/* * quaternion.cpp * Copyright (C) Andrew Tridgell 2012 * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #pragma GCC optimize("O2") #include "AP_Math.h" // return the rotation matrix equivalent for this quaternion void Quaternion::rotation_matrix(Matrix3f &m) const { const float q3q3 = q3 * q3; const float q3q4 = q3 * q4; const float q2q2 = q2 * q2; const float q2q3 = q2 * q3; const float q2q4 = q2 * q4; const float q1q2 = q1 * q2; const float q1q3 = q1 * q3; const float q1q4 = q1 * q4; const float q4q4 = q4 * q4; m.a.x = 1.0f-2.0f*(q3q3 + q4q4); m.a.y = 2.0f*(q2q3 - q1q4); m.a.z = 2.0f*(q2q4 + q1q3); m.b.x = 2.0f*(q2q3 + q1q4); m.b.y = 1.0f-2.0f*(q2q2 + q4q4); m.b.z = 2.0f*(q3q4 - q1q2); m.c.x = 2.0f*(q2q4 - q1q3); m.c.y = 2.0f*(q3q4 + q1q2); m.c.z = 1.0f-2.0f*(q2q2 + q3q3); } // return the rotation matrix equivalent for this quaternion after normalization void Quaternion::rotation_matrix_norm(Matrix3f &m) const { const float q1q1 = q1 * q1; const float q1q2 = q1 * q2; const float q1q3 = q1 * q3; const float q1q4 = q1 * q4; const float q2q2 = q2 * q2; const float q2q3 = q2 * q3; const float q2q4 = q2 * q4; const float q3q3 = q3 * q3; const float q3q4 = q3 * q4; const float q4q4 = q4 * q4; const float invs = 1.0f / (q1q1 + q2q2 + q3q3 + q4q4); m.a.x = ( q2q2 - q3q3 - q4q4 + q1q1)*invs; m.a.y = 2.0f*(q2q3 - q1q4)*invs; m.a.z = 2.0f*(q2q4 + q1q3)*invs; m.b.x = 2.0f*(q2q3 + q1q4)*invs; m.b.y = (-q2q2 + q3q3 - q4q4 + q1q1)*invs; m.b.z = 2.0f*(q3q4 - q1q2)*invs; m.c.x = 2.0f*(q2q4 - q1q3)*invs; m.c.y = 2.0f*(q3q4 + q1q2)*invs; m.c.z = (-q2q2 - q3q3 + q4q4 + q1q1)*invs; } // return the rotation matrix equivalent for this quaternion // Thanks to Martin John Baker // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm void Quaternion::from_rotation_matrix(const Matrix3f &m) { const float &m00 = m.a.x; const float &m11 = m.b.y; const float &m22 = m.c.z; const float &m10 = m.b.x; const float &m01 = m.a.y; const float &m20 = m.c.x; const float &m02 = m.a.z; const float &m21 = m.c.y; const float &m12 = m.b.z; float &qw = q1; float &qx = q2; float &qy = q3; float &qz = q4; const float tr = m00 + m11 + m22; if (tr > 0) { const float S = sqrtf(tr+1) * 2; qw = 0.25f * S; qx = (m21 - m12) / S; qy = (m02 - m20) / S; qz = (m10 - m01) / S; } else if ((m00 > m11) && (m00 > m22)) { const float S = sqrtf(1.0f + m00 - m11 - m22) * 2.0f; qw = (m21 - m12) / S; qx = 0.25f * S; qy = (m01 + m10) / S; qz = (m02 + m20) / S; } else if (m11 > m22) { const float S = sqrtf(1.0f + m11 - m00 - m22) * 2.0f; qw = (m02 - m20) / S; qx = (m01 + m10) / S; qy = 0.25f * S; qz = (m12 + m21) / S; } else { const float S = sqrtf(1.0f + m22 - m00 - m11) * 2.0f; qw = (m10 - m01) / S; qx = (m02 + m20) / S; qy = (m12 + m21) / S; qz = 0.25f * S; } } // convert a vector from earth to body frame void Quaternion::earth_to_body(Vector3f &v) const { Matrix3f m; rotation_matrix(m); v = m * v; } // create a quaternion from Euler angles void Quaternion::from_euler(float roll, float pitch, float yaw) { const float cr2 = cosf(roll*0.5f); const float cp2 = cosf(pitch*0.5f); const float cy2 = cosf(yaw*0.5f); const float sr2 = sinf(roll*0.5f); const float sp2 = sinf(pitch*0.5f); const float sy2 = sinf(yaw*0.5f); q1 = cr2*cp2*cy2 + sr2*sp2*sy2; q2 = sr2*cp2*cy2 - cr2*sp2*sy2; q3 = cr2*sp2*cy2 + sr2*cp2*sy2; q4 = cr2*cp2*sy2 - sr2*sp2*cy2; } // create a quaternion from Euler angles applied in yaw, roll, pitch order // instead of the normal yaw, pitch, roll order void Quaternion::from_vector312(float roll, float pitch, float yaw) { Matrix3f m; m.from_euler312(roll, pitch, yaw); from_rotation_matrix(m); } // create a quaternion from its axis-angle representation void Quaternion::from_axis_angle(Vector3f v) { const float theta = v.length(); if (is_zero(theta)) { q1 = 1.0f; q2=q3=q4=0.0f; return; } v /= theta; from_axis_angle(v,theta); } // create a quaternion from its axis-angle representation // the axis vector must be length 1, theta is in radians void Quaternion::from_axis_angle(const Vector3f &axis, float theta) { // axis must be a unit vector as there is no check for length if (is_zero(theta)) { q1 = 1.0f; q2=q3=q4=0.0f; return; } const float st2 = sinf(theta/2.0f); q1 = cosf(theta/2.0f); q2 = axis.x * st2; q3 = axis.y * st2; q4 = axis.z * st2; } // rotate by the provided axis angle void Quaternion::rotate(const Vector3f &v) { Quaternion r; r.from_axis_angle(v); (*this) *= r; } // convert this quaternion to a rotation vector where the direction of the vector represents // the axis of rotation and the length of the vector represents the angle of rotation void Quaternion::to_axis_angle(Vector3f &v) { const float l = sqrtf(sq(q2)+sq(q3)+sq(q4)); v = Vector3f(q2,q3,q4); if (!is_zero(l)) { v /= l; v *= wrap_PI(2.0f * atan2f(l,q1)); } } // create a quaternion from its axis-angle representation // only use with small angles. I.e. length of v should less than 0.17 radians (i.e. 10 degrees) void Quaternion::from_axis_angle_fast(Vector3f v) { const float theta = v.length(); if (is_zero(theta)) { q1 = 1.0f; q2=q3=q4=0.0f; return; } v /= theta; from_axis_angle_fast(v,theta); } // create a quaternion from its axis-angle representation // theta should less than 0.17 radians (i.e. 10 degrees) void Quaternion::from_axis_angle_fast(const Vector3f &axis, float theta) { const float t2 = theta/2.0f; const float sqt2 = sq(t2); const float st2 = t2-sqt2*t2/6.0f; q1 = 1.0f-(sqt2/2.0f)+sq(sqt2)/24.0f; q2 = axis.x * st2; q3 = axis.y * st2; q4 = axis.z * st2; } // rotate by the provided axis angle // only use with small angles. I.e. length of v should less than 0.17 radians (i.e. 10 degrees) void Quaternion::rotate_fast(const Vector3f &v) { const float theta = v.length(); if (is_zero(theta)) { return; } const float t2 = theta/2.0f; const float sqt2 = sq(t2); float st2 = t2-sqt2*t2/6.0f; st2 /= theta; //"rotation quaternion" const float w2 = 1.0f-(sqt2/2.0f)+sq(sqt2)/24.0f; const float x2 = v.x * st2; const float y2 = v.y * st2; const float z2 = v.z * st2; //copy our quaternion const float w1 = q1; const float x1 = q2; const float y1 = q3; const float z1 = q4; //do the multiply into our quaternion q1 = w1*w2 - x1*x2 - y1*y2 - z1*z2; q2 = w1*x2 + x1*w2 + y1*z2 - z1*y2; q3 = w1*y2 - x1*z2 + y1*w2 + z1*x2; q4 = w1*z2 + x1*y2 - y1*x2 + z1*w2; } // get euler roll angle float Quaternion::get_euler_roll() const { return (atan2f(2.0f*(q1*q2 + q3*q4), 1.0f - 2.0f*(q2*q2 + q3*q3))); } // get euler pitch angle float Quaternion::get_euler_pitch() const { return safe_asin(2.0f*(q1*q3 - q4*q2)); } // get euler yaw angle float Quaternion::get_euler_yaw() const { return atan2f(2.0f*(q1*q4 + q2*q3), 1.0f - 2.0f*(q3*q3 + q4*q4)); } // create eulers from a quaternion void Quaternion::to_euler(float &roll, float &pitch, float &yaw) const { roll = get_euler_roll(); pitch = get_euler_pitch(); yaw = get_euler_yaw(); } // create eulers from a quaternion Vector3f Quaternion::to_vector312(void) const { Matrix3f m; rotation_matrix(m); return m.to_euler312(); } float Quaternion::length(void) const { return sqrtf(sq(q1) + sq(q2) + sq(q3) + sq(q4)); } Quaternion Quaternion::inverse(void) const { return Quaternion(q1, -q2, -q3, -q4); } void Quaternion::normalize(void) { const float quatMag = length(); if (!is_zero(quatMag)) { const float quatMagInv = 1.0f/quatMag; q1 *= quatMagInv; q2 *= quatMagInv; q3 *= quatMagInv; q4 *= quatMagInv; } } Quaternion Quaternion::operator*(const Quaternion &v) const { Quaternion ret; const float &w1 = q1; const float &x1 = q2; const float &y1 = q3; const float &z1 = q4; const float w2 = v.q1; const float x2 = v.q2; const float y2 = v.q3; const float z2 = v.q4; ret.q1 = w1*w2 - x1*x2 - y1*y2 - z1*z2; ret.q2 = w1*x2 + x1*w2 + y1*z2 - z1*y2; ret.q3 = w1*y2 - x1*z2 + y1*w2 + z1*x2; ret.q4 = w1*z2 + x1*y2 - y1*x2 + z1*w2; return ret; } Quaternion &Quaternion::operator*=(const Quaternion &v) { const float w1 = q1; const float x1 = q2; const float y1 = q3; const float z1 = q4; const float w2 = v.q1; const float x2 = v.q2; const float y2 = v.q3; const float z2 = v.q4; q1 = w1*w2 - x1*x2 - y1*y2 - z1*z2; q2 = w1*x2 + x1*w2 + y1*z2 - z1*y2; q3 = w1*y2 - x1*z2 + y1*w2 + z1*x2; q4 = w1*z2 + x1*y2 - y1*x2 + z1*w2; return *this; } Quaternion Quaternion::operator/(const Quaternion &v) const { Quaternion ret; const float &quat0 = q1; const float &quat1 = q2; const float &quat2 = q3; const float &quat3 = q4; const float rquat0 = v.q1; const float rquat1 = v.q2; const float rquat2 = v.q3; const float rquat3 = v.q4; ret.q1 = (rquat0*quat0 + rquat1*quat1 + rquat2*quat2 + rquat3*quat3); ret.q2 = (rquat0*quat1 - rquat1*quat0 - rquat2*quat3 + rquat3*quat2); ret.q3 = (rquat0*quat2 + rquat1*quat3 - rquat2*quat0 - rquat3*quat1); ret.q4 = (rquat0*quat3 - rquat1*quat2 + rquat2*quat1 - rquat3*quat0); return ret; } // angular difference in radians between quaternions Quaternion Quaternion::angular_difference(const Quaternion &v) const { return v.inverse() * *this; }