/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_ICEngine.h" #if AP_ICENGINE_ENABLED #include #include #include #include #include #include #include #include extern const AP_HAL::HAL& hal; #define AP_ICENGINE_START_CHAN_DEBOUNCE_MS 300 const AP_Param::GroupInfo AP_ICEngine::var_info[] = { // @Param: ENABLE // @DisplayName: Enable ICEngine control // @Description: This enables internal combustion engine control // @Values: 0:Disabled, 1:Enabled // @User: Advanced AP_GROUPINFO_FLAGS("ENABLE", 0, AP_ICEngine, enable, 0, AP_PARAM_FLAG_ENABLE), // @Param: START_CHAN // @DisplayName: Input channel for engine start // @Description: This is an RC input channel for requesting engine start. Engine will try to start when channel is at or above 1700. Engine will stop when channel is at or below 1300. Between 1301 and 1699 the engine will not change state unless a MAVLink command or mission item commands a state change, or the vehicle is disarmed. See ICE_STARTCHN_MIN parameter to change engine stop PWM value and/or to enable debouncing of the START_CH to avoid accidental engine kills due to noise on channel. // @User: Standard // @Values: 0:None,1:Chan1,2:Chan2,3:Chan3,4:Chan4,5:Chan5,6:Chan6,7:Chan7,8:Chan8,9:Chan9,10:Chan10,11:Chan11,12:Chan12,13:Chan13,14:Chan14,15:Chan15,16:Chan16 AP_GROUPINFO("START_CHAN", 1, AP_ICEngine, start_chan, 0), // @Param: STARTER_TIME // @DisplayName: Time to run starter // @Description: This is the number of seconds to run the starter when trying to start the engine // @User: Standard // @Units: s // @Range: 0.1 5 AP_GROUPINFO("STARTER_TIME", 2, AP_ICEngine, starter_time, 3), // @Param: START_DELAY // @DisplayName: Time to wait between starts // @Description: Delay between start attempts // @User: Standard // @Units: s // @Range: 1 10 AP_GROUPINFO("START_DELAY", 3, AP_ICEngine, starter_delay, 2), #if AP_RPM_ENABLED // @Param: RPM_THRESH // @DisplayName: RPM threshold // @Description: This is the measured RPM above which the engine is considered to be running // @User: Standard // @Range: 100 100000 AP_GROUPINFO("RPM_THRESH", 4, AP_ICEngine, rpm_threshold, 100), #endif // @Param: PWM_IGN_ON // @DisplayName: PWM value for ignition on // @Description: This is the value sent to the ignition channel when on // @User: Standard // @Range: 1000 2000 AP_GROUPINFO("PWM_IGN_ON", 5, AP_ICEngine, pwm_ignition_on, 2000), // @Param: PWM_IGN_OFF // @DisplayName: PWM value for ignition off // @Description: This is the value sent to the ignition channel when off // @User: Standard // @Range: 1000 2000 AP_GROUPINFO("PWM_IGN_OFF", 6, AP_ICEngine, pwm_ignition_off, 1000), // @Param: PWM_STRT_ON // @DisplayName: PWM value for starter on // @Description: This is the value sent to the starter channel when on // @User: Standard // @Range: 1000 2000 AP_GROUPINFO("PWM_STRT_ON", 7, AP_ICEngine, pwm_starter_on, 2000), // @Param: PWM_STRT_OFF // @DisplayName: PWM value for starter off // @Description: This is the value sent to the starter channel when off // @User: Standard // @Range: 1000 2000 AP_GROUPINFO("PWM_STRT_OFF", 8, AP_ICEngine, pwm_starter_off, 1000), #if AP_RPM_ENABLED // @Param: RPM_CHAN // @DisplayName: RPM instance channel to use // @Description: This is which of the RPM instances to use for detecting the RPM of the engine // @User: Standard // @Values: 0:None,1:RPM1,2:RPM2 AP_GROUPINFO("RPM_CHAN", 9, AP_ICEngine, rpm_instance, 0), #endif // @Param: START_PCT // @DisplayName: Throttle percentage for engine start // @Description: This is the percentage throttle output for engine start // @User: Standard // @Range: 0 100 AP_GROUPINFO("START_PCT", 10, AP_ICEngine, start_percent, 5), // @Param: IDLE_PCT // @DisplayName: Throttle percentage for engine idle // @Description: This is the minimum percentage throttle output while running, this includes being disarmed, but not safe // @User: Standard // @Range: 0 100 AP_GROUPINFO("IDLE_PCT", 11, AP_ICEngine, idle_percent, 0), #if AP_RPM_ENABLED // @Param: IDLE_RPM // @DisplayName: RPM Setpoint for Idle Governor // @Description: This configures the RPM that will be commanded by the idle governor. Set to -1 to disable // @User: Advanced AP_GROUPINFO("IDLE_RPM", 12, AP_ICEngine, idle_rpm, -1), // @Param: IDLE_DB // @DisplayName: Deadband for Idle Governor // @Description: This configures the deadband that is tolerated before adjusting the idle setpoint AP_GROUPINFO("IDLE_DB", 13, AP_ICEngine, idle_db, 50), // @Param: IDLE_SLEW // @DisplayName: Slew Rate for idle control // @Description: This configures the slewrate used to adjust the idle setpoint in percentage points per second AP_GROUPINFO("IDLE_SLEW", 14, AP_ICEngine, idle_slew, 1), #endif // @Param: OPTIONS // @DisplayName: ICE options // @Description: Options for ICE control. The Disable ignition in RC failsafe option will cause the ignition to be set off on any R/C failsafe. If Throttle while disarmed is set then throttle control will be allowed while disarmed for planes when in MANUAL mode. If disable while disarmed is set the engine will not start while the vehicle is disarmed. // @Bitmask: 0:Disable ignition in RC failsafe,1:Disable redline governor,2:Throttle while disarmed,3:Disable while disarmed AP_GROUPINFO("OPTIONS", 15, AP_ICEngine, options, 0), // @Param: STARTCHN_MIN // @DisplayName: Input channel for engine start minimum PWM // @Description: This is a minimum PWM value for engine start channel for an engine stop to be commanded. Setting this value will avoid RC input glitches with low PWM values from causing an unwanted engine stop. A value of zero means any PWM below 1300 triggers an engine stop. // @User: Standard // @Range: 0 1300 AP_GROUPINFO("STARTCHN_MIN", 16, AP_ICEngine, start_chan_min_pwm, 0), #if AP_RPM_ENABLED // @Param: REDLINE_RPM // @DisplayName: RPM of the redline limit for the engine // @Description: Maximum RPM for the engine provided by the manufacturer. A value of 0 disables this feature. See ICE_OPTIONS to enable or disable the governor. // @User: Advanced // @Range: 0 2000000 // @Units: RPM AP_GROUPINFO("REDLINE_RPM", 17, AP_ICEngine, redline_rpm, 0), #endif AP_GROUPEND }; // constructor AP_ICEngine::AP_ICEngine() { AP_Param::setup_object_defaults(this, var_info); if (_singleton != nullptr) { AP_HAL::panic("AP_ICEngine must be singleton"); } _singleton = this; #if AP_RPM_ENABLED // ICEngine runs at 10Hz _rpm_filter.set_cutoff_frequency(10, 0.5f); #endif } /* update engine state */ void AP_ICEngine::update(void) { if (!enable) { return; } uint16_t cvalue = 1500; RC_Channel *c = rc().channel(start_chan-1); if (c != nullptr && rc().has_valid_input()) { // get starter control channel cvalue = c->get_radio_in(); if (cvalue < start_chan_min_pwm) { cvalue = start_chan_last_value; } // snap the input to either 1000, 1500, or 2000 // this is useful to compare a debounce changed value // while ignoring tiny noise if (cvalue >= RC_Channel::AUX_PWM_TRIGGER_HIGH) { cvalue = 2000; } else if ((cvalue > 800) && (cvalue <= RC_Channel::AUX_PWM_TRIGGER_LOW)) { cvalue = 1300; } else { cvalue = 1500; } } bool should_run = false; uint32_t now = AP_HAL::millis(); // debounce timer to protect from spurious changes on start_chan rc input // If the cached value is the same, reset timer if (start_chan_last_value == cvalue) { start_chan_last_ms = now; } else if (now - start_chan_last_ms >= AP_ICENGINE_START_CHAN_DEBOUNCE_MS) { // if it has changed, and stayed changed for the duration, then use that new value start_chan_last_value = cvalue; } if (state == ICE_START_HEIGHT_DELAY && start_chan_last_value >= RC_Channel::AUX_PWM_TRIGGER_HIGH) { // user is overriding the height start delay and asking for // immediate start. Put into ICE_OFF so that the logic below // can start the engine now state = ICE_OFF; } if (state == ICE_OFF && start_chan_last_value >= RC_Channel::AUX_PWM_TRIGGER_HIGH) { should_run = true; } else if (start_chan_last_value <= RC_Channel::AUX_PWM_TRIGGER_LOW) { should_run = false; // clear the single start flag now that we will be stopping the engine if (state != ICE_OFF) { allow_single_start_while_disarmed = false; } } else if (state != ICE_OFF) { should_run = true; } if (option_set(Options::DISABLE_IGNITION_RC_FAILSAFE) && AP_Notify::flags.failsafe_radio) { // user has requested ignition kill on RC failsafe should_run = false; } if (option_set(Options::NO_RUNNING_WHILE_DISARMED)) { if (hal.util->get_soft_armed()) { // clear the disarmed start flag, as we are now armed, if we disarm again we expect the engine to stop allow_single_start_while_disarmed = false; } else { // check if we are blocking disarmed starts if (!allow_single_start_while_disarmed) { should_run = false; } } } #if HAL_PARACHUTE_ENABLED // Stop on parachute deployment AP_Parachute *parachute = AP::parachute(); if ((parachute != nullptr) && parachute->release_initiated()) { should_run = false; } #endif // switch on current state to work out new state switch (state) { case ICE_DISABLED: return; case ICE_OFF: if (should_run) { state = ICE_START_DELAY; } break; case ICE_START_HEIGHT_DELAY: { Vector3f pos; if (!should_run) { state = ICE_OFF; } else if (AP::ahrs().get_relative_position_NED_origin(pos)) { if (height_pending) { height_pending = false; initial_height = -pos.z; } else if ((-pos.z) >= initial_height + height_required) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Starting height reached %.1f", (double)(-pos.z - initial_height)); state = ICE_STARTING; } } break; } case ICE_START_DELAY: if (!should_run) { state = ICE_OFF; } else if (now - starter_last_run_ms >= starter_delay*1000) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Starting engine"); state = ICE_STARTING; } break; case ICE_STARTING: if (!should_run) { state = ICE_OFF; } else if (now - starter_start_time_ms >= starter_time*1000) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Engine running"); state = ICE_RUNNING; } break; case ICE_RUNNING: if (!should_run) { state = ICE_OFF; GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Stopped engine"); } #if AP_RPM_ENABLED else if (rpm_instance > 0) { // check RPM to see if still running float rpm_value; if (!AP::rpm()->get_rpm(rpm_instance-1, rpm_value) || rpm_value < rpm_threshold) { // engine has stopped when it should be running state = ICE_START_DELAY; GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Uncommanded engine stop"); } } #endif break; } if (!hal.util->get_soft_armed()) { if (state == ICE_START_HEIGHT_DELAY) { // when disarmed we can be waiting for takeoff Vector3f pos; if (AP::ahrs().get_relative_position_NED_origin(pos)) { // reset initial height while disarmed initial_height = -pos.z; } } else if (idle_percent <= 0 && !option_set(Options::THROTTLE_WHILE_DISARMED)) { // force ignition off when disarmed state = ICE_OFF; } } #if AP_RPM_ENABLED // check against redline RPM float rpm_value; if (rpm_instance > 0 && redline_rpm > 0 && AP::rpm()->get_rpm(rpm_instance-1, rpm_value)) { // update the filtered RPM value filtered_rpm_value = _rpm_filter.apply(rpm_value); if (!redline.flag && filtered_rpm_value > redline_rpm) { // redline governor is off. rpm is too high. enable the governor GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Engine: Above redline RPM"); redline.flag = true; } else if (redline.flag && filtered_rpm_value < redline_rpm * 0.9f) { // redline governor is on. rpm is safely below. disable the governor redline.flag = false; // reset redline governor redline.throttle_percentage = 0.0f; redline.governor_integrator = 0.0f; } } else { redline.flag = false; } #endif // AP_RPM_ENABLED /* now set output channels */ switch (state) { case ICE_DISABLED: return; case ICE_OFF: SRV_Channels::set_output_pwm(SRV_Channel::k_ignition, pwm_ignition_off); SRV_Channels::set_output_pwm(SRV_Channel::k_starter, pwm_starter_off); starter_start_time_ms = 0; break; case ICE_START_HEIGHT_DELAY: case ICE_START_DELAY: SRV_Channels::set_output_pwm(SRV_Channel::k_ignition, pwm_ignition_on); SRV_Channels::set_output_pwm(SRV_Channel::k_starter, pwm_starter_off); break; case ICE_STARTING: SRV_Channels::set_output_pwm(SRV_Channel::k_ignition, pwm_ignition_on); SRV_Channels::set_output_pwm(SRV_Channel::k_starter, pwm_starter_on); if (starter_start_time_ms == 0) { starter_start_time_ms = now; } starter_last_run_ms = now; break; case ICE_RUNNING: SRV_Channels::set_output_pwm(SRV_Channel::k_ignition, pwm_ignition_on); SRV_Channels::set_output_pwm(SRV_Channel::k_starter, pwm_starter_off); starter_start_time_ms = 0; break; } } /* check for throttle override. This allows the ICE controller to force the correct starting throttle when starting the engine and maintain idle when disarmed base_throttle is the throttle before the disarmed override check. This allows for throttle control while disarmed */ bool AP_ICEngine::throttle_override(float &percentage, const float base_throttle) { if (!enable) { return false; } if (state == ICE_RUNNING && idle_percent > 0 && idle_percent < 100 && idle_percent > percentage) { percentage = idle_percent; if (option_set(Options::THROTTLE_WHILE_DISARMED) && !hal.util->get_soft_armed()) { percentage = MAX(percentage, base_throttle); } return true; } if (state == ICE_STARTING || state == ICE_START_DELAY) { percentage = start_percent.get(); return true; } else if (state != ICE_RUNNING && hal.util->get_soft_armed()) { percentage = 0; return true; } #if AP_RPM_ENABLED if (redline.flag && !option_set(Options::DISABLE_REDLINE_GOVERNOR)) { // limit the throttle from increasing above what the current output is if (redline.throttle_percentage < 1.0f) { redline.throttle_percentage = percentage; } if (percentage < redline.throttle_percentage - redline.governor_integrator) { // the throttle before the override is much lower than what the integrator is at // reset the integrator redline.governor_integrator = 0; redline.throttle_percentage = percentage; } else if (percentage < redline.throttle_percentage) { // the throttle is below the integrator set point // remove the difference from the integrator redline.governor_integrator -= redline.throttle_percentage - percentage; redline.throttle_percentage = percentage; } else if (filtered_rpm_value > redline_rpm) { // reduce the throttle if still over the redline RPM const float redline_setpoint_step = idle_slew * AP::scheduler().get_loop_period_s(); redline.governor_integrator += redline_setpoint_step; } percentage = redline.throttle_percentage - redline.governor_integrator; return true; } #endif // AP_RPM_ENABLED // if THROTTLE_WHILE_DISARMED is set then we use the base_throttle, allowing the pilot to control throttle while disarmed if (option_set(Options::THROTTLE_WHILE_DISARMED) && !hal.util->get_soft_armed() && base_throttle > percentage) { percentage = base_throttle; return true; } return false; } /* handle DO_ENGINE_CONTROL messages via MAVLink or mission */ bool AP_ICEngine::engine_control(float start_control, float cold_start, float height_delay, uint32_t flags) { if (!enable) { return false; } // always update the start while disarmed flag allow_single_start_while_disarmed = (flags & ENGINE_CONTROL_OPTIONS_ALLOW_START_WHILE_DISARMED) != 0; if (start_control <= 0) { state = ICE_OFF; return true; } if (state == ICE_RUNNING || state == ICE_START_DELAY || state == ICE_STARTING) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Engine: already running"); return false; } RC_Channel *c = rc().channel(start_chan-1); if (c != nullptr && rc().has_valid_input()) { // get starter control channel uint16_t cvalue = c->get_radio_in(); if (cvalue >= start_chan_min_pwm && cvalue <= RC_Channel::AUX_PWM_TRIGGER_LOW) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Engine: start control disabled"); return false; } } if (height_delay > 0) { height_pending = true; initial_height = 0; height_required = height_delay; state = ICE_START_HEIGHT_DELAY; GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Takeoff height set to %.1fm", (double)height_delay); return true; } state = ICE_STARTING; return true; } /* Update low throttle limit to ensure steady idle for IC Engines return a new min_throttle value */ void AP_ICEngine::update_idle_governor(int8_t &min_throttle) { if (!enable) { return; } #if AP_RPM_ENABLED const int8_t min_throttle_base = min_throttle; // Initialize idle point to min_throttle on the first run static bool idle_point_initialized = false; if (!idle_point_initialized) { idle_governor_integrator = min_throttle; idle_point_initialized = true; } AP_RPM *ap_rpm = AP::rpm(); if (!ap_rpm || rpm_instance == 0 || !ap_rpm->healthy(rpm_instance-1)) { return; } // Check to make sure we have an enabled IC Engine, EFI Instance and that the idle governor is enabled if (get_state() != AP_ICEngine::ICE_RUNNING || idle_rpm < 0) { return; } // get current RPM feedback float rpmv; // Double Check to make sure engine is really running if (!ap_rpm->get_rpm(rpm_instance-1, rpmv) || rpmv < 1) { // Reset idle point to the default value when the engine is stopped idle_governor_integrator = min_throttle; return; } // Override min_throttle = roundf(idle_governor_integrator); // Calculate Error in system int32_t error = idle_rpm - rpmv; bool underspeed = error > 0; // Don't adjust idle point when we're within the deadband if (abs(error) < idle_db) { return; } // Don't adjust idle point if the commanded throttle is above the // current idle throttle setpoint and the RPM is above the idle // RPM setpoint (Normal flight) if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) > min_throttle && !underspeed) { return; } // Calculate the change per loop to achieve the desired slew rate of 1 percent per second static const float idle_setpoint_step = idle_slew * AP::scheduler().get_loop_period_s(); // Update Integrator if (underspeed) { idle_governor_integrator += idle_setpoint_step; } else { idle_governor_integrator -= idle_setpoint_step; } idle_governor_integrator = constrain_float(idle_governor_integrator, min_throttle_base, 40.0f); min_throttle = roundf(idle_governor_integrator); #endif // AP_RPM_ENABLED } // singleton instance. Should only ever be set in the constructor. AP_ICEngine *AP_ICEngine::_singleton; namespace AP { AP_ICEngine *ice() { return AP_ICEngine::get_singleton(); } } #endif // AP_ICENGINE_ENABLED