch_controller(g.rc_1.control_in, g.rc_2.control_in, g.rc_4.control_in);
break;
#endif
}
#if FRAME_CONFIG != HELI_FRAME
if(g.rc_3.control_in == 0 && control_mode <= ACRO) {
reset_rate_I();
}
#endif //HELI_FRAME
if(ap.new_radio_frame) {
// clear new radio frame info
ap.new_radio_frame = false;
}
}
static void
init_simple_bearing()
{
// capture current cos_yaw and sin_yaw values
simple_cos_yaw = ahrs.cos_yaw();
simple_sin_yaw = ahrs.sin_yaw();
// initialise super simple heading (i.e. heading towards home) to be 180 deg from simple mode heading
super_simple_last_bearing = wrap_360_cd(ahrs.yaw_sensor+18000);
super_simple_cos_yaw = simple_cos_yaw;
super_simple_sin_yaw = simple_sin_yaw;
// log the simple bearing to dataflash
if (g.log_bitmask != 0) {
Log_Write_Data(DATA_INIT_SIMPLE_BEARING, ahrs.yaw_sensor);
}
}
// update_simple_mode - rotates pilot input if we are in simple mode
void update_simple_mode(void)
{
float rollx, pitchx;
// exit immediately if no new radio frame or not in simple mode
if (ap.simple_mode == 0 || !ap.new_radio_frame) {
return;
}
if (ap.simple_mode == 1) {
// rotate roll, pitch input by -initial simple heading (i.e. north facing)
rollx = g.rc_1.control_in*simple_cos_yaw - g.rc_2.control_in*simple_sin_yaw;
pitchx = g.rc_1.control_in*simple_sin_yaw + g.rc_2.control_in*simple_cos_yaw;
}else{
// rotate roll, pitch input by -super simple heading (reverse of heading to home)
rollx = g.rc_1.control_in*super_simple_cos_yaw - g.rc_2.control_in*super_simple_sin_yaw;
pitchx = g.rc_1.control_in*super_simple_sin_yaw + g.rc_2.control_in*super_simple_cos_yaw;
}
// rotate roll, pitch input from north facing to vehicle's perspective
g.rc_1.control_in = rollx*ahrs.cos_yaw() + pitchx*ahrs.sin_yaw();
g.rc_2.control_in = -rollx*ahrs.sin_yaw() + pitchx*ahrs.cos_yaw();
}
// update_super_simple_bearing - adjusts simple bearing based on location
// should be called after home_bearing has been updated
void update_super_simple_bearing(bool force_update)
{
// check if we are in super simple mode and at least 10m from home
if(force_update || (ap.simple_mode == 2 && home_distance > SUPER_SIMPLE_RADIUS)) {
// check the bearing to home has changed by at least 5 degrees
if (labs(super_simple_last_bearing - home_bearing) > 500) {
super_simple_last_bearing = home_bearing;
float angle_rad = radians((super_simple_last_bearing+18000)/100);
super_simple_cos_yaw = cosf(angle_rad);
super_simple_sin_yaw = sinf(angle_rad);
}
}
}
// throttle_mode_manual - returns true if the throttle is directly controlled by the pilot
bool throttle_mode_manual(uint8_t thr_mode)
{
return (thr_mode == THROTTLE_MANUAL || thr_mode == THROTTLE_MANUAL_TILT_COMPENSATED || thr_mode == THROTTLE_MANUAL_HELI);
}
// set_throttle_mode - sets the throttle mode and initialises any variables as required
bool set_throttle_mode( uint8_t new_throttle_mode )
{
// boolean to ensure proper initialisation of throttle modes
bool throttle_initialised = false;
// return immediately if no change
if( new_throttle_mode == throttle_mode ) {
return true;
}
// initialise any variables required for the new throttle mode
switch(new_throttle_mode) {
case THROTTLE_MANUAL:
case THROTTLE_MANUAL_TILT_COMPENSATED:
throttle_accel_deactivate(); // this controller does not use accel based throttle controller
altitude_error = 0; // clear altitude error reported to GCS
throttle_initialised = true;
break;
case THROTTLE_HOLD:
case THROTTLE_AUTO:
controller_desired_alt = get_initial_alt_hold(current_loc.alt, climb_rate); // reset controller desired altitude to current altitude
wp_nav.set_desired_alt(controller_desired_alt); // same as above but for loiter controller
if (throttle_mode_manual(throttle_mode)) { // reset the alt hold I terms if previous throttle mode was manual
reset_throttle_I();
set_accel_throttle_I_from_pilot_throttle(get_pilot_desired_throttle(g.rc_3.control_in));
}
throttle_initialised = true;
break;
case THROTTLE_LAND:
reset_land_detector(); // initialise land detector
controller_desired_alt = get_initial_alt_hold(current_loc.alt, climb_rate); // reset controller desired altitude to current altitude
throttle_initialised = true;
break;
#if FRAME_CONFIG == HELI_FRAME
case THROTTLE_MANUAL_HELI:
throttle_accel_deactivate(); // this controller does not use accel based throttle controller
altitude_error = 0; // clear altitude error reported to GCS
throttle_initialised = true;
break;
#endif
}
// update the throttle mode
if( throttle_initialised ) {
throttle_mode = new_throttle_mode;
// reset some variables used for logging
desired_climb_rate = 0;
nav_throttle = 0;
}
// return success or failure
return throttle_initialised;
}
// update_throttle_mode - run high level throttle controllers
// 50 hz update rate
void update_throttle_mode(void)
{
int16_t pilot_climb_rate;
int16_t pilot_throttle_scaled;
if(ap.do_flip) // this is pretty bad but needed to flip in AP modes.
return;
#if FRAME_CONFIG != HELI_FRAME
// do not run throttle controllers if motors disarmed
if( !motors.armed() ) {
set_throttle_out(0, false);
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command
set_target_alt_for_reporting(0);
return;
}
#endif // FRAME_CONFIG != HELI_FRAME
switch(throttle_mode) {
case THROTTLE_MANUAL:
// completely manual throttle
if(g.rc_3.control_in <= 0){
set_throttle_out(0, false);
}else{
// send pilot's output directly to motors
pilot_throttle_scaled = get_pilot_desired_throttle(g.rc_3.control_in);
set_throttle_out(pilot_throttle_scaled, false);
// update estimate of throttle cruise
#if FRAME_CONFIG == HELI_FRAME
update_throttle_cruise(motors.get_collective_out());
#else
update_throttle_cruise(pilot_throttle_scaled);
#endif //HELI_FRAME
// check if we've taken off yet
if (!ap.takeoff_complete && motors.armed()) {
if (pilot_throttle_scaled > g.throttle_cruise) {
// we must be in the air by now
set_takeoff_complete(true);
}
}
}
set_target_alt_for_reporting(0);
break;
case THROTTLE_MANUAL_TILT_COMPENSATED:
// manual throttle but with angle boost
if (g.rc_3.control_in <= 0) {
set_throttle_out(0, false); // no need for angle boost with zero throttle
}else{
pilot_throttle_scaled = get_pilot_desired_throttle(g.rc_3.control_in);
set_throttle_out(pilot_throttle_scaled, true);
// update estimate of throttle cruise
#if FRAME_CONFIG == HELI_FRAME
update_throttle_cruise(motors.get_collective_out());
#else
update_throttle_cruise(pilot_throttle_scaled);
#endif //HELI_FRAME
if (!ap.takeoff_complete && motors.armed()) {
if (pilot_throttle_scaled > g.throttle_cruise) {
// we must be in the air by now
set_takeoff_complete(true);
}
}
}
set_target_alt_for_reporting(0);
break;
case THROTTLE_HOLD:
if(ap.auto_armed) {
// alt hold plus pilot input of climb rate
pilot_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in);
// special handling if we have landed
if (ap.land_complete) {
if (pilot_climb_rate > 0) {
// indicate we are taking off
set_land_complete(false);
// clear i term when we're taking off
set_throttle_takeoff();
}else{
// move throttle to minimum to keep us on the ground
set_throttle_out(0, false);
// deactivate accel based throttle controller (it will be automatically re-enabled when alt-hold controller next runs)
throttle_accel_deactivate();
}
}
// check land_complete flag again in case it was changed above
if (!ap.land_complete) {
if( sonar_alt_health >= SONAR_ALT_HEALTH_MAX ) {
// if sonar is ok, use surface tracking
get_throttle_surface_tracking(pilot_climb_rate); // this function calls set_target_alt_for_reporting for us
}else{
// if no sonar fall back stabilize rate controller
get_throttle_rate_stabilized(pilot_climb_rate); // this function calls set_target_alt_for_reporting for us
}
}
}else{
// pilot's throttle must be at zero so keep motors off
set_throttle_out(0, false);
// deactivate accel based throttle controller
throttle_accel_deactivate();
set_target_alt_for_reporting(0);
}
break;
case THROTTLE_AUTO:
// auto pilot altitude controller with target altitude held in wp_nav.get_desired_alt()
if(ap.auto_armed) {
// special handling if we are just taking off
if (ap.land_complete) {
// tell motors to do a slow start.
motors.slow_start(true);
}
get_throttle_althold_with_slew(wp_nav.get_desired_alt(), -wp_nav.get_descent_velocity(), wp_nav.get_climb_velocity());
set_target_alt_for_reporting(wp_nav.get_desired_alt()); // To-Do: return get_destination_alt if we are flying to a waypoint
}else{
// pilot's throttle must be at zero so keep motors off
set_throttle_out(0, false);
// deactivate accel based throttle controller
throttle_accel_deactivate();
set_target_alt_for_reporting(0);
}
break;
case THROTTLE_LAND:
// landing throttle controller
get_throttle_land();
set_target_alt_for_reporting(0);
break;
#if FRAME_CONFIG == HELI_FRAME
case THROTTLE_MANUAL_HELI:
// trad heli manual throttle controller
// send pilot's output directly to swash plate
pilot_throttle_scaled = get_pilot_desired_collective(g.rc_3.control_in);
set_throttle_out(pilot_throttle_scaled, false);
// update estimate of throttle cruise
update_throttle_cruise(motors.get_collective_out());
set_target_alt_for_reporting(0);
break;
#endif // HELI_FRAME
}
}
// set_target_alt_for_reporting - set target altitude in cm for reporting purposes (logs and gcs)
static void set_target_alt_for_reporting(float alt_cm)
{
target_alt_for_reporting = alt_cm;
}
// get_target_alt_for_reporting - returns target altitude in cm for reporting purposes (logs and gcs)
static float get_target_alt_for_reporting()
{
return target_alt_for_reporting;
}
static void read_AHRS(void)
{
// Perform IMU calculations and get attitude info
//-----------------------------------------------
#if HIL_MODE != HIL_MODE_DISABLED
// update hil before ahrs update
gcs_check_input();
#endif
ahrs.update();
omega = ins.get_gyro();
}
// read baro and sonar altitude at 20hz
static void update_altitude()
{
#if HIL_MODE == HIL_MODE_ATTITUDE
// we are in the SIM, fake out the baro and Sonar
baro_alt = g_gps->altitude_cm;
if(g.sonar_enabled) {
sonar_alt = baro_alt;
}
#else
// read in baro altitude
baro_alt = read_barometer();
// read in sonar altitude
sonar_alt = read_sonar();
#endif // HIL_MODE == HIL_MODE_ATTITUDE
// write altitude info to dataflash logs
if (g.log_bitmask & MASK_LOG_CTUN) {
Log_Write_Control_Tuning();
}
}
static void tuning(){
// exit immediately when radio failsafe is invoked so tuning values are not set to zero
if (failsafe.radio || failsafe.radio_counter != 0) {
return;
}
tuning_value = (float)g.rc_6.control_in / 1000.0f;
g.rc_6.set_range(g.radio_tuning_low,g.radio_tuning_high); // 0 to 1
switch(g.radio_tuning) {
// Roll, Pitch tuning
case CH6_STABILIZE_ROLL_PITCH_KP:
g.pi_stabilize_roll.kP(tuning_value);
g.pi_stabilize_pitch.kP(tuning_value);
break;
case CH6_RATE_ROLL_PITCH_KP:
g.pid_rate_roll.kP(tuning_value);
g.pid_rate_pitch.kP(tuning_value);
break;
case CH6_RATE_ROLL_PITCH_KI:
g.pid_rate_roll.kI(tuning_value);
g.pid_rate_pitch.kI(tuning_value);
break;
case CH6_RATE_ROLL_PITCH_KD:
g.pid_rate_roll.kD(tuning_value);
g.pid_rate_pitch.kD(tuning_value);
break;
// Yaw tuning
case CH6_STABILIZE_YAW_KP:
g.pi_stabilize_yaw.kP(tuning_value);
break;
case CH6_YAW_RATE_KP:
g.pid_rate_yaw.kP(tuning_value);
break;
case CH6_YAW_RATE_KD:
g.pid_rate_yaw.kD(tuning_value);
break;
// Altitude and throttle tuning
case CH6_ALTITUDE_HOLD_KP:
g.pi_alt_hold.kP(tuning_value);
break;
case CH6_THROTTLE_RATE_KP:
g.pid_throttle_rate.kP(tuning_value);
break;
case CH6_THROTTLE_RATE_KD:
g.pid_throttle_rate.kD(tuning_value);
break;
case CH6_THROTTLE_ACCEL_KP:
g.pid_throttle_accel.kP(tuning_value);
break;
case CH6_THROTTLE_ACCEL_KI:
g.pid_throttle_accel.kI(tuning_value);
break;
case CH6_THROTTLE_ACCEL_KD:
g.pid_throttle_accel.kD(tuning_value);
break;
// Loiter and navigation tuning
case CH6_LOITER_POSITION_KP:
g.pi_loiter_lat.kP(tuning_value);
g.pi_loiter_lon.kP(tuning_value);
break;
case CH6_LOITER_RATE_KP:
g.pid_loiter_rate_lon.kP(tuning_value);
g.pid_loiter_rate_lat.kP(tuning_value);
break;
case CH6_LOITER_RATE_KI:
g.pid_loiter_rate_lon.kI(tuning_value);
g.pid_loiter_rate_lat.kI(tuning_value);
break;
case CH6_LOITER_RATE_KD:
g.pid_loiter_rate_lon.kD(tuning_value);
g.pid_loiter_rate_lat.kD(tuning_value);
break;
case CH6_WP_SPEED:
// set waypoint navigation horizontal speed to 0 ~ 1000 cm/s
wp_nav.set_horizontal_velocity(g.rc_6.control_in);
break;
// Acro roll pitch gain
case CH6_ACRO_RP_KP:
g.acro_rp_p = tuning_value;
break;
// Acro yaw gain
case CH6_ACRO_YAW_KP:
g.acro_yaw_p = tuning_value;
break;
case CH6_RELAY:
if (g.rc_6.control_in > 525) relay.on(0);
if (g.rc_6.control_in < 475) relay.off(0);
break;
#if FRAME_CONFIG == HELI_FRAME
case CH6_HELI_EXTERNAL_GYRO:
motors.ext_gyro_gain(g.rc_6.control_in);
break;
#endif
case CH6_OPTFLOW_KP:
g.pid_optflow_roll.kP(tuning_value);
g.pid_optflow_pitch.kP(tuning_value);
break;
case CH6_OPTFLOW_KI:
g.pid_optflow_roll.kI(tuning_value);
g.pid_optflow_pitch.kI(tuning_value);
break;
case CH6_OPTFLOW_KD:
g.pid_optflow_roll.kD(tuning_value);
g.pid_optflow_pitch.kD(tuning_value);
break;
#if HIL_MODE != HIL_MODE_ATTITUDE // do not allow modifying _kp or _kp_yaw gains in HIL mode
case CH6_AHRS_YAW_KP:
ahrs._kp_yaw.set(tuning_value);
break;
case CH6_AHRS_KP:
ahrs._kp.set(tuning_value);
break;
#endif
case CH6_INAV_TC:
// To-Do: allowing tuning TC for xy and z separately
inertial_nav.set_time_constant_xy(tuning_value);
inertial_nav.set_time_constant_z(tuning_value);
break;
case CH6_DECLINATION:
// set declination to +-20degrees
compass.set_declination(ToRad((2.0f * g.rc_6.control_in - g.radio_tuning_high)/100.0f), false); // 2nd parameter is false because we do not want to save to eeprom because this would have a performance impact
break;
case CH6_CIRCLE_RATE:
// set circle rate
g.circle_rate.set(g.rc_6.control_in/25-20); // allow approximately 45 degree turn rate in either direction
break;
case CH6_SONAR_GAIN:
// set sonar gain
g.sonar_gain.set(tuning_value);
break;
case CH6_LOIT_SPEED:
// set max loiter speed to 0 ~ 1000 cm/s
wp_nav.set_loiter_velocity(g.rc_6.control_in);
break;
}
}
AP_HAL_MAIN();