/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_OpticalFlow_Linux.cpp - ardupilot library for the PX4Flow sensor. * inspired by the PX4Firmware code. * * @author: VĂ­ctor Mayoral Vilches * */ #include #include "OpticalFlow.h" #define PX4FLOW_DEBUG 1 #if CONFIG_HAL_BOARD == HAL_BOARD_LINUX #define PX4FLOW_I2C_ADDRESS 0x42 // 7-bit address. 8-bit address is 0x84, range 0x42 - 0x49 #define PX4FLOW_REG 0x16 // Measure Register 22 #define I2C_FRAME_SIZE (sizeof(i2c_frame)) #define I2C_INTEGRAL_FRAME_SIZE (sizeof(i2c_integral_frame)) extern const AP_HAL::HAL& hal; AP_OpticalFlow_Linux::AP_OpticalFlow_Linux(OpticalFlow &_frontend) : OpticalFlow_backend(_frontend) {} void AP_OpticalFlow_Linux::init(void) { // only initialise once if (initialised) { return; } // get pointer to i2c bus semaphore AP_HAL::Semaphore *i2c_sem = hal.i2c->get_semaphore(); if (i2c_sem == NULL) { return; } // take i2c bus sempahore if (!i2c_sem->take(200)) { return; } // read from flow sensor to ensure it is not a ll40ls Lidar (which can be on 0x42) // read I2C_FRAME_SIZE bytes, the ll40ls will error whereas the flow happily returns data uint8_t val[I2C_FRAME_SIZE]; if (hal.i2c->readRegisters(PX4FLOW_I2C_ADDRESS, 0, I2C_FRAME_SIZE, val) != 0) { i2c_sem->give(); return; } // success initialised = true; i2c_sem->give(); } bool AP_OpticalFlow_Linux::request_measurement() { // send measure request to sensor uint8_t cmd = PX4FLOW_REG; if (hal.i2c->writeRegisters(PX4FLOW_I2C_ADDRESS, cmd, 0, nullptr) != 0) { return false; } return true; } bool AP_OpticalFlow_Linux::read(optical_flow_s* report) { // get pointer to i2c bus semaphore AP_HAL::Semaphore *i2c_sem = hal.i2c->get_semaphore(); if (i2c_sem == NULL) { num_errors++; return false; } // take i2c bus sempahore (non blocking) if (!i2c_sem->take_nonblocking()) { num_errors++; return false; } // request measurement request_measurement(); uint8_t val[I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE] = {}; i2c_integral_frame f_integral; // Perform the writing and reading in a single command if (PX4FLOW_REG == 0x00) { if (hal.i2c->readRegisters(PX4FLOW_I2C_ADDRESS, 0, I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE, val) != 0) { num_errors++; i2c_sem->give(); return false; } memcpy(&f_integral, &(val[I2C_FRAME_SIZE]), I2C_INTEGRAL_FRAME_SIZE); } if (PX4FLOW_REG == 0x16) { if (hal.i2c->readRegisters(PX4FLOW_I2C_ADDRESS, 0, I2C_INTEGRAL_FRAME_SIZE, val) != 0) { num_errors++; i2c_sem->give(); return false; } memcpy(&f_integral, val, I2C_INTEGRAL_FRAME_SIZE); } report->pixel_flow_x_integral = static_cast(f_integral.pixel_flow_x_integral) / 10000.0f; //convert to radians report->pixel_flow_y_integral = static_cast(f_integral.pixel_flow_y_integral) / 10000.0f; //convert to radians report->frame_count_since_last_readout = f_integral.frame_count_since_last_readout; report->ground_distance_m = static_cast(f_integral.ground_distance) / 1000.0f; // convert to meters report->quality = f_integral.qual; // 0:bad, 255 max quality report->gyro_x_rate_integral = static_cast(f_integral.gyro_x_rate_integral) / 10000.0f; // convert to radians report->gyro_y_rate_integral = static_cast(f_integral.gyro_y_rate_integral) / 10000.0f; // convert to radians report->gyro_z_rate_integral = static_cast(f_integral.gyro_z_rate_integral) / 10000.0f; // convert to radians report->integration_timespan = f_integral.integration_timespan; // microseconds report->time_since_last_sonar_update = f_integral.sonar_timestamp; // microseconds report->gyro_temperature = f_integral.gyro_temperature; // Temperature * 100 in centi-degrees Celsius report->sensor_id = 0; i2c_sem->give(); // reduce error count if (num_errors > 0) { num_errors--; } return true; } // update - read latest values from sensor and fill in x,y and totals. void AP_OpticalFlow_Linux::update(void) { optical_flow_s report; // return immediately if not initialised or more than half of last 40 reads have failed if (!initialised || num_errors >= 20) { return; } // throttle reads to no more than 10hz uint32_t now = hal.scheduler->millis(); if (now - last_read_ms < 100) { return; } last_read_ms = now; // read the report from the sensor if (!read(&report)) { return; } // process struct OpticalFlow::OpticalFlow_state state; state.device_id = report.sensor_id; state.surface_quality = report.quality; if (report.integration_timespan > 0) { const Vector2f flowScaler = _flowScaler(); float flowScaleFactorX = 1.0f + 0.001f * flowScaler.x; float flowScaleFactorY = 1.0f + 0.001f * flowScaler.y; float integralToRate = 1e6f / float(report.integration_timespan); state.flowRate.x = flowScaleFactorX * integralToRate * float(report.pixel_flow_x_integral); // rad/sec measured optically about the X sensor axis state.flowRate.y = flowScaleFactorY * integralToRate * float(report.pixel_flow_y_integral); // rad/sec measured optically about the Y sensor axis state.bodyRate.x = integralToRate * float(report.gyro_x_rate_integral); // rad/sec measured inertially about the X sensor axis state.bodyRate.y = integralToRate * float(report.gyro_y_rate_integral); // rad/sec measured inertially about the Y sensor axis } else { state.flowRate.zero(); state.bodyRate.zero(); } // copy results to front end _update_frontend(state); #if PX4FLOW_DEBUG hal.console->printf("PX4FLOW id:%u qual:%u FlowRateX:%4.2f Y:%4.2f BodyRateX:%4.2f y:%4.2f\n", (unsigned)state.device_id, (unsigned)state.surface_quality, (double)state.flowRate.x, (double)state.flowRate.y, (double)state.bodyRate.x, (double)state.bodyRate.y); #endif } #endif // CONFIG_HAL_BOARD == HAL_BOARD_LINUX