#!/usr/bin/env python # -*- coding: utf-8 -*- """ ArduPilot IMU Filter Test Class This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ __author__ = "Guglielmo Cassinelli" __contact__ = "gdguglie@gmail.com" import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Slider from matplotlib.animation import FuncAnimation from scipy import signal from BiquadFilter import BiquadFilterType, BiquadFilter sliders = [] # matplotlib sliders must be global anim = None # matplotlib animations must be global class FilterTest: FILTER_DEBOUNCE = 10 # ms FILT_SHAPE_DT_FACTOR = 1 # increase to reduce filter shape size FFT_N = 512 filters = {} def __init__(self, acc_t, acc_x, acc_y, acc_z, gyr_t, gyr_x, gyr_y, gyr_z, acc_freq, gyr_freq, acc_lpf_cutoff, gyr_lpf_cutoff, acc_notch_freq, acc_notch_att, acc_notch_band, gyr_notch_freq, gyr_notch_att, gyr_notch_band, log_name, accel_notch=False, second_notch=False): self.filter_color_map = plt.get_cmap('summer') self.filters["acc"] = [ BiquadFilter(acc_lpf_cutoff, acc_freq) ] if accel_notch: self.filters["acc"].append( BiquadFilter(acc_notch_freq, acc_freq, BiquadFilterType.PEAK, acc_notch_att, acc_notch_band), ) self.filters["gyr"] = [ BiquadFilter(gyr_lpf_cutoff, gyr_freq), BiquadFilter(gyr_notch_freq, gyr_freq, BiquadFilterType.PEAK, gyr_notch_att, gyr_notch_band) ] if second_notch: self.filters["acc"].append( BiquadFilter(acc_notch_freq * 2, acc_freq, BiquadFilterType.PEAK, acc_notch_att, acc_notch_band) ) self.filters["gyr"].append( BiquadFilter(gyr_notch_freq * 2, gyr_freq, BiquadFilterType.PEAK, gyr_notch_att, gyr_notch_band) ) self.ACC_t = acc_t self.ACC_x = acc_x self.ACC_y = acc_y self.ACC_z = acc_z self.GYR_t = gyr_t self.GYR_x = gyr_x self.GYR_y = gyr_y self.GYR_z = gyr_z self.GYR_freq = gyr_freq self.ACC_freq = acc_freq self.gyr_dt = 1. / gyr_freq self.acc_dt = 1. / acc_freq self.timer = None self.updated_artists = [] # INIT self.init_plot(log_name) def test_acc_filters(self): filt_xs = self.test_filters(self.filters["acc"], self.ACC_t, self.ACC_x) filt_ys = self.test_filters(self.filters["acc"], self.ACC_t, self.ACC_y) filt_zs = self.test_filters(self.filters["acc"], self.ACC_t, self.ACC_z) return filt_xs, filt_ys, filt_zs def test_gyr_filters(self): filt_xs = self.test_filters(self.filters["gyr"], self.GYR_t, self.GYR_x) filt_ys = self.test_filters(self.filters["gyr"], self.GYR_t, self.GYR_y) filt_zs = self.test_filters(self.filters["gyr"], self.GYR_t, self.GYR_z) return filt_xs, filt_ys, filt_zs def test_filters(self, filters, Ts, Xs): for f in filters: f.reset() x_filtered = [] for i, t in enumerate(Ts): x = Xs[i] x_f = x for filt in filters: x_f = filt.apply(x_f) x_filtered.append(x_f) return x_filtered def get_filter_shape(self, filter): samples = int(filter.get_sample_freq()) # resolution of filter shape based on sample rate x_space = np.linspace(0.0, samples // 2, samples // int(2 * self.FILT_SHAPE_DT_FACTOR)) return x_space, filter.freq_response(x_space) def init_signal_plot(self, ax, Ts, Xs, Ys, Zs, Xs_filtered, Ys_filtered, Zs_filtered, label): ax.plot(Ts, Xs, linewidth=1, label="{}X".format(label), alpha=0.5) ax.plot(Ts, Ys, linewidth=1, label="{}Y".format(label), alpha=0.5) ax.plot(Ts, Zs, linewidth=1, label="{}Z".format(label), alpha=0.5) filtered_x_ax, = ax.plot(Ts, Xs_filtered, linewidth=1, label="{}X filtered".format(label), alpha=1) filtered_y_ax, = ax.plot(Ts, Ys_filtered, linewidth=1, label="{}Y filtered".format(label), alpha=1) filtered_z_ax, = ax.plot(Ts, Zs_filtered, linewidth=1, label="{}Z filtered".format(label), alpha=1) ax.legend(prop={'size': 8}) return filtered_x_ax, filtered_y_ax, filtered_z_ax def fft_to_xdata(self, fft): n = len(fft) norm_factor = 2. / n return norm_factor * np.abs(fft[:n // 2]) def plot_fft(self, ax, x, fft, label): fft_ax, = ax.plot(x, self.fft_to_xdata(fft), label=label) return fft_ax def init_fft(self, ax, Ts, Xs, Ys, Zs, sample_rate, dt, Xs_filtered, Ys_filtered, Zs_filtered, label): _freqs_raw_x, _times_raw_x, _stft_raw_x = signal.stft(Xs, sample_rate, window='hann', nperseg=self.FFT_N) raw_fft_x = np.average(np.abs(_stft_raw_x), axis=1) _freqs_raw_y, _times_raw_y, _stft_raw_y = signal.stft(Ys, sample_rate, window='hann', nperseg=self.FFT_N) raw_fft_y = np.average(np.abs(_stft_raw_y), axis=1) _freqs_raw_z, _times_raw_z, _stft_raw_z = signal.stft(Zs, sample_rate, window='hann', nperseg=self.FFT_N) raw_fft_z = np.average(np.abs(_stft_raw_z), axis=1) _freqs_x, _times_x, _stft_x = signal.stft(Xs_filtered, sample_rate, window='hann', nperseg=self.FFT_N) filtered_fft_x = np.average(np.abs(_stft_x), axis=1) _freqs_y, _times_y, _stft_y = signal.stft(Ys_filtered, sample_rate, window='hann', nperseg=self.FFT_N) filtered_fft_y = np.average(np.abs(_stft_y), axis=1) _freqs_z, _times_z, _stft_z = signal.stft(Zs_filtered, sample_rate, window='hann', nperseg=self.FFT_N) filtered_fft_z = np.average(np.abs(_stft_z), axis=1) ax.plot(_freqs_raw_x, raw_fft_x, alpha=0.5, linewidth=1, label="{}x FFT".format(label)) ax.plot(_freqs_raw_y, raw_fft_y, alpha=0.5, linewidth=1, label="{}y FFT".format(label)) ax.plot(_freqs_raw_z, raw_fft_z, alpha=0.5, linewidth=1, label="{}z FFT".format(label)) filtered_fft_ax_x, = ax.plot(_freqs_x, filtered_fft_x, label="filt. {}x FFT".format(label)) filtered_fft_ax_y, = ax.plot(_freqs_y, filtered_fft_y, label="filt. {}y FFT".format(label)) filtered_fft_ax_z, = ax.plot(_freqs_z, filtered_fft_z, label="filt. {}z FFT".format(label)) # FFT # samples = len(Ts) # x_space = np.linspace(0.0, 1.0 / (2.0 * dt), samples // 2) # filtered_data = np.hanning(len(Xs_filtered)) * Xs_filtered # raw_fft = np.fft.fft(np.hanning(len(Xs)) * Xs) # filtered_fft = np.fft.fft(filtered_data, n=self.FFT_N) # self.plot_fft(ax, x_space, raw_fft, "{} FFT".format(label)) # fft_freq = np.fft.fftfreq(self.FFT_N, d=dt) # x_space # filtered_fft_ax = self.plot_fft(ax, fft_freq[:self.FFT_N // 2], filtered_fft, "filtered {} FFT".format(label)) ax.set_xlabel("frequency") # ax.set_xscale("log") # ax.xaxis.set_major_formatter(ScalarFormatter()) ax.legend(prop={'size': 8}) return filtered_fft_ax_x, filtered_fft_ax_y, filtered_fft_ax_z def init_filter_shape(self, ax, filter, color): center = filter.get_center_freq() x_space, lpf_shape = self.get_filter_shape(filter) plot_slpf_shape, = ax.plot(x_space, lpf_shape, c=color, label="LPF shape") xvline_lpf_cutoff = ax.axvline(x=center, linestyle="--", c=color) # LPF cutoff freq return plot_slpf_shape, xvline_lpf_cutoff def create_slider(self, name, rect, max, value, color, callback): global sliders ax_slider = self.fig.add_axes(rect, facecolor='lightgoldenrodyellow') slider = Slider(ax_slider, name, 0, max, valinit=np.sqrt(max * value), valstep=1, color=color) slider.valtext.set_text(value) # slider.drawon = False def changed(val, cbk, max, slider): # non linear slider to better control small values val = int(val ** 2 / max) slider.valtext.set_text(val) cbk(val) slider.on_changed(lambda val, cbk=callback, max=max, s=slider: changed(val, cbk, max, s)) sliders.append(slider) def delay_update(self, update_cbk): def _delayed_update(self, cbk): self.timer.stop() cbk() # delay actual filtering if self.fig: if self.timer: self.timer.stop() self.timer = self.fig.canvas.new_timer(interval=self.FILTER_DEBOUNCE) self.timer.add_callback(lambda self=self: _delayed_update(self, update_cbk)) self.timer.start() def update_filter_shape(self, filter, shape, center_line): x_data, new_shape = self.get_filter_shape(filter) shape.set_ydata(new_shape) center_line.set_xdata(filter.get_center_freq()) self.updated_artists.extend([ shape, center_line, ]) def update_signal_and_fft_plot(self, filters_key, time_list, sample_lists, signal_shapes, fft_shapes, shape, center_line, sample_rate): # print("update_signal_and_fft_plot", self.filters[filters_key][0].get_center_freq()) Xs, Ys, Zs = sample_lists signal_shape_x, signal_shape_y, signal_shape_z = signal_shapes fft_shape_x, fft_shape_y, fft_shape_z = fft_shapes Xs_filtered = self.test_filters(self.filters[filters_key], time_list, Xs) Ys_filtered = self.test_filters(self.filters[filters_key], time_list, Ys) Zs_filtered = self.test_filters(self.filters[filters_key], time_list, Zs) signal_shape_x.set_ydata(Xs_filtered) signal_shape_y.set_ydata(Ys_filtered) signal_shape_z.set_ydata(Zs_filtered) self.updated_artists.extend([signal_shape_x, signal_shape_y, signal_shape_z]) _freqs_x, _times_x, _stft_x = signal.stft(Xs_filtered, sample_rate, window='hann', nperseg=self.FFT_N) filtered_fft_x = np.average(np.abs(_stft_x), axis=1) _freqs_y, _times_y, _stft_y = signal.stft(Ys_filtered, sample_rate, window='hann', nperseg=self.FFT_N) filtered_fft_y = np.average(np.abs(_stft_y), axis=1) _freqs_z, _times_z, _stft_z = signal.stft(Zs_filtered, sample_rate, window='hann', nperseg=self.FFT_N) filtered_fft_z = np.average(np.abs(_stft_z), axis=1) fft_shape_x.set_ydata(filtered_fft_x) fft_shape_y.set_ydata(filtered_fft_y) fft_shape_z.set_ydata(filtered_fft_z) self.updated_artists.extend([ fft_shape_x, fft_shape_y, fft_shape_z, shape, center_line, ]) # self.fig.canvas.draw() def animation_update(self): updated_artists = self.updated_artists.copy() # if updated_artists: # print("animation update") # reset updated artists self.updated_artists = [] return updated_artists def update_filter(self, val, cbk, filter, shape, center_line, filters_key, time_list, sample_lists, signal_shapes, fft_shapes): # this callback sets the parameter controlled by the slider cbk(val) # print("filter update",val) # update filter shape and delay fft update self.update_filter_shape(filter, shape, center_line) sample_freq = filter.get_sample_freq() self.delay_update( lambda self=self: self.update_signal_and_fft_plot(filters_key, time_list, sample_lists, signal_shapes, fft_shapes, shape, center_line, sample_freq)) def create_filter_control(self, name, filter, rect, max, default, shape, center_line, cbk, filters_key, time_list, sample_lists, signal_shapes, fft_shapes, filt_color): self.create_slider(name, rect, max, default, filt_color, lambda val, cbk=cbk, self=self, filter=filter, shape=shape, center_line=center_line, filters_key=filters_key, time_list=time_list, sample_list=sample_lists, signal_shape=signal_shapes, fft_shape=fft_shapes: self.update_filter(val, cbk, filter, shape, center_line, filters_key, time_list, sample_list, signal_shape, fft_shape)) def create_controls(self, filters_key, base_rect, padding, ax_fft, time_list, sample_lists, signal_shapes, fft_shapes): ax_filter = ax_fft.twinx() ax_filter.set_navigate(False) ax_filter.set_yticks([]) num_filters = len(self.filters[filters_key]) for i, filter in enumerate(self.filters[filters_key]): filt_type = filter.get_type() filt_color = self.filter_color_map(i / num_filters) filt_shape, filt_cutoff = self.init_filter_shape(ax_filter, filter, filt_color) if filt_type == BiquadFilterType.PEAK: name = "Notch" else: name = "LPF" # control for center freq is common to all filters self.create_filter_control("{} freq".format(name), filter, base_rect, 500, filter.get_center_freq(), filt_shape, filt_cutoff, lambda val, filter=filter: filter.set_center_freq(val), filters_key, time_list, sample_lists, signal_shapes, fft_shapes, filt_color) # move down of control height + padding base_rect[1] -= (base_rect[3] + padding) if filt_type == BiquadFilterType.PEAK: self.create_filter_control("{} att (db)".format(name), filter, base_rect, 100, filter.get_attenuation(), filt_shape, filt_cutoff, lambda val, filter=filter: filter.set_attenuation(val), filters_key, time_list, sample_lists, signal_shapes, fft_shapes, filt_color) base_rect[1] -= (base_rect[3] + padding) self.create_filter_control("{} band".format(name), filter, base_rect, 300, filter.get_bandwidth(), filt_shape, filt_cutoff, lambda val, filter=filter: filter.set_bandwidth(val), filters_key, time_list, sample_lists, signal_shapes, fft_shapes, filt_color) base_rect[1] -= (base_rect[3] + padding) def create_spectrogram(self, data, name, sample_rate): freqs, times, Sx = signal.spectrogram(np.array(data), fs=sample_rate, window='hanning', nperseg=self.FFT_N, noverlap=self.FFT_N - self.FFT_N // 10, detrend=False, scaling='spectrum') f, ax = plt.subplots(figsize=(4.8, 2.4)) ax.pcolormesh(times, freqs, 10 * np.log10(Sx), cmap='viridis') ax.set_title(name) ax.set_ylabel('Frequency (Hz)') ax.set_xlabel('Time (s)') def init_plot(self, log_name): self.fig = plt.figure(figsize=(14, 9)) self.fig.canvas.set_window_title("ArduPilot Filter Test Tool - {}".format(log_name)) self.fig.canvas.draw() rows = 2 cols = 3 raw_acc_index = 1 fft_acc_index = raw_acc_index + 1 raw_gyr_index = cols + 1 fft_gyr_index = raw_gyr_index + 1 # signal self.ax_acc = self.fig.add_subplot(rows, cols, raw_acc_index) self.ax_gyr = self.fig.add_subplot(rows, cols, raw_gyr_index, sharex=self.ax_acc) accx_filtered, accy_filtered, accz_filtered = self.test_acc_filters() self.ax_filtered_accx, self.ax_filtered_accy, self.ax_filtered_accz = self.init_signal_plot(self.ax_acc, self.ACC_t, self.ACC_x, self.ACC_y, self.ACC_z, accx_filtered, accy_filtered, accz_filtered, "AccX") gyrx_filtered, gyry_filtered, gyrz_filtered = self.test_gyr_filters() self.ax_filtered_gyrx, self.ax_filtered_gyry, self.ax_filtered_gyrz = self.init_signal_plot(self.ax_gyr, self.GYR_t, self.GYR_x, self.GYR_y, self.GYR_z, gyrx_filtered, gyry_filtered, gyrz_filtered, "GyrX") # FFT self.ax_acc_fft = self.fig.add_subplot(rows, cols, fft_acc_index) self.ax_gyr_fft = self.fig.add_subplot(rows, cols, fft_gyr_index) self.acc_filtered_fft_ax_x, self.acc_filtered_fft_ax_y, self.acc_filtered_fft_ax_z = self.init_fft( self.ax_acc_fft, self.ACC_t, self.ACC_x, self.ACC_y, self.ACC_z, self.ACC_freq, self.acc_dt, accx_filtered, accy_filtered, accz_filtered, "AccX") self.gyr_filtered_fft_ax_x, self.gyr_filtered_fft_ax_y, self.gyr_filtered_fft_ax_z = self.init_fft( self.ax_gyr_fft, self.GYR_t, self.GYR_x, self.GYR_y, self.GYR_z, self.GYR_freq, self.gyr_dt, gyrx_filtered, gyry_filtered, gyrz_filtered, "GyrX") self.fig.tight_layout() # TODO add y z self.create_controls("acc", [0.75, 0.95, 0.2, 0.02], 0.01, self.ax_acc_fft, self.ACC_t, (self.ACC_x, self.ACC_y, self.ACC_z), (self.ax_filtered_accx, self.ax_filtered_accy, self.ax_filtered_accz), (self.acc_filtered_fft_ax_x, self.acc_filtered_fft_ax_y, self.acc_filtered_fft_ax_z)) self.create_controls("gyr", [0.75, 0.45, 0.2, 0.02], 0.01, self.ax_gyr_fft, self.GYR_t, (self.GYR_x, self.GYR_y, self.GYR_z), (self.ax_filtered_gyrx, self.ax_filtered_gyry, self.ax_filtered_gyrz), (self.gyr_filtered_fft_ax_x, self.gyr_filtered_fft_ax_y, self.gyr_filtered_fft_ax_z)) # setup animation for continuous update global anim anim = FuncAnimation(self.fig, lambda frame, self=self: self.animation_update(), interval=1, blit=False) # Work in progress here... # self.create_spectrogram(self.GYR_x, "GyrX", self.GYR_freq) # self.create_spectrogram(gyrx_filtered, "GyrX filtered", self.GYR_freq) # self.create_spectrogram(self.ACC_x, "AccX", self.ACC_freq) # self.create_spectrogram(accx_filtered, "AccX filtered", self.ACC_freq) plt.show() self.print_filter_param_info() def print_filter_param_info(self): if len(self.filters["acc"]) > 2 or len(self.filters["gyr"]) > 2: print("Testing too many filters unsupported from firmware, cannot calculate parameters to set them") return print("To have the last filter settings in the graphs set the following parameters:\n") for f in self.filters["acc"]: filt_type = f.get_type() if filt_type == BiquadFilterType.PEAK: # NOTCH print("INS_NOTCA_ENABLE,", 1) print("INS_NOTCA_FREQ,", f.get_center_freq()) print("INS_NOTCA_BW,", f.get_bandwidth()) print("INS_NOTCA_ATT,", f.get_attenuation()) else: # LPF print("INS_ACCEL_FILTER,", f.get_center_freq()) for f in self.filters["gyr"]: filt_type = f.get_type() if filt_type == BiquadFilterType.PEAK: # NOTCH print("INS_HNTC2_ENABLE,", 1) print("INS_HNTC2_FREQ,", f.get_center_freq()) print("INS_HNTC2_BW,", f.get_bandwidth()) print("INS_HNTC2_ATT,", f.get_attenuation()) else: # LPF print("INS_GYRO_FILTER,", f.get_center_freq()) print("\n+---------+") print("| WARNING |") print("+---------+") print("Always check the onboard FFT to setup filters, this tool only simulate effects of filtering.")