/* hacked up DataFlash library for Desktop support */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_F4LIGHT && defined(BOARD_DATAFLASH_CS_PIN) && !defined(BOARD_DATAFLASH_FATFS) #include "DataFlash_Revo.h" #include #include #include #include #include #include #include #include #include #pragma GCC diagnostic ignored "-Wunused-result" extern const AP_HAL::HAL& hal; static uint8_t buffer[2][DF_PAGE_SIZE]; static uint8_t cmd[4]; AP_HAL::OwnPtr DataFlash_Revo::_spi = nullptr; AP_HAL::Semaphore *DataFlash_Revo::_spi_sem = nullptr; bool DataFlash_Revo::log_write_started=false; bool DataFlash_Revo::flash_died=false; // the last page holds the log format in first 4 bytes. Please change // this if (and only if!) the low level format changes #define DF_LOGGING_FORMAT 0x28122013L uint32_t DataFlash_Revo::bufferspace_available() { // because DataFlash_Block devices are ring buffers, we *always* // have room... return df_NumPages * df_PageSize; } // *** DATAFLASH PUBLIC FUNCTIONS *** void DataFlash_Revo::StartWrite(uint16_t PageAdr) { df_BufferIdx = 0; df_BufferNum = 0; df_PageAdr = PageAdr; WaitReady(); } void DataFlash_Revo::FinishWrite(void) { // Write Buffer to flash, NO WAIT BufferToPage(df_BufferNum, df_PageAdr, 0); df_PageAdr++; // If we reach the end of the memory, start from the beginning if (df_PageAdr > df_NumPages) { df_PageAdr = 1; } // TODO: а что, стирать уже не надо??? uint16_t block_num = df_PageAdr / (erase_size/DF_PAGE_SIZE); // number of erase block uint16_t page_in_block = df_PageAdr % (erase_size/DF_PAGE_SIZE); // number of page in erase block // if(block_num != last_block_num){ if(page_in_block==0 || df_PageAdr==1){ // начали писАть страницу - подготовим ее PageErase(df_PageAdr); last_block_num = block_num; } // switch buffer df_BufferNum ^= 1; df_BufferIdx = 0; } bool DataFlash_Revo::WritesOK() const { if (!CardInserted()) { return false; } if (!log_write_started) { return false; } return true; } bool DataFlash_Revo::_WritePrioritisedBlock(const void *pBuffer, uint16_t size, bool is_critical) { // is_critical is ignored - we're a ring buffer and never run out // of space. possibly if we do more complicated bandwidth // limiting we can reservice bandwidth based on is_critical if (!WritesOK()) { return false; } if (! WriteBlockCheckStartupMessages()) { return false; } while (size > 0) { uint16_t n = df_PageSize - df_BufferIdx; if (n > size) { n = size; } if (df_BufferIdx == 0) { // if we are at the start of a page we need to insert a // page header if (n > df_PageSize - sizeof(struct PageHeader)) { n = df_PageSize - sizeof(struct PageHeader); } struct PageHeader ph = { df_FileNumber, df_FilePage }; BlockWrite(df_BufferNum, df_BufferIdx, &ph, sizeof(ph), pBuffer, n); df_BufferIdx += n + sizeof(ph); } else { BlockWrite(df_BufferNum, df_BufferIdx, nullptr, 0, pBuffer, n); df_BufferIdx += n; } size -= n; pBuffer = (const void *)(n + (uintptr_t)pBuffer); if (df_BufferIdx == df_PageSize) { FinishWrite(); df_FilePage++; } } return true; } // Get the last page written to uint16_t DataFlash_Revo::GetWritePage() { return df_PageAdr; } // Get the last page read uint16_t DataFlash_Revo::GetPage() { return df_Read_PageAdr; } void DataFlash_Revo::StartRead(uint16_t PageAdr) { df_Read_BufferNum = 0; df_Read_PageAdr = PageAdr; // disable writing while reading log_write_started = false; WaitReady(); // copy flash page to buffer PageToBuffer(df_Read_BufferNum, df_Read_PageAdr); // We are starting a new page - read FileNumber and FilePage struct PageHeader ph; BlockRead(df_Read_BufferNum, 0, &ph, sizeof(ph)); df_FileNumber = ph.FileNumber; df_FilePage = ph.FilePage; df_Read_BufferIdx = sizeof(ph); } bool DataFlash_Revo::ReadBlock(void *pBuffer, uint16_t size) { while (size > 0) { uint16_t n = df_PageSize - df_Read_BufferIdx; if (n > size) { n = size; } WaitReady(); if (!BlockRead(df_Read_BufferNum, df_Read_BufferIdx, pBuffer, n)) { return false; } size -= n; pBuffer = (void *)(n + (uintptr_t)pBuffer); df_Read_BufferIdx += n; if (df_Read_BufferIdx == df_PageSize) { df_Read_PageAdr++; if (df_Read_PageAdr > df_NumPages) { df_Read_PageAdr = 1; } PageToBuffer(df_Read_BufferNum, df_Read_PageAdr); // We are starting a new page - read FileNumber and FilePage struct PageHeader ph; if (!BlockRead(df_Read_BufferNum, 0, &ph, sizeof(ph))) { return false; } df_FileNumber = ph.FileNumber; df_FilePage = ph.FilePage; df_Read_BufferIdx = sizeof(ph); } } return true; } void DataFlash_Revo::SetFileNumber(uint16_t FileNumber) { df_FileNumber = FileNumber; df_FilePage = 1; } uint16_t DataFlash_Revo::GetFileNumber() { return df_FileNumber; } uint16_t DataFlash_Revo::GetFilePage() { return df_FilePage; } void DataFlash_Revo::EraseAll() { log_write_started = false; ChipErase(); // write the logging format in the last page hal.scheduler->delay(100); StartWrite(df_NumPages+1); uint32_t version = DF_LOGGING_FORMAT; log_write_started = true; BlockWrite(df_BufferNum, 0, nullptr, 0, &version, sizeof(version)); log_write_started = false; FinishWrite(); hal.scheduler->delay(100); //[ just to test StartRead(df_NumPages+1); // read last page after erase to check it StartRead(1); //] } bool DataFlash_Revo::NeedPrep(void) { return NeedErase(); } void DataFlash_Revo::Prep() { if (hal.util->get_soft_armed()) { // do not want to do any filesystem operations while we are e.g. flying return; } if (NeedErase()) { EraseAll(); } } /* * we need to erase if the logging format has changed */ bool DataFlash_Revo::NeedErase(void) { uint32_t version = 0; StartRead(df_NumPages+1); // last page BlockRead(df_Read_BufferNum, 0, &version, sizeof(version)); StartRead(1); if(version == DF_LOGGING_FORMAT) return false; printf("Need to erase: version is %lx required %lx\n", version, DF_LOGGING_FORMAT); return true; } /** get raw data from a log */ int16_t DataFlash_Revo::get_log_data_raw(uint16_t log_num, uint16_t page, uint32_t offset, uint16_t len, uint8_t *data) { uint16_t data_page_size = df_PageSize - sizeof(struct PageHeader); if (offset >= data_page_size) { page += offset / data_page_size; offset = offset % data_page_size; if (page > df_NumPages) { // pages are one based, not zero page = 1 + page - df_NumPages; } } if (log_write_started || df_Read_PageAdr != page) { StartRead(page); } df_Read_BufferIdx = offset + sizeof(struct PageHeader); if (!ReadBlock(data, len)) { return -1; } return (int16_t)len; } /** get data from a log, accounting for adding FMT headers */ int16_t DataFlash_Revo::get_log_data(uint16_t log_num, uint16_t page, uint32_t offset, uint16_t len, uint8_t *data) { if (offset == 0) { uint8_t header[3]; get_log_data_raw(log_num, page, 0, 3, header); adding_fmt_headers = (header[0] != HEAD_BYTE1 || header[1] != HEAD_BYTE2 || header[2] != LOG_FORMAT_MSG); } uint16_t ret = 0; if (adding_fmt_headers) { // the log doesn't start with a FMT message, we need to add // them const uint16_t fmt_header_size = num_types() * sizeof(struct log_Format); while (offset < fmt_header_size && len > 0) { struct log_Format pkt; uint8_t t = offset / sizeof(pkt); uint8_t ofs = offset % sizeof(pkt); Log_Fill_Format(structure(t), pkt); uint8_t n = sizeof(pkt) - ofs; if (n > len) { n = len; } memcpy(data, ofs + (uint8_t *)&pkt, n); data += n; offset += n; len -= n; ret += n; } offset -= fmt_header_size; } if (len > 0) { ret += get_log_data_raw(log_num, page, offset, len, data); } return ret; } // Public Methods ////////////////////////////////////////////////////////////// void DataFlash_Revo::Init() { df_NumPages=0; #if BOARD_DATAFLASH_ERASE_SIZE >= 65536 erase_cmd=JEDEC_PAGE_ERASE; #else erase_cmd=JEDEC_SECTOR_ERASE; #endif erase_size = BOARD_DATAFLASH_ERASE_SIZE; GPIO::_pinMode(DF_RESET,OUTPUT); GPIO::_setSpeed(DF_RESET, GPIO_speed_100MHz); // Reset the chip GPIO::_write(DF_RESET,0); Scheduler::_delay(1); GPIO::_write(DF_RESET,1); _spi = hal.spi->get_device(HAL_DATAFLASH_NAME); if (!_spi) { AP_HAL::panic("PANIC: DataFlash SPIDeviceDriver not found"); return; /* never reached */ } _spi_sem = _spi->get_semaphore(); if (!_spi_sem) { AP_HAL::panic("PANIC: DataFlash SPIDeviceDriver semaphore is null"); return; /* never reached */ } _spi_sem->take(10); _spi->set_speed(AP_HAL::Device::SPEED_LOW); DataFlash_Backend::Init(); _spi_sem->give(); df_NumPages = BOARD_DATAFLASH_PAGES - 1; // reserve last page for config information ReadManufacturerID(); getSectorCount(&df_NumPages); flash_died=false; log_write_started = true; df_PageSize = DF_PAGE_SIZE; } void DataFlash_Revo::WaitReady() { if(flash_died) return; uint32_t t = AP_HAL::millis(); while(ReadStatus()!=0){ Scheduler::yield(0); // пока ждем пусть другие работают if(AP_HAL::millis() - t > 4000) { flash_died = true; return; } } } // try to take a semaphore safely from both in a timer and outside bool DataFlash_Revo::_sem_take(uint8_t timeout) { if(!_spi_sem || flash_died) return false; return _spi_sem->take(timeout); } bool DataFlash_Revo::cs_assert(){ if (!_sem_take(HAL_SEMAPHORE_BLOCK_FOREVER)) return false; _spi->set_speed(AP_HAL::Device::SPEED_HIGH); GPIO::_write(DF_RESET,0); return true; } void DataFlash_Revo::cs_release(){ GPIO::_write(DF_RESET,1); _spi_sem->give(); } // This function is mainly to test the device void DataFlash_Revo::ReadManufacturerID() { if (!cs_assert()) return; // Read manufacturer and ID command... cmd[0] = JEDEC_DEVICE_ID; _spi->transfer(cmd, 1, buffer[1], 4); df_manufacturer = buffer[1][0]; df_device = (buffer[1][1] << 8) | buffer[1][2]; //capacity cs_release(); } bool DataFlash_Revo::getSectorCount(uint32_t *ptr){ uint8_t capacity = df_device & 0xFF; uint8_t memtype = (df_device>>8) & 0xFF; uint32_t size=0; const char * mfg=NULL; switch(df_manufacturer){ case 0xEF: // Winbond Serial Flash if (memtype == 0x40) { mfg="Winbond"; size = (1 << ((capacity & 0x0f) + 8)); /* const uint8_t _capID[11] = {0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x43}; const uint32_t _memSize[11] = {64L*K, 128L*K, 256L*K, 512L*K, 1L*M, 2L*M, 4L*M, 8L*M, 16L*M, 32L*M, 8L*M}; */ erase_size=4096; erase_cmd=JEDEC_SECTOR_ERASE; } break; case 0xbf: // SST if (memtype == 0x25) { mfg="Microchip"; size = (1 << ((capacity & 0x07) + 12)); } break; case 0x20: // micron if (memtype == 0xba){// JEDEC_ID_MICRON_N25Q128 0x20ba18 mfg="Micron"; size = (1 << ((capacity & 0x0f) + 8)); erase_size=4096; erase_cmd=JEDEC_SECTOR_ERASE; } else if(memtype==0x20) { // JEDEC_ID_MICRON_M25P16 0x202015 mfg="Micron"; size = (1 << ((capacity & 0x0f) + 8)); } break; case 0xC2: //JEDEC_ID_MACRONIX_MX25L6406E 0xC22017 if (memtype == 0x20) { mfg="MACRONIX"; size = (1 << ((capacity & 0x0f) + 8)); erase_size=4096; erase_cmd=JEDEC_SECTOR_ERASE; } break; case 0x9D: // ISSI if (memtype == 0x40 || memtype == 0x30) { mfg = "ISSI"; size = (1 << ((capacity & 0x0f) + 8)); } break; default: break; } if(mfg && size) { printf("%s SPI Flash found sectors=%ld\n", mfg, size); }else { printf("\nUnknown Flash! SPI Flash codes: mfg=%x type=%x cap=%x\n ",df_manufacturer, memtype, capacity); size = BOARD_DATAFLASH_PAGES; // as defined } /////// size -= (erase_size/DF_PAGE_SIZE); // reserve last page for config information *ptr = size; // in 256b blocks return true; } // Read the status register uint8_t DataFlash_Revo::ReadStatusReg() { uint8_t tmp; // activate dataflash command decoder if (!cs_assert()) return JEDEC_STATUS_BUSY; // Read status command #if 0 spi_write(JEDEC_READ_STATUS); tmp = spi_read(); // We only want to extract the READY/BUSY bit #else cmd[0] = JEDEC_READ_STATUS; _spi->transfer(cmd, 1, &cmd[1], 1); tmp = cmd[1]; #endif // release SPI bus for use by other sensors cs_release(); return tmp; } uint8_t DataFlash_Revo::ReadStatus() { // We only want to extract the READY/BUSY bit int32_t status = ReadStatusReg(); if (status < 0) return -1; return status & JEDEC_STATUS_BUSY; } void DataFlash_Revo::PageToBuffer(unsigned char BufferNum, uint16_t pageNum) { uint32_t PageAdr = pageNum * DF_PAGE_SIZE; if (!cs_assert()) return; cmd[0] = JEDEC_READ_DATA; cmd[1] = (PageAdr >> 16) & 0xff; cmd[2] = (PageAdr >> 8) & 0xff; cmd[3] = (PageAdr >> 0) & 0xff; _spi->transfer(cmd, 4, buffer[BufferNum], DF_PAGE_SIZE); cs_release(); } void DataFlash_Revo::BufferToPage (unsigned char BufferNum, uint16_t pageNum, unsigned char wait) { uint32_t PageAdr = pageNum * DF_PAGE_SIZE; Flash_Jedec_WriteEnable(); if (!cs_assert()) return; cmd[0] = JEDEC_PAGE_WRITE; cmd[1] = (PageAdr >> 16) & 0xff; cmd[2] = (PageAdr >> 8) & 0xff; cmd[3] = (PageAdr >> 0) & 0xff; _spi->transfer(cmd, 4,NULL, 0); _spi->transfer(buffer[BufferNum], DF_PAGE_SIZE, NULL, 0); cs_release(); if(wait) WaitReady(); } void DataFlash_Revo::BufferWrite (unsigned char BufferNum, uint16_t IntPageAdr, unsigned char Data) { buffer[BufferNum][IntPageAdr] = (uint8_t)Data; } void DataFlash_Revo::BlockWrite(uint8_t BufferNum, uint16_t IntPageAdr, const void *pHeader, uint8_t hdr_size, const void *pBuffer, uint16_t size) { if (hdr_size) { memcpy(&buffer[BufferNum][IntPageAdr], pHeader, hdr_size); } memcpy(&buffer[BufferNum][IntPageAdr+hdr_size], pBuffer, size); } // read size bytes of data to a page. The caller must ensure that // the data fits within the page, otherwise it will wrap to the // start of the page bool DataFlash_Revo::BlockRead(uint8_t BufferNum, uint16_t IntPageAdr, void *pBuffer, uint16_t size) { memcpy(pBuffer, &buffer[BufferNum][IntPageAdr], size); return true; } /* * 2 097 152 bytes (8 bits each) * 32 sectors (512 Kbits, 65536 bytes each) * 8192 pages (256 bytes each). */ void DataFlash_Revo::PageErase (uint16_t pageNum) { uint32_t PageAdr = pageNum * DF_PAGE_SIZE; cmd[0] = erase_cmd; cmd[1] = (PageAdr >> 16) & 0xff; cmd[2] = (PageAdr >> 8) & 0xff; cmd[3] = (PageAdr >> 0) & 0xff; Flash_Jedec_WriteEnable(); if (!cs_assert()) return; _spi->transfer(cmd, 4, NULL, 0); cs_release(); } void DataFlash_Revo::ChipErase() { cmd[0] = JEDEC_BULK_ERASE; Flash_Jedec_WriteEnable(); if (!cs_assert()) return; _spi->transfer(cmd, 1, NULL, 0); cs_release(); } void DataFlash_Revo::Flash_Jedec_WriteEnable(void) { // activate dataflash command decoder if (!cs_assert()) return; spi_write(JEDEC_WRITE_ENABLE); cs_release(); } ////////////////////////////////////////// // This function determines the number of whole or partial log files in the DataFlash // Wholly overwritten files are (of course) lost. uint16_t DataFlash_Revo::get_num_logs(void) { uint16_t lastpage; uint16_t last; uint16_t first; if (find_last_page() == 1) { return 0; } StartRead(1); if (GetFileNumber() == 0xFFFF) { return 0; } lastpage = find_last_page(); StartRead(lastpage); last = GetFileNumber(); StartRead(lastpage + 2); if (GetFileNumber() == 0xFFFF) StartRead(((lastpage >> 8) + 1) << 8); // next sector first = GetFileNumber(); if(first > last) { StartRead(1); first = GetFileNumber(); } if (last == first) { return 1; } return (last - first + 1); } // This function starts a new log file in the DataFlash uint16_t DataFlash_Revo::start_new_log(void) { uint16_t last_page = find_last_page(); StartRead(last_page); //Serial.print("last page: "); Serial.println(last_page); //Serial.print("file #: "); Serial.println(GetFileNumber()); //Serial.print("file page: "); Serial.println(GetFilePage()); if(find_last_log() == 0 || GetFileNumber() == 0xFFFF) { SetFileNumber(1); StartWrite(1); //Serial.println("start log from 0"); log_write_started = true; return 1; } uint16_t new_log_num; // Check for log of length 1 page and suppress if(GetFilePage() <= 1) { new_log_num = GetFileNumber(); // Last log too short, reuse its number // and overwrite it SetFileNumber(new_log_num); StartWrite(last_page); } else { new_log_num = GetFileNumber()+1; if (last_page == 0xFFFF) { last_page=0; } SetFileNumber(new_log_num); StartWrite(last_page + 1); } log_write_started = true; return new_log_num; } // This function finds the first and last pages of a log file // The first page may be greater than the last page if the DataFlash has been filled and partially overwritten. void DataFlash_Revo::get_log_boundaries(uint16_t log_num, uint16_t & start_page, uint16_t & end_page) { uint16_t num = get_num_logs(); uint16_t look; if (df_BufferIdx != 0) { FinishWrite(); hal.scheduler->delay(100); } if(num == 1) { StartRead(df_NumPages); if (GetFileNumber() == 0xFFFF) { start_page = 1; end_page = find_last_page_of_log((uint16_t)log_num); } else { end_page = find_last_page_of_log((uint16_t)log_num); start_page = end_page + 1; } } else { if(log_num==1) { StartRead(df_NumPages); if(GetFileNumber() == 0xFFFF) { start_page = 1; } else { start_page = find_last_page() + 1; } } else { if(log_num == find_last_log() - num + 1) { start_page = find_last_page() + 1; } else { look = log_num-1; do { start_page = find_last_page_of_log(look) + 1; look--; } while (start_page <= 0 && look >=1); } } } if (start_page == df_NumPages+1 || start_page == 0) { start_page = 1; } end_page = find_last_page_of_log(log_num); if (end_page == 0) { end_page = start_page; } } bool DataFlash_Revo::check_wrapped(void) { StartRead(df_NumPages); if(GetFileNumber() == 0xFFFF) return 0; else return 1; } // This funciton finds the last log number uint16_t DataFlash_Revo::find_last_log(void) { uint16_t last_page = find_last_page(); StartRead(last_page); return GetFileNumber(); } // This function finds the last page of the last file uint16_t DataFlash_Revo::find_last_page(void) { uint16_t look; uint16_t bottom = 1; uint16_t top = df_NumPages; uint32_t look_hash; uint32_t bottom_hash; uint32_t top_hash; StartRead(bottom); bottom_hash = ((int32_t)GetFileNumber()<<16) | GetFilePage(); while(top-bottom > 1) { look = (top+bottom)/2; StartRead(look); look_hash = (int32_t)GetFileNumber()<<16 | GetFilePage(); if (look_hash >= 0xFFFF0000) look_hash = 0; if(look_hash < bottom_hash) { // move down top = look; } else { // move up bottom = look; bottom_hash = look_hash; } } StartRead(top); top_hash = ((int32_t)GetFileNumber()<<16) | GetFilePage(); if (top_hash >= 0xFFFF0000) { top_hash = 0; } if (top_hash > bottom_hash) { return top; } return bottom; } // This function finds the last page of a particular log file uint16_t DataFlash_Revo::find_last_page_of_log(uint16_t log_number) { uint16_t look; uint16_t bottom; uint16_t top; uint32_t look_hash; uint32_t check_hash; if(check_wrapped()) { StartRead(1); bottom = GetFileNumber(); if (bottom > log_number) { bottom = find_last_page(); top = df_NumPages; } else { bottom = 1; top = find_last_page(); } } else { bottom = 1; top = find_last_page(); } check_hash = (int32_t)log_number<<16 | 0xFFFF; while(top-bottom > 1) { look = (top+bottom)/2; StartRead(look); look_hash = (int32_t)GetFileNumber()<<16 | GetFilePage(); if (look_hash >= 0xFFFF0000) look_hash = 0; if(look_hash > check_hash) { // move down top = look; } else { // move up bottom = look; } } StartRead(top); if (GetFileNumber() == log_number) return top; StartRead(bottom); if (GetFileNumber() == log_number) return bottom; return -1; } /* dump header information from all log pages */ void DataFlash_Revo::DumpPageInfo(AP_HAL::BetterStream *port) { for (uint16_t count=1; count<=df_NumPages; count++) { StartRead(count); port->printf("DF page, log file #, log page: %u,\t", (unsigned)count); port->printf("%u,\t", (unsigned)GetFileNumber()); port->printf("%u\n", (unsigned)GetFilePage()); } } /* show information about the device */ void DataFlash_Revo::ShowDeviceInfo(AP_HAL::BetterStream *port) { if (!CardInserted()) { port->printf("No dataflash inserted\n"); return; } ReadManufacturerID(); port->printf("Manufacturer: 0x%02x Device: 0x%04x\n", (unsigned)df_manufacturer, (unsigned)df_device); port->printf("NumPages: %u PageSize: %u\n", (unsigned)df_NumPages+1, (unsigned)df_PageSize); } /* list available log numbers */ void DataFlash_Revo::ListAvailableLogs(AP_HAL::BetterStream *port) { uint16_t num_logs = get_num_logs(); int16_t last_log_num = find_last_log(); uint16_t log_start = 0; uint16_t log_end = 0; if (num_logs == 0) { port->printf("\nNo logs\n\n"); return; } port->printf("\n%u logs\n", (unsigned)num_logs); for (uint16_t i=num_logs; i>=1; i--) { uint16_t last_log_start = log_start, last_log_end = log_end; uint16_t temp = last_log_num - i + 1; get_log_boundaries(temp, log_start, log_end); port->printf("Log %u, start %u, end %u\n", (unsigned)temp, (unsigned)log_start, (unsigned)log_end); if (last_log_start == log_start && last_log_end == log_end) { // we are printing bogus logs break; } } port->println(""); } #endif