/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #define ARM_DELAY 20 // called at 10hz so 2 seconds #define DISARM_DELAY 20 // called at 10hz so 2 seconds #define AUTO_TRIM_DELAY 100 // called at 10hz so 10 seconds #define AUTO_DISARMING_DELAY 15 // called at 1hz so 15 seconds #define LOST_VEHICLE_DELAY 10 // called at 10hz so 1 second static uint8_t auto_disarming_counter; // arm_motors_check - checks for pilot input to arm or disarm the copter // called at 10hz static void arm_motors_check() { static int16_t arming_counter; // ensure throttle is down if (g.rc_3.control_in > 0) { arming_counter = 0; return; } int16_t tmp = g.rc_4.control_in; // full right if (tmp > 4000) { // increase the arming counter to a maximum of 1 beyond the auto trim counter if( arming_counter <= AUTO_TRIM_DELAY ) { arming_counter++; } // arm the motors and configure for flight if (arming_counter == ARM_DELAY && !motors.armed()) { // reset arming counter if arming fail if (!init_arm_motors(false)) { arming_counter = 0; } } // arm the motors and configure for flight if (arming_counter == AUTO_TRIM_DELAY && motors.armed() && control_mode == STABILIZE) { auto_trim_counter = 250; // ensure auto-disarm doesn't trigger immediately auto_disarming_counter = 0; } // full left }else if (tmp < -4000) { if (!mode_has_manual_throttle(control_mode) && !ap.land_complete) { arming_counter = 0; return; } // increase the counter to a maximum of 1 beyond the disarm delay if( arming_counter <= DISARM_DELAY ) { arming_counter++; } // disarm the motors if (arming_counter == DISARM_DELAY && motors.armed()) { init_disarm_motors(); } // Yaw is centered so reset arming counter }else{ arming_counter = 0; } } // auto_disarm_check - disarms the copter if it has been sitting on the ground in manual mode with throttle low for at least 15 seconds // called at 1hz static void auto_disarm_check() { // exit immediately if we are already disarmed or throttle is not zero if (!motors.armed() || !ap.throttle_zero) { auto_disarming_counter = 0; return; } // allow auto disarm in manual flight modes or Loiter/AltHold if we're landed if (mode_has_manual_throttle(control_mode) || ap.land_complete) { auto_disarming_counter++; if(auto_disarming_counter >= AUTO_DISARMING_DELAY) { init_disarm_motors(); auto_disarming_counter = 0; } }else{ auto_disarming_counter = 0; } } // init_arm_motors - performs arming process including initialisation of barometer and gyros // returns false if arming failed because of pre-arm checks, arming checks or a gyro calibration failure static bool init_arm_motors(bool arming_from_gcs) { // arming marker // Flag used to track if we have armed the motors the first time. // This is used to decide if we should run the ground_start routine // which calibrates the IMU static bool did_ground_start = false; static bool in_arm_motors = false; // exit immediately if already in this function if (in_arm_motors) { return false; } in_arm_motors = true; // run pre-arm-checks and display failures if(!pre_arm_checks(true) || !arm_checks(true, arming_from_gcs)) { AP_Notify::events.arming_failed = true; in_arm_motors = false; return false; } // disable cpu failsafe because initialising everything takes a while failsafe_disable(); // reset battery failsafe set_failsafe_battery(false); // notify that arming will occur (we do this early to give plenty of warning) AP_Notify::flags.armed = true; // call update_notify a few times to ensure the message gets out for (uint8_t i=0; i<=10; i++) { update_notify(); } #if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL gcs_send_text_P(SEVERITY_HIGH, PSTR("ARMING MOTORS")); #endif // Remember Orientation // -------------------- init_simple_bearing(); initial_armed_bearing = ahrs.yaw_sensor; // Reset home position if it has already been set before (but not locked) if (ap.home_state == HOME_SET_NOT_LOCKED) { set_home_to_current_location(); } calc_distance_and_bearing(); if(did_ground_start == false) { startup_ground(true); // final check that gyros calibrated successfully if (((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) && !ins.gyro_calibrated_ok_all()) { gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Gyro calibration failed")); AP_Notify::flags.armed = false; failsafe_enable(); in_arm_motors = false; return false; } did_ground_start = true; } // enable gps velocity based centrefugal force compensation ahrs.set_correct_centrifugal(true); hal.util->set_soft_armed(true); // set hover throttle motors.set_hover_throttle(g.throttle_mid); #if SPRAYER == ENABLED // turn off sprayer's test if on sprayer.test_pump(false); #endif // short delay to allow reading of rc inputs delay(30); // enable output to motors output_min(); // finally actually arm the motors motors.armed(true); // log arming to dataflash Log_Write_Event(DATA_ARMED); // log flight mode in case it was changed while vehicle was disarmed DataFlash.Log_Write_Mode(control_mode); // reenable failsafe failsafe_enable(); // perf monitor ignores delay due to arming perf_ignore_this_loop(); // flag exiting this function in_arm_motors = false; // return success return true; } // perform pre-arm checks and set ap.pre_arm_check flag // return true if the checks pass successfully static bool pre_arm_checks(bool display_failure) { // exit immediately if already armed if (motors.armed()) { return true; } // exit immediately if we've already successfully performed the pre-arm check if (ap.pre_arm_check) { // run gps checks because results may change and affect LED colour // no need to display failures because arm_checks will do that if the pilot tries to arm pre_arm_gps_checks(false); return true; } // succeed if pre arm checks are disabled if(g.arming_check == ARMING_CHECK_NONE) { set_pre_arm_check(true); set_pre_arm_rc_check(true); return true; } // pre-arm rc checks a prerequisite pre_arm_rc_checks(); if(!ap.pre_arm_rc_check) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: RC not calibrated")); } return false; } // check Baro if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) { // barometer health check if(!barometer.all_healthy()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Barometer not healthy")); } return false; } // Check baro & inav alt are within 1m if EKF is operating in an absolute position mode. // Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height // that may differ from the baro height due to baro drift. nav_filter_status filt_status = inertial_nav.get_filter_status(); bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs); if (using_baro_ref) { if (fabs(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Altitude disparity")); } return false; } } } // check Compass if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_COMPASS)) { // check the primary compass is healthy if(!compass.healthy()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not healthy")); } return false; } // check compass learning is on or offsets have been set if(!compass.configured()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not calibrated")); } return false; } // check for unreasonable compass offsets Vector3f offsets = compass.get_offsets(); if(offsets.length() > COMPASS_OFFSETS_MAX) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass offsets too high")); } return false; } // check for unreasonable mag field length float mag_field = compass.get_field().length(); if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65 || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check mag field")); } return false; } #if COMPASS_MAX_INSTANCES > 1 // check all compasses point in roughly same direction if (compass.get_count() > 1) { Vector3f prime_mag_vec = compass.get_field(); prime_mag_vec.normalize(); for(uint8_t i=0; i COMPASS_ACCEPTABLE_VECTOR_DIFF) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: inconsistent compasses")); } return false; } } } #endif } // check GPS if (!pre_arm_gps_checks(display_failure)) { return false; } #if AC_FENCE == ENABLED // check fence is initialised if(!fence.pre_arm_check()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: check fence")); } return false; } #endif // check INS if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) { // check accelerometers have been calibrated if(!ins.calibrated()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: INS not calibrated")); } return false; } // check accels are healthy if(!ins.get_accel_health_all()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Accelerometers not healthy")); } return false; } #if INS_MAX_INSTANCES > 1 // check all accelerometers point in roughly same direction if (ins.get_accel_count() > 1) { const Vector3f &prime_accel_vec = ins.get_accel(); for(uint8_t i=0; i PREARM_MAX_ACCEL_VECTOR_DIFF) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: inconsistent Accelerometers")); } return false; } } } #endif // check gyros are healthy if(!ins.get_gyro_health_all()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Gyros not healthy")); } return false; } #if INS_MAX_INSTANCES > 1 // check all gyros are consistent if (ins.get_gyro_count() > 1) { for(uint8_t i=0; i PREARM_MAX_GYRO_VECTOR_DIFF) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: inconsistent Gyros")); } return false; } } } #endif } #if CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN #ifndef CONFIG_ARCH_BOARD_PX4FMU_V1 // check board voltage if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) { if(hal.analogin->board_voltage() < BOARD_VOLTAGE_MIN || hal.analogin->board_voltage() > BOARD_VOLTAGE_MAX) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check Board Voltage")); } return false; } } #endif #endif // check various parameter values if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) { // ensure ch7 and ch8 have different functions if (check_duplicate_auxsw()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Duplicate Aux Switch Options")); } return false; } // failsafe parameter checks if (g.failsafe_throttle) { // check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900 if (g.rc_3.radio_min <= g.failsafe_throttle_value+10 || g.failsafe_throttle_value < 910) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check FS_THR_VALUE")); } return false; } } // lean angle parameter check if (aparm.angle_max < 1000 || aparm.angle_max > 8000) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check ANGLE_MAX")); } return false; } // acro balance parameter check if ((g.acro_balance_roll > g.p_stabilize_roll.kP()) || (g.acro_balance_pitch > g.p_stabilize_pitch.kP())) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: ACRO_BAL_ROLL/PITCH")); } return false; } #if CONFIG_SONAR == ENABLED // check range finder if (!sonar.pre_arm_check()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: check range finder")); } return false; } #endif } // if we've gotten this far then pre arm checks have completed set_pre_arm_check(true); return true; } // perform pre_arm_rc_checks checks and set ap.pre_arm_rc_check flag static void pre_arm_rc_checks() { // exit immediately if we've already successfully performed the pre-arm rc check if( ap.pre_arm_rc_check ) { return; } // set rc-checks to success if RC checks are disabled if ((g.arming_check != ARMING_CHECK_ALL) && !(g.arming_check & ARMING_CHECK_RC)) { set_pre_arm_rc_check(true); return; } // check if radio has been calibrated if(!g.rc_3.radio_min.load() && !g.rc_3.radio_max.load()) { return; } // check channels 1 & 2 have min <= 1300 and max >= 1700 if (g.rc_1.radio_min > 1300 || g.rc_1.radio_max < 1700 || g.rc_2.radio_min > 1300 || g.rc_2.radio_max < 1700) { return; } // check channels 3 & 4 have min <= 1300 and max >= 1700 if (g.rc_3.radio_min > 1300 || g.rc_3.radio_max < 1700 || g.rc_4.radio_min > 1300 || g.rc_4.radio_max < 1700) { return; } // check channels 1 & 2 have trim >= 1300 and <= 1700 if (g.rc_1.radio_trim < 1300 || g.rc_1.radio_trim > 1700 || g.rc_2.radio_trim < 1300 || g.rc_2.radio_trim > 1700) { return; } // check channel 4 has trim >= 1300 and <= 1700 if (g.rc_4.radio_trim < 1300 || g.rc_4.radio_trim > 1700) { return; } // if we've gotten this far rc is ok set_pre_arm_rc_check(true); } // performs pre_arm gps related checks and returns true if passed static bool pre_arm_gps_checks(bool display_failure) { // always check if inertial nav has started and is ready if(!ahrs.healthy()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Waiting for Nav Checks")); } return false; } // return true immediately if gps check is disabled if (!(g.arming_check == ARMING_CHECK_ALL || g.arming_check & ARMING_CHECK_GPS)) { AP_Notify::flags.pre_arm_gps_check = true; return true; } // check if flight mode requires GPS bool gps_required = mode_requires_GPS(control_mode); #if AC_FENCE == ENABLED // if circular fence is enabled we need GPS if ((fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) != 0) { gps_required = true; } #endif // return true if GPS is not required if (!gps_required) { AP_Notify::flags.pre_arm_gps_check = true; return true; } // ensure GPS is ok if (!position_ok()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Need 3D Fix")); } AP_Notify::flags.pre_arm_gps_check = false; return false; } // check home and EKF origin are not too far if (far_from_EKF_origin(ahrs.get_home())) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: EKF-home variance")); } AP_Notify::flags.pre_arm_gps_check = false; return false; } // warn about hdop separately - to prevent user confusion with no gps lock if (gps.get_hdop() > g.gps_hdop_good) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: High GPS HDOP")); } AP_Notify::flags.pre_arm_gps_check = false; return false; } // if we got here all must be ok AP_Notify::flags.pre_arm_gps_check = true; return true; } // arm_checks - perform final checks before arming // always called just before arming. Return true if ok to arm // has side-effect that logging is started static bool arm_checks(bool display_failure, bool arming_from_gcs) { #if LOGGING_ENABLED == ENABLED // start dataflash start_logging(); #endif // always check if inertial nav has started and is ready if(!ahrs.healthy()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Waiting for Nav Checks")); } return false; } // always check if the current mode allows arming if (!mode_allows_arming(control_mode, arming_from_gcs)) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Mode not armable")); } return false; } // always check if rotor is spinning on heli #if FRAME_CONFIG == HELI_FRAME // heli specific arming check if (!motors.allow_arming()){ if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Rotor not spinning")); } return false; } #endif // HELI_FRAME // succeed if arming checks are disabled if (g.arming_check == ARMING_CHECK_NONE) { return true; } // Check baro & inav alt are within 1m if EKF is operating in an absolute position mode. // Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height // that may differ from the baro height due to baro drift. nav_filter_status filt_status = inertial_nav.get_filter_status(); bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs); if (((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) && using_baro_ref) { if (fabs(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Altitude disparity")); } return false; } } // check gps if (!pre_arm_gps_checks(display_failure)) { return false; } // check lean angle if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) { if (labs(ahrs.roll_sensor) > aparm.angle_max || labs(ahrs.pitch_sensor) > aparm.angle_max) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Leaning")); } return false; } } // check throttle if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) { // check throttle is not too low - must be above failsafe throttle if (g.failsafe_throttle != FS_THR_DISABLED && g.rc_3.radio_in < g.failsafe_throttle_value) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Throttle below Failsafe")); } return false; } // check throttle is not too high - skips checks if arming from GCS in Guided if (!(arming_from_gcs && control_mode == GUIDED)) { // above top of deadband is too always high if (g.rc_3.control_in > (g.rc_3.get_control_mid() + g.throttle_deadzone)) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Throttle too high")); } return false; } // in manual modes throttle must be at zero if ((mode_has_manual_throttle(control_mode) || control_mode == DRIFT) && g.rc_3.control_in > 0) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Throttle too high")); } return false; } } } // check if safety switch has been pushed if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Safety Switch")); } return false; } // if we've gotten this far all is ok return true; } // init_disarm_motors - disarm motors static void init_disarm_motors() { // return immediately if we are already disarmed if (!motors.armed()) { return; } #if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL gcs_send_text_P(SEVERITY_HIGH, PSTR("DISARMING MOTORS")); #endif motors.armed(false); // save compass offsets learned by the EKF Vector3f magOffsets; if (ahrs.use_compass() && ahrs.getMagOffsets(magOffsets)) { compass.set_and_save_offsets(compass.get_primary(), magOffsets); } #if AUTOTUNE_ENABLED == ENABLED // save auto tuned parameters autotune_save_tuning_gains(); #endif // we are not in the air set_land_complete(true); set_land_complete_maybe(true); // reset the mission mission.reset(); // log disarm to the dataflash Log_Write_Event(DATA_DISARMED); // suspend logging if (!(g.log_bitmask & MASK_LOG_WHEN_DISARMED)) { DataFlash.EnableWrites(false); } // disable gps velocity based centrefugal force compensation ahrs.set_correct_centrifugal(false); hal.util->set_soft_armed(false); } // motors_output - send output to motors library which will adjust and send to ESCs and servos static void motors_output() { // check if we are performing the motor test if (ap.motor_test) { motor_test_output(); } else { motors.output(); } } // check for pilot stick input to trigger lost vehicle alarm static void lost_vehicle_check() { static uint8_t soundalarm_counter; // disable if aux switch is setup to vehicle alarm as the two could interfere if (check_if_auxsw_mode_used(AUXSW_LOST_COPTER_SOUND)) { return; } // ensure throttle is down, motors not armed, pitch and roll rc at max. Note: rc1=roll rc2=pitch if (ap.throttle_zero && !motors.armed() && (g.rc_1.control_in > 4000) && (g.rc_2.control_in > 4000)) { if (soundalarm_counter >= LOST_VEHICLE_DELAY) { if (AP_Notify::flags.vehicle_lost == false) { AP_Notify::flags.vehicle_lost = true; gcs_send_text_P(SEVERITY_HIGH,PSTR("Locate Copter Alarm!")); } } else { soundalarm_counter++; } } else { soundalarm_counter = 0; if (AP_Notify::flags.vehicle_lost == true) { AP_Notify::flags.vehicle_lost = false; } } }