// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /// @file AP_MotorsHeli_Single.h /// @brief Motor control class for traditional heli #ifndef __AP_MOTORS_HELI_SINGLE_H__ #define __AP_MOTORS_HELI_SINGLE_H__ #include #include // ArduPilot Mega Vector/Matrix math Library #include // RC Channel Library #include "AP_MotorsHeli.h" #include "AP_MotorsHeli_RSC.h" // rsc and aux function output channels #define AP_MOTORS_HELI_SINGLE_RSC CH_8 #define AP_MOTORS_HELI_SINGLE_AUX CH_7 // servo position defaults #define AP_MOTORS_HELI_SINGLE_SERVO1_POS -60 #define AP_MOTORS_HELI_SINGLE_SERVO2_POS 60 #define AP_MOTORS_HELI_SINGLE_SERVO3_POS 180 // swash type definitions #define AP_MOTORS_HELI_SINGLE_SWASH_CCPM 0 #define AP_MOTORS_HELI_SINGLE_SWASH_H1 1 // tail types #define AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO 0 #define AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO 1 #define AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH 2 #define AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH 3 // default direct-drive variable pitch tail defaults #define AP_MOTORS_HELI_SINGLE_DDVPT_SPEED_DEFAULT 500 #define AP_MOTORS_HELI_SINGLE_DDVPT_RAMP_TIME 2 #define AP_MOTORS_HELI_SINGLE_DDVPT_RUNUP_TIME 3 // default external gyro gain #define AP_MOTORS_HELI_SINGLE_EXT_GYRO_GAIN 350 // COLYAW parameter min and max values #define AP_MOTORS_HELI_SINGLE_COLYAW_RANGE 10.0f #define AP_MOTORS_HELI_SINGLE_TAIL_RAMP_INCREMENT 5 // 5 is 2 seconds for direct drive tail rotor to reach to full speed (5 = (2sec*100hz)/1000) /// @class AP_MotorsHeli_Single class AP_MotorsHeli_Single : public AP_MotorsHeli { public: // constructor AP_MotorsHeli_Single(RC_Channel& servo_aux, RC_Channel& servo_rsc, RC_Channel& servo_1, RC_Channel& servo_2, RC_Channel& servo_3, RC_Channel& servo_4, uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) : AP_MotorsHeli(loop_rate, speed_hz), _servo_aux(servo_aux), _swash_servo_1(servo_1), _swash_servo_2(servo_2), _swash_servo_3(servo_3), _yaw_servo(servo_4), _main_rotor(servo_rsc, AP_MOTORS_HELI_SINGLE_RSC, loop_rate), _tail_rotor(servo_aux, AP_MOTORS_HELI_SINGLE_AUX, loop_rate) { AP_Param::setup_object_defaults(this, var_info); }; // set update rate to motors - a value in hertz // you must have setup_motors before calling this void set_update_rate(uint16_t speed_hz); // enable - starts allowing signals to be sent to motors and servos void enable(); // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void output_test(uint8_t motor_seq, int16_t pwm); // allow_arming - returns true if main rotor is spinning and it is ok to arm bool allow_arming() const; // set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1000 void set_desired_rotor_speed(int16_t desired_speed); // get_main_rotor_speed - gets estimated or measured main rotor speed int16_t get_main_rotor_speed() const { return _main_rotor.get_rotor_speed(); } // get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1000 int16_t get_desired_rotor_speed() const { return _main_rotor.get_desired_speed(); } // rotor_speed_above_critical - return true if rotor speed is above that critical for flight bool rotor_speed_above_critical() const { return _main_rotor.get_rotor_speed() > _main_rotor.get_critical_speed(); } // calculate_scalars - recalculates various scalars used void calculate_scalars(); // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t get_motor_mask(); // _tail_type - returns the tail type (servo, servo with ext gyro, direct drive var pitch, direct drive fixed pitch) int16_t tail_type() const { return _tail_type; } // ext_gyro_gain - gets and sets external gyro gain as a pwm (1000~2000) int16_t ext_gyro_gain() const { return _ext_gyro_gain; } void ext_gyro_gain(int16_t pwm) { _ext_gyro_gain = pwm; } // has_flybar - returns true if we have a mechical flybar bool has_flybar() const { return _flybar_mode; } // get_phase_angle - returns phase angle int16_t get_phase_angle() const { return _phase_angle; } // supports_yaw_passthrought - returns true if we support yaw passthrough bool supports_yaw_passthrough() const { return _tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO; } // set_delta_phase_angle for setting variable phase angle compensation and force // recalculation of collective factors void set_delta_phase_angle(int16_t angle); // servo_test - move servos through full range of movement void servo_test(); // var_info static const struct AP_Param::GroupInfo var_info[]; protected: // init_outputs - initialise Servo/PWM ranges and endpoints void init_outputs(); // update_motor_controls - sends commands to motor controllers void update_motor_control(AP_MotorsHeli_RSC::MotorControlState state); // calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position void calculate_roll_pitch_collective_factors(); // heli_move_actuators - moves swash plate and tail rotor void move_actuators(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out); // move_yaw - moves the yaw servo void move_yaw(int16_t yaw_out); // write_aux - outputs pwm onto output aux channel (ch7). servo_out parameter is of the range 0 ~ 1000 void write_aux(int16_t servo_out); // external objects we depend upon RC_Channel& _servo_aux; // output to ext gyro gain and tail direct drive esc (ch7) RC_Channel& _swash_servo_1; // swash plate servo #1 RC_Channel& _swash_servo_2; // swash plate servo #2 RC_Channel& _swash_servo_3; // swash plate servo #3 RC_Channel& _yaw_servo; // tail servo AP_MotorsHeli_RSC _main_rotor; // main rotor AP_MotorsHeli_RSC _tail_rotor; // tail rotor // internal variables float _oscillate_angle = 0.0f; // cyclic oscillation angle, used by servo_test function float _servo_test_cycle_time = 0.0f; // cycle time tracker, used by servo_test function float _collective_test = 0.0f; // over-ride for collective output, used by servo_test function float _roll_test = 0.0f; // over-ride for roll output, used by servo_test function float _pitch_test = 0.0f; // over-ride for pitch output, used by servo_test function float _yaw_test = 0.0f; // over-ride for yaw output, used by servo_test function // parameters AP_Int16 _servo1_pos; // Angular location of swash servo #1 AP_Int16 _servo2_pos; // Angular location of swash servo #2 AP_Int16 _servo3_pos; // Angular location of swash servo #3 AP_Int16 _tail_type; // Tail type used: Servo, Servo with external gyro, direct drive variable pitch or direct drive fixed pitch AP_Int8 _swash_type; // Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing AP_Int16 _ext_gyro_gain; // PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro AP_Int16 _phase_angle; // Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem AP_Float _collective_yaw_effect; // Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics. AP_Int8 _flybar_mode; // Flybar present or not. Affects attitude controller used during ACRO flight mode AP_Int16 _direct_drive_tailspeed; // Direct Drive VarPitch Tail ESC speed (0 ~ 1000) }; #endif // __AP_MOTORS_HELI_SINGLE_H__