#pragma once /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * NavEKF based AHRS (Attitude Heading Reference System) interface for * ArduPilot * */ #include #include "AP_AHRS.h" #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #endif #if HAL_CPU_CLASS >= HAL_CPU_CLASS_150 #include #include #include // definitions shared by inertial and ekf nav filters #define AP_AHRS_NAVEKF_AVAILABLE 1 #define AP_AHRS_NAVEKF_SETTLE_TIME_MS 20000 // time in milliseconds the ekf needs to settle after being started class AP_AHRS_NavEKF : public AP_AHRS_DCM { public: enum Flags { FLAG_NONE = 0, FLAG_ALWAYS_USE_EKF = 0x1, }; // Constructor AP_AHRS_NavEKF(AP_InertialSensor &ins, AP_Baro &baro, AP_GPS &gps, RangeFinder &rng, NavEKF2 &_EKF2, NavEKF3 &_EKF3, Flags flags = FLAG_NONE); // return the smoothed gyro vector corrected for drift const Vector3f &get_gyro(void) const override; const Matrix3f &get_rotation_body_to_ned(void) const override; // return the current drift correction integrator value const Vector3f &get_gyro_drift(void) const override; // reset the current gyro drift estimate // should be called if gyro offsets are recalculated void reset_gyro_drift(void); void update(void); void reset(bool recover_eulers = false); // reset the current attitude, used on new IMU calibration void reset_attitude(const float &roll, const float &pitch, const float &yaw); // dead-reckoning support bool get_position(struct Location &loc) const; // get latest altitude estimate above ground level in metres and validity flag bool get_hagl(float &hagl) const; // status reporting of estimated error float get_error_rp(void) const; float get_error_yaw(void) const; // return a wind estimation vector, in m/s Vector3f wind_estimate(void); // return an airspeed estimate if available. return true // if we have an estimate bool airspeed_estimate(float *airspeed_ret) const; // true if compass is being used bool use_compass(void); // we will need to remove these to fully hide which EKF we are using NavEKF2 &get_NavEKF2(void) { return EKF2; } const NavEKF2 &get_NavEKF2_const(void) const { return EKF2; } NavEKF3 &get_NavEKF3(void) { return EKF3; } const NavEKF3 &get_NavEKF3_const(void) const { return EKF3; } // return secondary attitude solution if available, as eulers in radians bool get_secondary_attitude(Vector3f &eulers); // return secondary position solution if available bool get_secondary_position(struct Location &loc); // EKF has a better ground speed vector estimate Vector2f groundspeed_vector(void); const Vector3f &get_accel_ef(uint8_t i) const override; const Vector3f &get_accel_ef() const override; // Retrieves the corrected NED delta velocity in use by the inertial navigation void getCorrectedDeltaVelocityNED(Vector3f& ret, float& dt) const; // blended accelerometer values in the earth frame in m/s/s const Vector3f &get_accel_ef_blended(void) const; // set home location void set_home(const Location &loc); // returns the inertial navigation origin in lat/lon/alt bool get_origin(Location &ret) const; bool have_inertial_nav(void) const; bool get_velocity_NED(Vector3f &vec) const; bool get_relative_position_NED(Vector3f &vec) const; // return the relative position in North/East order // return true if the estimate is valid bool get_relative_position_NE(Vector2f &posNE) const; // return the relative position in North/East order // return true if the estimate is valid bool get_relative_position_D(float &posD) const; // Get a derivative of the vertical position in m/s which is kinematically consistent with the vertical position is required by some control loops. // This is different to the vertical velocity from the EKF which is not always consistent with the verical position due to the various errors that are being corrected for. bool get_vert_pos_rate(float &velocity); // write optical flow measurements to EKF void writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas, const Vector3f &posOffset); // inibit GPS usage uint8_t setInhibitGPS(void); // get speed limit void getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler); void set_ekf_use(bool setting); // is the AHRS subsystem healthy? bool healthy(void) const; // true if the AHRS has completed initialisation bool initialised(void) const; // get_filter_status - returns filter status as a series of flags bool get_filter_status(nav_filter_status &status) const; // get compass offset estimates // true if offsets are valid bool getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets); // report any reason for why the backend is refusing to initialise const char *prearm_failure_reason(void) const override; // return the amount of yaw angle change due to the last yaw angle reset in radians // returns the time of the last yaw angle reset or 0 if no reset has ever occurred uint32_t getLastYawResetAngle(float &yawAng) const; // return the amount of NE position change in metres due to the last reset // returns the time of the last reset or 0 if no reset has ever occurred uint32_t getLastPosNorthEastReset(Vector2f &pos) const; // return the amount of NE velocity change in metres/sec due to the last reset // returns the time of the last reset or 0 if no reset has ever occurred uint32_t getLastVelNorthEastReset(Vector2f &vel) const; // return the amount of vertical position change due to the last reset in meters // returns the time of the last reset or 0 if no reset has ever occurred uint32_t getLastPosDownReset(float &posDelta) const; // Resets the baro so that it reads zero at the current height // Resets the EKF height to zero // Adjusts the EKf origin height so that the EKF height + origin height is the same as before // Returns true if the height datum reset has been performed // If using a range finder for height no reset is performed and it returns false bool resetHeightDatum(void); // send a EKF_STATUS_REPORT for current EKF void send_ekf_status_report(mavlink_channel_t chan); // get_hgt_ctrl_limit - get maximum height to be observed by the control loops in metres and a validity flag // this is used to limit height during optical flow navigation // it will return invalid when no limiting is required bool get_hgt_ctrl_limit(float &limit) const; // get_llh - updates the provided location with the latest calculated location including absolute altitude // returns true on success (i.e. the EKF knows it's latest position), false on failure bool get_location(struct Location &loc) const; // get_variances - provides the innovations normalised using the innovation variance where a value of 0 // indicates prefect consistency between the measurement and the EKF solution and a value of of 1 is the maximum // inconsistency that will be accpeted by the filter // boolean false is returned if variances are not available bool get_variances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const override; // returns the expected NED magnetic field bool get_mag_field_NED(Vector3f& ret) const; // returns the estimated magnetic field offsets in body frame bool get_mag_field_correction(Vector3f &ret) const; void setTakeoffExpected(bool val); void setTouchdownExpected(bool val); bool getGpsGlitchStatus(); // used by Replay to force start at right timestamp void force_ekf_start(void) { force_ekf = true; } // is the EKF backend doing its own sensor logging? bool have_ekf_logging(void) const override; // get the index of the current primary accelerometer sensor uint8_t get_primary_accel_index(void) const override; // get the index of the current primary gyro sensor uint8_t get_primary_gyro_index(void) const override; private: enum EKF_TYPE {EKF_TYPE_NONE=0, EKF_TYPE3=3, EKF_TYPE2=2 #if CONFIG_HAL_BOARD == HAL_BOARD_SITL ,EKF_TYPE_SITL=10 #endif }; EKF_TYPE active_EKF_type(void) const; bool always_use_EKF() const { return _ekf_flags & FLAG_ALWAYS_USE_EKF; } NavEKF2 &EKF2; NavEKF3 &EKF3; bool ekf1_started:1; bool ekf2_started:1; bool ekf3_started:1; bool force_ekf:1; Matrix3f _dcm_matrix; Vector3f _dcm_attitude; Vector3f _gyro_bias; Vector3f _gyro_estimate; Vector3f _accel_ef_ekf[INS_MAX_INSTANCES]; Vector3f _accel_ef_ekf_blended; const uint16_t startup_delay_ms = 1000; uint32_t start_time_ms = 0; Flags _ekf_flags; uint8_t ekf_type(void) const; void update_DCM(void); void update_EKF2(void); void update_EKF3(void); // get the index of the current primary IMU uint8_t get_primary_IMU_index(void) const; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL SITL::SITL *_sitl; void update_SITL(void); #endif }; #endif