/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef INT16_MIN #define INT16_MIN -32768 #define INT16_MAX 32767 #endif #include "LogReader.h" #define streq(x, y) (!strcmp(x, y)) const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER; class Replay { public: void setup(); void loop(); private: Parameters g; AP_InertialSensor ins; AP_Baro barometer; AP_GPS gps; Compass compass; RangeFinder rng; NavEKF EKF{&ahrs, barometer, rng}; AP_AHRS_NavEKF ahrs {ins, barometer, gps, rng, EKF}; AP_InertialNav_NavEKF inertial_nav{ahrs}; AP_Vehicle::FixedWing aparm; AP_Airspeed airspeed{aparm}; DataFlash_File dataflash{"logs"}; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL SITL sitl; #endif LogReader logreader{ahrs, ins, barometer, compass, gps, airspeed, dataflash}; FILE *plotf; FILE *plotf2; FILE *ekf1f; FILE *ekf2f; FILE *ekf3f; FILE *ekf4f; bool done_parameters; bool done_baro_init; bool done_home_init; uint16_t update_rate = 50; uint32_t arm_time_ms; bool ahrs_healthy; bool have_imu2; bool have_fram; uint8_t num_user_parameters; struct { char name[17]; float value; } user_parameters[100]; // setup the var_info table AP_Param param_loader{var_info}; static const AP_Param::Info var_info[]; void load_parameters(void); void usage(void); void set_user_parameters(void); void read_sensors(const char *type); }; static const struct LogStructure log_structure[] PROGMEM = { LOG_COMMON_STRUCTURES }; static Replay replay; #define GSCALAR(v, name, def) { replay.g.v.vtype, name, Parameters::k_param_ ## v, &replay.g.v, {def_value : def} } #define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &replay.v, {group_info : class::var_info} } #define GOBJECTN(v, pname, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## pname, &replay.v, {group_info : class::var_info} } const AP_Param::Info Replay::var_info[] PROGMEM = { GSCALAR(dummy, "_DUMMY", 0), // barometer ground calibration. The GND_ prefix is chosen for // compatibility with previous releases of ArduPlane // @Group: GND_ // @Path: ../libraries/AP_Baro/AP_Baro.cpp GOBJECT(barometer, "GND_", AP_Baro), // @Group: INS_ // @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp GOBJECT(ins, "INS_", AP_InertialSensor), // @Group: AHRS_ // @Path: ../libraries/AP_AHRS/AP_AHRS.cpp GOBJECT(ahrs, "AHRS_", AP_AHRS), // @Group: ARSPD_ // @Path: ../libraries/AP_Airspeed/AP_Airspeed.cpp GOBJECT(airspeed, "ARSPD_", AP_Airspeed), // @Group: EKF_ // @Path: ../libraries/AP_NavEKF/AP_NavEKF.cpp GOBJECTN(EKF, NavEKF, "EKF_", NavEKF), // @Group: COMPASS_ // @Path: ../libraries/AP_Compass/AP_Compass.cpp GOBJECT(compass, "COMPASS_", Compass), AP_VAREND }; void Replay::load_parameters(void) { if (!AP_Param::check_var_info()) { hal.scheduler->panic(PSTR("Bad parameter table")); } } void Replay::usage(void) { ::printf("Options:\n"); ::printf(" -rRATE set IMU rate in Hz\n"); ::printf(" -pNAME=VALUE set parameter NAME to VALUE\n"); ::printf(" -aMASK set accel mask (1=accel1 only, 2=accel2 only, 3=both)\n"); ::printf(" -gMASK set gyro mask (1=gyro1 only, 2=gyro2 only, 3=both)\n"); ::printf(" -A time arm at time milliseconds)\n"); } void Replay::setup() { ::printf("Starting\n"); const char *filename = "log.bin"; uint8_t argc; char * const *argv; int opt; hal.util->commandline_arguments(argc, argv); while ((opt = getopt(argc, argv, "r:p:ha:g:A:")) != -1) { switch (opt) { case 'h': usage(); exit(0); case 'r': update_rate = strtol(optarg, NULL, 0); break; case 'g': logreader.set_gyro_mask(strtol(optarg, NULL, 0)); break; case 'a': logreader.set_accel_mask(strtol(optarg, NULL, 0)); break; case 'A': arm_time_ms = strtoul(optarg, NULL, 0); break; case 'p': char *eq = strchr(optarg, '='); if (eq == NULL) { ::printf("Usage: -p NAME=VALUE\n"); exit(1); } *eq++ = 0; strncpy(user_parameters[num_user_parameters].name, optarg, 16); user_parameters[num_user_parameters].value = atof(eq); num_user_parameters++; if (num_user_parameters >= sizeof(user_parameters)/sizeof(user_parameters[0])) { ::printf("Too many user parameters\n"); exit(1); } break; } } argv += optind; argc -= optind; if (argc > 0) { filename = argv[0]; } hal.console->printf("Processing log %s\n", filename); if (update_rate != 0) { hal.console->printf("Using an update rate of %u Hz\n", update_rate); } load_parameters(); if (!logreader.open_log(filename)) { perror(filename); exit(1); } dataflash.Init(log_structure, sizeof(log_structure)/sizeof(log_structure[0])); dataflash.StartNewLog(); logreader.wait_type("GPS"); logreader.wait_type("IMU"); logreader.wait_type("GPS"); logreader.wait_type("IMU"); feenableexcept(FE_INVALID | FE_OVERFLOW); ahrs.set_compass(&compass); ahrs.set_fly_forward(true); ahrs.set_wind_estimation(true); ahrs.set_correct_centrifugal(true); printf("Starting disarmed\n"); hal.util->set_soft_armed(false); barometer.init(); barometer.setHIL(0); barometer.update(); compass.init(); ins.set_hil_mode(); switch (update_rate) { case 0: case 50: ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_50HZ); break; case 100: ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_100HZ); break; case 200: ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_200HZ); break; case 400: ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_400HZ); break; } plotf = fopen("plot.dat", "w"); plotf2 = fopen("plot2.dat", "w"); ekf1f = fopen("EKF1.dat", "w"); ekf2f = fopen("EKF2.dat", "w"); ekf3f = fopen("EKF3.dat", "w"); ekf4f = fopen("EKF4.dat", "w"); fprintf(plotf, "time SIM.Roll SIM.Pitch SIM.Yaw BAR.Alt FLIGHT.Roll FLIGHT.Pitch FLIGHT.Yaw FLIGHT.dN FLIGHT.dE FLIGHT.Alt AHR2.Roll AHR2.Pitch AHR2.Yaw DCM.Roll DCM.Pitch DCM.Yaw EKF.Roll EKF.Pitch EKF.Yaw INAV.dN INAV.dE INAV.Alt EKF.dN EKF.dE EKF.Alt\n"); fprintf(plotf2, "time E1 E2 E3 VN VE VD PN PE PD GX GY GZ WN WE MN ME MD MX MY MZ E1ref E2ref E3ref\n"); fprintf(ekf1f, "timestamp TimeMS Roll Pitch Yaw VN VE VD PN PE PD GX GY GZ\n"); fprintf(ekf2f, "timestamp TimeMS AX AY AZ VWN VWE MN ME MD MX MY MZ\n"); fprintf(ekf3f, "timestamp TimeMS IVN IVE IVD IPN IPE IPD IMX IMY IMZ IVT\n"); fprintf(ekf4f, "timestamp TimeMS SV SP SH SMX SMY SMZ SVT OFN EFE FS DS\n"); ahrs.set_ekf_use(true); ::printf("Waiting for GPS\n"); while (!done_home_init) { char type[5]; if (!logreader.update(type)) { break; } read_sensors(type); if (streq(type, "GPS") && gps.status() >= AP_GPS::GPS_OK_FIX_3D && done_baro_init && !done_home_init) { const Location &loc = gps.location(); ::printf("GPS Lock at %.7f %.7f %.2fm time=%.1f seconds\n", loc.lat * 1.0e-7f, loc.lng * 1.0e-7f, loc.alt * 0.01f, hal.scheduler->millis()*0.001f); ahrs.set_home(loc); compass.set_initial_location(loc.lat, loc.lng); done_home_init = true; } } } /* setup user -p parameters */ void Replay::set_user_parameters(void) { for (uint8_t i=0; i= AP_GPS::GPS_OK_FIX_3D) { ahrs.estimate_wind(); } } else if (streq(type,"MAG")) { compass.read(); } else if (streq(type,"ARSP")) { ahrs.set_airspeed(&airspeed); } else if (streq(type,"BARO")) { barometer.update(); if (!done_baro_init) { done_baro_init = true; ::printf("Barometer initialised\n"); barometer.update_calibration(); } } bool run_ahrs = false; if (streq(type,"FRAM")) { if (!have_fram) { have_fram = true; printf("Have FRAM framing\n"); } run_ahrs = true; } // special handling of IMU messages as these trigger an ahrs.update() if (!have_fram && ((streq(type,"IMU") && !have_imu2) || (streq(type, "IMU2") && have_imu2))) { run_ahrs = true; } if (run_ahrs) { ahrs.update(); if (ahrs.get_home().lat != 0) { inertial_nav.update(ins.get_delta_time()); } dataflash.Log_Write_EKF(ahrs,false); dataflash.Log_Write_AHRS2(ahrs); dataflash.Log_Write_POS(ahrs); if (ahrs.healthy() != ahrs_healthy) { ahrs_healthy = ahrs.healthy(); printf("AHRS health: %u at %lu\n", (unsigned)ahrs_healthy, (unsigned long)hal.scheduler->millis()); } } } void Replay::loop() { while (true) { char type[5]; if (arm_time_ms != 0 && hal.scheduler->millis() > arm_time_ms) { if (!hal.util->get_soft_armed()) { hal.util->set_soft_armed(true); ::printf("Arming at %u ms\n", (unsigned)hal.scheduler->millis()); } } if (!logreader.update(type)) { ::printf("End of log at %.1f seconds\n", hal.scheduler->millis()*0.001f); fclose(plotf); exit(0); } read_sensors(type); if (streq(type,"ATT")) { Vector3f ekf_euler; Vector3f velNED; Vector3f posNED; Vector3f gyroBias; float accelWeighting; float accelZBias1; float accelZBias2; Vector3f windVel; Vector3f magNED; Vector3f magXYZ; Vector3f DCM_attitude; Vector3f ekf_relpos; Vector3f velInnov; Vector3f posInnov; Vector3f magInnov; float tasInnov; float velVar; float posVar; float hgtVar; Vector3f magVar; float tasVar; Vector2f offset; uint8_t faultStatus; const Matrix3f &dcm_matrix = ahrs.AP_AHRS_DCM::get_dcm_matrix(); dcm_matrix.to_euler(&DCM_attitude.x, &DCM_attitude.y, &DCM_attitude.z); EKF.getEulerAngles(ekf_euler); EKF.getVelNED(velNED); EKF.getPosNED(posNED); EKF.getGyroBias(gyroBias); EKF.getIMU1Weighting(accelWeighting); EKF.getAccelZBias(accelZBias1, accelZBias2); EKF.getWind(windVel); EKF.getMagNED(magNED); EKF.getMagXYZ(magXYZ); EKF.getInnovations(velInnov, posInnov, magInnov, tasInnov); EKF.getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset); EKF.getFilterFaults(faultStatus); EKF.getPosNED(ekf_relpos); Vector3f inav_pos = inertial_nav.get_position() * 0.01f; float temp = degrees(ekf_euler.z); if (temp < 0.0f) temp = temp + 360.0f; fprintf(plotf, "%.3f %.1f %.1f %.1f %.2f %.1f %.1f %.1f %.2f %.2f %.2f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.2f %.2f %.2f %.2f %.2f %.2f\n", hal.scheduler->millis() * 0.001f, logreader.get_sim_attitude().x, logreader.get_sim_attitude().y, logreader.get_sim_attitude().z, barometer.get_altitude(), logreader.get_attitude().x, logreader.get_attitude().y, wrap_180_cd(logreader.get_attitude().z*100)*0.01f, logreader.get_inavpos().x, logreader.get_inavpos().y, logreader.get_relalt(), logreader.get_ahr2_attitude().x, logreader.get_ahr2_attitude().y, wrap_180_cd(logreader.get_ahr2_attitude().z*100)*0.01f, degrees(DCM_attitude.x), degrees(DCM_attitude.y), degrees(DCM_attitude.z), degrees(ekf_euler.x), degrees(ekf_euler.y), degrees(ekf_euler.z), inav_pos.x, inav_pos.y, inav_pos.z, ekf_relpos.x, ekf_relpos.y, -ekf_relpos.z); fprintf(plotf2, "%.3f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f\n", hal.scheduler->millis() * 0.001f, degrees(ekf_euler.x), degrees(ekf_euler.y), temp, velNED.x, velNED.y, velNED.z, posNED.x, posNED.y, posNED.z, 60*degrees(gyroBias.x), 60*degrees(gyroBias.y), 60*degrees(gyroBias.z), windVel.x, windVel.y, magNED.x, magNED.y, magNED.z, magXYZ.x, magXYZ.y, magXYZ.z, logreader.get_attitude().x, logreader.get_attitude().y, logreader.get_attitude().z); // define messages for EKF1 data packet int16_t roll = (int16_t)(100*degrees(ekf_euler.x)); // roll angle (centi-deg) int16_t pitch = (int16_t)(100*degrees(ekf_euler.y)); // pitch angle (centi-deg) uint16_t yaw = (uint16_t)wrap_360_cd(100*degrees(ekf_euler.z)); // yaw angle (centi-deg) float velN = (float)(velNED.x); // velocity North (m/s) float velE = (float)(velNED.y); // velocity East (m/s) float velD = (float)(velNED.z); // velocity Down (m/s) float posN = (float)(posNED.x); // metres North float posE = (float)(posNED.y); // metres East float posD = (float)(posNED.z); // metres Down float gyrX = (float)(6000*degrees(gyroBias.x)); // centi-deg/min float gyrY = (float)(6000*degrees(gyroBias.y)); // centi-deg/min float gyrZ = (float)(6000*degrees(gyroBias.z)); // centi-deg/min // print EKF1 data packet fprintf(ekf1f, "%.3f %u %d %d %u %.2f %.2f %.2f %.2f %.2f %.2f %.0f %.0f %.0f\n", hal.scheduler->millis() * 0.001f, hal.scheduler->millis(), roll, pitch, yaw, velN, velE, velD, posN, posE, posD, gyrX, gyrY, gyrZ); // define messages for EKF2 data packet int8_t accWeight = (int8_t)(100*accelWeighting); int8_t acc1 = (int8_t)(100*accelZBias1); int8_t acc2 = (int8_t)(100*accelZBias2); int16_t windN = (int16_t)(100*windVel.x); int16_t windE = (int16_t)(100*windVel.y); int16_t magN = (int16_t)(magNED.x); int16_t magE = (int16_t)(magNED.y); int16_t magD = (int16_t)(magNED.z); int16_t magX = (int16_t)(magXYZ.x); int16_t magY = (int16_t)(magXYZ.y); int16_t magZ = (int16_t)(magXYZ.z); // print EKF2 data packet fprintf(ekf2f, "%.3f %d %d %d %d %d %d %d %d %d %d %d %d\n", hal.scheduler->millis() * 0.001f, hal.scheduler->millis(), accWeight, acc1, acc2, windN, windE, magN, magE, magD, magX, magY, magZ); // define messages for EKF3 data packet int16_t innovVN = (int16_t)(100*velInnov.x); int16_t innovVE = (int16_t)(100*velInnov.y); int16_t innovVD = (int16_t)(100*velInnov.z); int16_t innovPN = (int16_t)(100*posInnov.x); int16_t innovPE = (int16_t)(100*posInnov.y); int16_t innovPD = (int16_t)(100*posInnov.z); int16_t innovMX = (int16_t)(magInnov.x); int16_t innovMY = (int16_t)(magInnov.y); int16_t innovMZ = (int16_t)(magInnov.z); int16_t innovVT = (int16_t)(100*tasInnov); // print EKF3 data packet fprintf(ekf3f, "%.3f %d %d %d %d %d %d %d %d %d %d %d\n", hal.scheduler->millis() * 0.001f, hal.scheduler->millis(), innovVN, innovVE, innovVD, innovPN, innovPE, innovPD, innovMX, innovMY, innovMZ, innovVT); // define messages for EKF4 data packet int16_t sqrtvarV = (int16_t)(constrain_float(100*velVar,INT16_MIN,INT16_MAX)); int16_t sqrtvarP = (int16_t)(constrain_float(100*posVar,INT16_MIN,INT16_MAX)); int16_t sqrtvarH = (int16_t)(constrain_float(100*hgtVar,INT16_MIN,INT16_MAX)); int16_t sqrtvarMX = (int16_t)(constrain_float(100*magVar.x,INT16_MIN,INT16_MAX)); int16_t sqrtvarMY = (int16_t)(constrain_float(100*magVar.y,INT16_MIN,INT16_MAX)); int16_t sqrtvarMZ = (int16_t)(constrain_float(100*magVar.z,INT16_MIN,INT16_MAX)); int16_t sqrtvarVT = (int16_t)(constrain_float(100*tasVar,INT16_MIN,INT16_MAX)); int16_t offsetNorth = (int8_t)(constrain_float(offset.x,INT16_MIN,INT16_MAX)); int16_t offsetEast = (int8_t)(constrain_float(offset.y,INT16_MIN,INT16_MAX)); // print EKF4 data packet fprintf(ekf4f, "%.3f %u %d %d %d %d %d %d %d %d %d %d\n", hal.scheduler->millis() * 0.001f, (unsigned)hal.scheduler->millis(), (int)sqrtvarV, (int)sqrtvarP, (int)sqrtvarH, (int)sqrtvarMX, (int)sqrtvarMY, (int)sqrtvarMZ, (int)sqrtvarVT, (int)offsetNorth, (int)offsetEast, (int)faultStatus); } } } /* compatibility with old pde style build */ void setup(void); void loop(void); void setup(void) { replay.setup(); } void loop(void) { replay.loop(); } AP_HAL_MAIN();