/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* IOMCU main firmware */ #include #include #include #include "iofirmware.h" #include "hal.h" #include #include "analog.h" #include "sbus_out.h" extern const AP_HAL::HAL &hal; //#pragma GCC optimize("Og") static AP_IOMCU_FW iomcu; void setup(); void loop(); const AP_HAL::HAL& hal = AP_HAL::get_HAL(); // pending events on the main thread enum ioevents { IOEVENT_PWM=1, }; static uint32_t num_code_read, num_bad_crc, num_write_pkt, num_unknown_pkt; static uint32_t num_idle_rx, num_dma_complete_rx, num_total_rx, num_rx_error; static void dma_rx_end_cb(UARTDriver *uart) { osalSysLockFromISR(); uart->usart->CR3 &= ~(USART_CR3_DMAT | USART_CR3_DMAR); (void)uart->usart->SR; (void)uart->usart->DR; (void)uart->usart->DR; dmaStreamDisable(uart->dmarx); dmaStreamDisable(uart->dmatx); iomcu.process_io_packet(); num_total_rx++; num_dma_complete_rx = num_total_rx - num_idle_rx; dmaStreamSetMemory0(uart->dmarx, &iomcu.rx_io_packet); dmaStreamSetTransactionSize(uart->dmarx, sizeof(iomcu.rx_io_packet)); dmaStreamSetMode(uart->dmarx, uart->dmamode | STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE); dmaStreamEnable(uart->dmarx); uart->usart->CR3 |= USART_CR3_DMAR; dmaStreamSetMemory0(uart->dmatx, &iomcu.tx_io_packet); dmaStreamSetTransactionSize(uart->dmatx, iomcu.tx_io_packet.get_size()); dmaStreamSetMode(uart->dmatx, uart->dmamode | STM32_DMA_CR_DIR_M2P | STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE); dmaStreamEnable(uart->dmatx); uart->usart->CR3 |= USART_CR3_DMAT; osalSysUnlockFromISR(); } static void idle_rx_handler(UARTDriver *uart) { volatile uint16_t sr = uart->usart->SR; if (sr & (USART_SR_LBD | USART_SR_ORE | /* overrun error - packet was too big for DMA or DMA was too slow */ USART_SR_NE | /* noise error - we have lost a byte due to noise */ USART_SR_FE | USART_SR_PE)) { /* framing error - start/stop bit lost or line break */ /* send a line break - this will abort transmission/reception on the other end */ osalSysLockFromISR(); uart->usart->SR = ~USART_SR_LBD; uart->usart->CR1 |= USART_CR1_SBK; num_rx_error++; uart->usart->CR3 &= ~(USART_CR3_DMAT | USART_CR3_DMAR); (void)uart->usart->SR; (void)uart->usart->DR; (void)uart->usart->DR; dmaStreamDisable(uart->dmarx); dmaStreamDisable(uart->dmatx); dmaStreamSetMemory0(uart->dmarx, &iomcu.rx_io_packet); dmaStreamSetTransactionSize(uart->dmarx, sizeof(iomcu.rx_io_packet)); dmaStreamSetMode(uart->dmarx, uart->dmamode | STM32_DMA_CR_DIR_P2M | STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE); dmaStreamEnable(uart->dmarx); uart->usart->CR3 |= USART_CR3_DMAR; osalSysUnlockFromISR(); return; } if (sr & USART_SR_IDLE) { dma_rx_end_cb(uart); num_idle_rx++; } } /* * UART driver configuration structure. */ static UARTConfig uart_cfg = { nullptr, nullptr, dma_rx_end_cb, nullptr, nullptr, idle_rx_handler, 1500000, //1.5MBit USART_CR1_IDLEIE, 0, 0 }; void setup(void) { // we need to release the JTAG reset pin to be used as a GPIO, otherwise we can't enable // or disable SBUS out AFIO->MAPR = AFIO_MAPR_SWJ_CFG_NOJNTRST; hal.rcin->init(); hal.rcout->init(); for (uint8_t i = 0; i< 14; i++) { hal.rcout->enable_ch(i); } iomcu.init(); iomcu.calculate_fw_crc(); uartStart(&UARTD2, &uart_cfg); uartStartReceive(&UARTD2, sizeof(iomcu.rx_io_packet), &iomcu.rx_io_packet); } void loop(void) { iomcu.update(); } void AP_IOMCU_FW::init() { config.protocol_version = IOMCU_PROTOCOL_VERSION; thread_ctx = chThdGetSelfX(); if (palReadLine(HAL_GPIO_PIN_IO_HW_DETECT1) == 1 && palReadLine(HAL_GPIO_PIN_IO_HW_DETECT2) == 0) { has_heater = true; } adc_init(); sbus_out_init(); } void AP_IOMCU_FW::update() { eventmask_t mask = chEvtWaitAnyTimeout(~0, chTimeMS2I(1)); if (do_reboot && (AP_HAL::millis() > reboot_time)) { hal.scheduler->reboot(true); while (true) {} } if ((mask & EVENT_MASK(IOEVENT_PWM)) || (last_safety_off != reg_status.flag_safety_off)) { last_safety_off = reg_status.flag_safety_off; pwm_out_update(); } uint32_t now = AP_HAL::millis(); // output SBUS if enabled if ((reg_setup.features & P_SETUP_FEATURES_SBUS1_OUT) && reg_status.flag_safety_off && now - sbus_last_ms >= sbus_interval_ms) { // output a new SBUS frame sbus_last_ms = now; sbus_out_write(reg_servo.pwm, IOMCU_MAX_CHANNELS); } // handle FMU failsafe if (now - fmu_data_received_time > 10) { // we are not getting input from the FMU. Fill in failsafe values fill_failsafe_pwm(); chEvtSignal(thread_ctx, EVENT_MASK(IOEVENT_PWM)); // mark as done fmu_data_received_time = now; } // run remaining functions at 1kHz if (now != last_loop_ms) { last_loop_ms = now; heater_update(); rcin_update(); safety_update(); rcout_mode_update(); hal.rcout->timer_tick(); } } void AP_IOMCU_FW::pwm_out_update() { memcpy(reg_servo.pwm, reg_direct_pwm.pwm, sizeof(reg_direct_pwm)); hal.rcout->cork(); for (uint8_t i = 0; i < SERVO_COUNT; i++) { if (reg_servo.pwm[i] != 0) { hal.rcout->write(i, reg_status.flag_safety_off?reg_servo.pwm[i]:0); } } hal.rcout->push(); } void AP_IOMCU_FW::heater_update() { uint32_t now = AP_HAL::millis(); if (!has_heater) { // use blue LED as heartbeat if (now - last_blue_led_ms > 500) { palToggleLine(HAL_GPIO_PIN_HEATER); last_blue_led_ms = now; } } else if (reg_setup.heater_duty_cycle == 0 || (now - last_heater_ms > 3000UL)) { palWriteLine(HAL_GPIO_PIN_HEATER, 0); } else { uint8_t cycle = ((now / 10UL) % 100U); palWriteLine(HAL_GPIO_PIN_HEATER, !(cycle >= reg_setup.heater_duty_cycle)); } } void AP_IOMCU_FW::rcin_update() { ((ChibiOS::RCInput *)hal.rcin)->_timer_tick(); uint32_t now = AP_HAL::micros(); if (hal.rcin->new_input()) { rc_input.count = hal.rcin->num_channels(); rc_input.flags_rc_ok = true; for (uint8_t i = 0; i < IOMCU_MAX_CHANNELS; i++) { rc_input.pwm[i] = hal.rcin->read(i); } rc_input.last_input_us = now; } else if (now - rc_input.last_input_us > 200000U) { rc_input.flags_rc_ok = false; } if (update_rcout_freq) { hal.rcout->set_freq(reg_setup.pwm_rates, reg_setup.pwm_altrate); update_rcout_freq = false; } if (update_default_rate) { hal.rcout->set_default_rate(reg_setup.pwm_defaultrate); } // check for active override channel if (mixing.enabled && mixing.rc_chan_override > 0 && mixing.rc_chan_override <= IOMCU_MAX_CHANNELS) { override_active = (rc_input.pwm[mixing.rc_chan_override-1] >= 1750); } else { override_active = false; } } void AP_IOMCU_FW::process_io_packet() { uint8_t rx_crc = rx_io_packet.crc; uint8_t calc_crc; rx_io_packet.crc = 0; uint8_t pkt_size = rx_io_packet.get_size(); if (rx_io_packet.code == CODE_READ) { // allow for more bandwidth efficient read packets calc_crc = crc_crc8((const uint8_t *)&rx_io_packet, 4); if (calc_crc != rx_crc) { calc_crc = crc_crc8((const uint8_t *)&rx_io_packet, pkt_size); } } else { calc_crc = crc_crc8((const uint8_t *)&rx_io_packet, pkt_size); } if (rx_crc != calc_crc) { memset(&tx_io_packet, 0xFF, sizeof(tx_io_packet)); tx_io_packet.count = 0; tx_io_packet.code = CODE_CORRUPT; tx_io_packet.crc = 0; tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size()); num_bad_crc++; return; } switch (rx_io_packet.code) { case CODE_READ: { num_code_read++; if (!handle_code_read()) { memset(&tx_io_packet, 0xFF, sizeof(tx_io_packet)); tx_io_packet.count = 0; tx_io_packet.code = CODE_ERROR; tx_io_packet.crc = 0; tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size()); } } break; case CODE_WRITE: { num_write_pkt++; if (!handle_code_write()) { memset(&tx_io_packet, 0xFF, sizeof(tx_io_packet)); tx_io_packet.count = 0; tx_io_packet.code = CODE_ERROR; tx_io_packet.crc = 0; tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size()); } } break; default: { num_unknown_pkt++; } break; } } /* update dynamic elements of status page */ void AP_IOMCU_FW::page_status_update(void) { if ((reg_setup.features & P_SETUP_FEATURES_SBUS1_OUT) == 0) { // we can only get VRSSI when sbus is disabled reg_status.vrssi = adc_sample_vrssi(); } else { reg_status.vrssi = 0; } reg_status.vservo = adc_sample_vservo(); } bool AP_IOMCU_FW::handle_code_read() { uint16_t *values = nullptr; #define COPY_PAGE(_page_name) \ do { \ values = (uint16_t *)&_page_name; \ tx_io_packet.count = sizeof(_page_name) / sizeof(uint16_t); \ } while(0); switch (rx_io_packet.page) { case PAGE_CONFIG: COPY_PAGE(config); break; case PAGE_SETUP: COPY_PAGE(reg_setup); break; case PAGE_RAW_RCIN: COPY_PAGE(rc_input); break; case PAGE_STATUS: page_status_update(); COPY_PAGE(reg_status); break; case PAGE_SERVOS: COPY_PAGE(reg_servo); break; default: return false; } /* if the offset is at or beyond the end of the page, we have no data */ if (rx_io_packet.offset >= tx_io_packet.count) { return false; } /* correct the data pointer and count for the offset */ values += rx_io_packet.offset; tx_io_packet.count -= rx_io_packet.offset; tx_io_packet.count = MIN(tx_io_packet.count, rx_io_packet.count); memcpy(tx_io_packet.regs, values, sizeof(uint16_t)*tx_io_packet.count); tx_io_packet.crc = 0; tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size()); return true; } bool AP_IOMCU_FW::handle_code_write() { switch (rx_io_packet.page) { case PAGE_SETUP: switch (rx_io_packet.offset) { case PAGE_REG_SETUP_ARMING: reg_setup.arming = rx_io_packet.regs[0]; break; case PAGE_REG_SETUP_FORCE_SAFETY_OFF: if (rx_io_packet.regs[0] == FORCE_SAFETY_MAGIC) { hal.rcout->force_safety_off(); reg_status.flag_safety_off = true; } else { return false; } break; case PAGE_REG_SETUP_FORCE_SAFETY_ON: if (rx_io_packet.regs[0] == FORCE_SAFETY_MAGIC) { hal.rcout->force_safety_on(); reg_status.flag_safety_off = false; } else { return false; } break; case PAGE_REG_SETUP_ALTRATE: reg_setup.pwm_altrate = rx_io_packet.regs[0]; update_rcout_freq = true; break; case PAGE_REG_SETUP_PWM_RATE_MASK: reg_setup.pwm_rates = rx_io_packet.regs[0]; update_rcout_freq = true; break; case PAGE_REG_SETUP_DEFAULTRATE: if (rx_io_packet.regs[0] < 25 && reg_setup.pwm_altclock == 1) { rx_io_packet.regs[0] = 25; } if (rx_io_packet.regs[0] > 400 && reg_setup.pwm_altclock == 1) { rx_io_packet.regs[0] = 400; } reg_setup.pwm_defaultrate = rx_io_packet.regs[0]; update_default_rate = true; break; case PAGE_REG_SETUP_SBUS_RATE: reg_setup.sbus_rate = rx_io_packet.regs[0]; sbus_interval_ms = MAX(1000U / reg_setup.sbus_rate,3); break; case PAGE_REG_SETUP_FEATURES: reg_setup.features = rx_io_packet.regs[0]; /* disable the conflicting options with SBUS 1 */ if (reg_setup.features & (P_SETUP_FEATURES_SBUS1_OUT)) { reg_setup.features &= ~(P_SETUP_FEATURES_PWM_RSSI | P_SETUP_FEATURES_ADC_RSSI | P_SETUP_FEATURES_SBUS2_OUT); // enable SBUS output at specified rate sbus_interval_ms = MAX(1000U / reg_setup.sbus_rate,3); palClearLine(HAL_GPIO_PIN_SBUS_OUT_EN); } else { palSetLine(HAL_GPIO_PIN_SBUS_OUT_EN); } break; case PAGE_REG_SETUP_HEATER_DUTY_CYCLE: reg_setup.heater_duty_cycle = rx_io_packet.regs[0]; last_heater_ms = AP_HAL::millis(); break; case PAGE_REG_SETUP_REBOOT_BL: if (reg_status.flag_safety_off) { // don't allow reboot while armed return false; } // check the magic value if (rx_io_packet.regs[0] != REBOOT_BL_MAGIC) { return false; } schedule_reboot(100); break; default: break; } break; case PAGE_DIRECT_PWM: { if (override_active) { // no input when override is active break; } /* copy channel data */ uint8_t i = 0, offset = rx_io_packet.offset, num_values = rx_io_packet.count; while ((offset < IOMCU_MAX_CHANNELS) && (num_values > 0)) { /* XXX range-check value? */ if (rx_io_packet.regs[i] != PWM_IGNORE_THIS_CHANNEL) { reg_direct_pwm.pwm[offset] = rx_io_packet.regs[i]; } offset++; num_values--; i++; } fmu_data_received_time = AP_HAL::millis(); reg_status.flag_fmu_ok = true; reg_status.flag_raw_pwm = true; chEvtSignalI(thread_ctx, EVENT_MASK(IOEVENT_PWM)); break; } case PAGE_MIXING: { uint8_t offset = rx_io_packet.offset, num_values = rx_io_packet.count; memcpy(((uint16_t *)&mixing)+offset, &rx_io_packet.regs[0], num_values*2); break; } case PAGE_SAFETY_PWM: { uint8_t offset = rx_io_packet.offset, num_values = rx_io_packet.count; memcpy((®_safety_pwm.pwm[0])+offset, &rx_io_packet.regs[0], num_values*2); break; } case PAGE_FAILSAFE_PWM: { uint8_t offset = rx_io_packet.offset, num_values = rx_io_packet.count; memcpy((®_failsafe_pwm.pwm[0])+offset, &rx_io_packet.regs[0], num_values*2); break; } default: break; } memset(&tx_io_packet, 0xFF, sizeof(tx_io_packet)); tx_io_packet.count = 0; tx_io_packet.code = CODE_SUCCESS; tx_io_packet.crc = 0; tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size()); return true; } void AP_IOMCU_FW::schedule_reboot(uint32_t time_ms) { do_reboot = true; reboot_time = AP_HAL::millis() + time_ms; } void AP_IOMCU_FW::calculate_fw_crc(void) { #define APP_SIZE_MAX 0xf000 #define APP_LOAD_ADDRESS 0x08001000 // compute CRC of the current firmware uint32_t sum = 0; for (unsigned p = 0; p < APP_SIZE_MAX; p += 4) { uint32_t bytes = *(uint32_t *)(p + APP_LOAD_ADDRESS); sum = crc_crc32(sum, (const uint8_t *)&bytes, sizeof(bytes)); } reg_setup.crc[0] = sum & 0xFFFF; reg_setup.crc[1] = sum >> 16; } /* update safety state */ void AP_IOMCU_FW::safety_update(void) { uint32_t now = AP_HAL::millis(); if (now - safety_update_ms < 100) { // update safety at 10Hz return; } safety_update_ms = now; bool safety_pressed = palReadLine(HAL_GPIO_PIN_SAFETY_INPUT); if (safety_pressed) { if (reg_status.flag_safety_off && (reg_setup.arming & P_SETUP_ARMING_SAFETY_DISABLE_ON)) { safety_pressed = false; } else if ((!reg_status.flag_safety_off) && (reg_setup.arming & P_SETUP_ARMING_SAFETY_DISABLE_OFF)) { safety_pressed = false; } } if (safety_pressed) { safety_button_counter++; } else { safety_button_counter = 0; } if (safety_button_counter == 10) { // safety has been pressed for 1 second, change state reg_status.flag_safety_off = !reg_status.flag_safety_off; } led_counter = (led_counter+1) % 16; const uint16_t led_pattern = reg_status.flag_safety_off?0xFFFF:0x5500; palWriteLine(HAL_GPIO_PIN_SAFETY_LED, (led_pattern & (1U << led_counter))?0:1); } /* update hal.rcout mode if needed */ void AP_IOMCU_FW::rcout_mode_update(void) { bool use_oneshot = (reg_setup.features & P_SETUP_FEATURES_ONESHOT) != 0; if (use_oneshot && !oneshot_enabled) { oneshot_enabled = true; hal.rcout->set_output_mode(reg_setup.pwm_rates, AP_HAL::RCOutput::MODE_PWM_ONESHOT); } bool use_brushed = (reg_setup.features & P_SETUP_FEATURES_BRUSHED) != 0; if (use_brushed && !brushed_enabled) { brushed_enabled = true; if (reg_setup.pwm_rates == 0) { // default to 2kHz for all channels for brushed output reg_setup.pwm_rates = 0xFF; reg_setup.pwm_altrate = 2000; hal.rcout->set_freq(reg_setup.pwm_rates, reg_setup.pwm_altrate); } hal.rcout->set_esc_scaling(1000, 2000); hal.rcout->set_output_mode(reg_setup.pwm_rates, AP_HAL::RCOutput::MODE_PWM_BRUSHED); hal.rcout->set_freq(reg_setup.pwm_rates, reg_setup.pwm_altrate); } } /* fill in failsafe PWM values */ void AP_IOMCU_FW::fill_failsafe_pwm(void) { for (uint8_t i=0; i