// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include extern const AP_HAL::HAL& hal; // init - performs any required initialisation for this instance void AP_Mount_Servo::init(const AP_SerialManager& serial_manager) { if (_instance == 0) { _roll_idx = RC_Channel_aux::k_mount_roll; _tilt_idx = RC_Channel_aux::k_mount_tilt; _pan_idx = RC_Channel_aux::k_mount_pan; _open_idx = RC_Channel_aux::k_mount_open; } else { // this must be the 2nd mount _roll_idx = RC_Channel_aux::k_mount2_roll; _tilt_idx = RC_Channel_aux::k_mount2_tilt; _pan_idx = RC_Channel_aux::k_mount2_pan; _open_idx = RC_Channel_aux::k_mount2_open; } // check which servos have been assigned check_servo_map(); } // update mount position - should be called periodically void AP_Mount_Servo::update() { static bool mount_open = 0; // 0 is closed // check servo map every three seconds to allow users to modify parameters uint32_t now = hal.scheduler->millis(); if (now - _last_check_servo_map_ms > 3000) { check_servo_map(); _last_check_servo_map_ms = now; } switch(get_mode()) { // move mount to a "retracted position" or to a position where a fourth servo can retract the entire mount into the fuselage case MAV_MOUNT_MODE_RETRACT: { _angle_bf_output_deg = _state._retract_angles.get(); break; } // move mount to a neutral position, typically pointing forward case MAV_MOUNT_MODE_NEUTRAL: { _angle_bf_output_deg = _state._neutral_angles.get(); break; } // point to the angles given by a mavlink message case MAV_MOUNT_MODE_MAVLINK_TARGETING: { // earth-frame angle targets (i.e. _angle_ef_target_rad) should have already been set by a MOUNT_CONTROL message from GCS stabilize(); break; } // RC radio manual angle control, but with stabilization from the AHRS case MAV_MOUNT_MODE_RC_TARGETING: { // update targets using pilot's rc inputs update_targets_from_rc(); stabilize(); break; } // point mount to a GPS point given by the mission planner case MAV_MOUNT_MODE_GPS_POINT: { if(_frontend._ahrs.get_gps().status() >= AP_GPS::GPS_OK_FIX_2D) { calc_angle_to_location(_state._roi_target, _angle_ef_target_rad, _flags.tilt_control, _flags.pan_control); stabilize(); } break; } default: //do nothing break; } // move mount to a "retracted position" into the fuselage with a fourth servo bool mount_open_new = (get_mode() == MAV_MOUNT_MODE_RETRACT) ? 0 : 1; if (mount_open != mount_open_new) { mount_open = mount_open_new; move_servo(_open_idx, mount_open_new, 0, 1); } // write the results to the servos move_servo(_roll_idx, _angle_bf_output_deg.x*10, _state._roll_angle_min*0.1f, _state._roll_angle_max*0.1f); move_servo(_tilt_idx, _angle_bf_output_deg.y*10, _state._tilt_angle_min*0.1f, _state._tilt_angle_max*0.1f); move_servo(_pan_idx, _angle_bf_output_deg.z*10, _state._pan_angle_min*0.1f, _state._pan_angle_max*0.1f); } // set_mode - sets mount's mode void AP_Mount_Servo::set_mode(enum MAV_MOUNT_MODE mode) { // record the mode change and return success _state._mode = mode; } // private methods // check_servo_map - detects which axis we control using the functions assigned to the servos in the RC_Channel_aux // should be called periodically (i.e. 1hz or less) void AP_Mount_Servo::check_servo_map() { _flags.roll_control = RC_Channel_aux::function_assigned(_roll_idx); _flags.tilt_control = RC_Channel_aux::function_assigned(_tilt_idx); _flags.pan_control = RC_Channel_aux::function_assigned(_pan_idx); } // status_msg - called to allow mounts to send their status to GCS using the MOUNT_STATUS message void AP_Mount_Servo::status_msg(mavlink_channel_t chan) { mavlink_msg_mount_status_send(chan, 0, 0, _angle_bf_output_deg.y*100, _angle_bf_output_deg.x*100, _angle_bf_output_deg.z*100); } // stabilize - stabilizes the mount relative to the Earth's frame // input: _angle_ef_target_rad (earth frame targets in radians) // output: _angle_bf_output_deg (body frame angles in degrees) void AP_Mount_Servo::stabilize() { // only do the full 3D frame transform if we are doing pan control if (_state._stab_pan) { Matrix3f m; ///< holds 3 x 3 matrix, var is used as temp in calcs Matrix3f cam; ///< Rotation matrix earth to camera. Desired camera from input. Matrix3f gimbal_target; ///< Rotation matrix from plane to camera. Then Euler angles to the servos. m = _frontend._ahrs.get_dcm_matrix(); m.transpose(); cam.from_euler(_angle_ef_target_rad.x, _angle_ef_target_rad.y, _angle_ef_target_rad.z); gimbal_target = m * cam; gimbal_target.to_euler(&_angle_bf_output_deg.x, &_angle_bf_output_deg.y, &_angle_bf_output_deg.z); _angle_bf_output_deg.x = _state._stab_roll ? degrees(_angle_bf_output_deg.x) : degrees(_angle_ef_target_rad.x); _angle_bf_output_deg.y = _state._stab_tilt ? degrees(_angle_bf_output_deg.y) : degrees(_angle_ef_target_rad.y); _angle_bf_output_deg.z = degrees(_angle_bf_output_deg.z); } else { // otherwise base mount roll and tilt on the ahrs // roll/tilt attitude, plus any requested angle _angle_bf_output_deg.x = degrees(_angle_ef_target_rad.x); _angle_bf_output_deg.y = degrees(_angle_ef_target_rad.y); _angle_bf_output_deg.z = degrees(_angle_ef_target_rad.z); if (_state._stab_roll) { _angle_bf_output_deg.x -= degrees(_frontend._ahrs.roll); } if (_state._stab_tilt) { _angle_bf_output_deg.y -= degrees(_frontend._ahrs.pitch); } // lead filter const Vector3f &gyro = _frontend._ahrs.get_gyro(); if (_state._stab_roll && !AP_Math::is_zero(_state._roll_stb_lead) && fabsf(_frontend._ahrs.pitch) < (float)M_PI/3.0f) { // Compute rate of change of euler roll angle float roll_rate = gyro.x + (_frontend._ahrs.sin_pitch() / _frontend._ahrs.cos_pitch()) * (gyro.y * _frontend._ahrs.sin_roll() + gyro.z * _frontend._ahrs.cos_roll()); _angle_bf_output_deg.x -= degrees(roll_rate) * _state._roll_stb_lead; } if (_state._stab_tilt && !AP_Math::is_zero(_state._pitch_stb_lead)) { // Compute rate of change of euler pitch angle float pitch_rate = _frontend._ahrs.cos_pitch() * gyro.y - _frontend._ahrs.sin_roll() * gyro.z; _angle_bf_output_deg.y -= degrees(pitch_rate) * _state._pitch_stb_lead; } } } // closest_limit - returns closest angle to 'angle' taking into account limits. all angles are in degrees * 10 int16_t AP_Mount_Servo::closest_limit(int16_t angle, int16_t angle_min, int16_t angle_max) { // Make sure the angle lies in the interval [-180 .. 180[ degrees while (angle < -1800) angle += 3600; while (angle >= 1800) angle -= 3600; // Make sure the angle limits lie in the interval [-180 .. 180[ degrees while (angle_min < -1800) angle_min += 3600; while (angle_min >= 1800) angle_min -= 3600; while (angle_max < -1800) angle_max += 3600; while (angle_max >= 1800) angle_max -= 3600; // TODO call this function somehow, otherwise this will never work //set_range(min, max); // If the angle is outside servo limits, saturate the angle to the closest limit // On a circle the closest angular position must be carefully calculated to account for wrap-around if ((angle < angle_min) && (angle > angle_max)) { // angle error if min limit is used int16_t err_min = angle_min - angle + (angleangle_max ? 0 : 3600); // add 360 degrees if on the "wrong side" angle = err_min