#include #include #include #include "AP_BattMonitor.h" #include "AP_BattMonitor_SMBus_I2C.h" #include extern const AP_HAL::HAL& hal; #include #define BATTMONITOR_SMBUS_TEMP 0x08 // temperature register #define BATTMONITOR_SMBUS_VOLTAGE 0x09 // voltage register #define BATTMONITOR_SMBUS_FULL_CHARGE_CAPACITY 0x10 // full capacity register #define BATTMONITOR_SMBUS_BATTERY_STATUS 0x16 // battery status register including alarms #define BATTMONITOR_SMBUS_DESIGN_CAPACITY 0x18 // design capacity register #define BATTMONITOR_SMBUS_DESIGN_VOLTAGE 0x19 // design voltage register #define BATTMONITOR_SMBUS_SERIALNUM 0x1c // serial number register #define BATTMONITOR_SMBUS_MANUFACTURE_NAME 0x20 // manufacturer name #define BATTMONITOR_SMBUS_DEVICE_NAME 0x21 // device name #define BATTMONITOR_SMBUS_DEVICE_CHEMISTRY 0x22 // device chemistry #define BATTMONITOR_SMBUS_MANUFACTURE_INFO 0x25 // manufacturer info including cell voltage #define BATTMONITOR_SMBUS_CELL_VOLTAGE 0x28 // cell voltage register #define BATTMONITOR_SMBUS_CURRENT 0x2a // current register // Constructor AP_BattMonitor_SMBus_I2C::AP_BattMonitor_SMBus_I2C(AP_BattMonitor &mon, uint8_t instance, AP_BattMonitor::BattMonitor_State &mon_state, AP_HAL::OwnPtr dev) : AP_BattMonitor_SMBus(mon, instance, mon_state) , _dev(std::move(dev)) { _dev->register_periodic_callback(100000, FUNCTOR_BIND_MEMBER(&AP_BattMonitor_SMBus_I2C::timer, void)); } /// Read the battery voltage and current. Should be called at 10hz void AP_BattMonitor_SMBus_I2C::read() { // nothing to do - all done in timer() } void AP_BattMonitor_SMBus_I2C::timer() { uint16_t data; uint8_t buff[4]; uint32_t tnow = AP_HAL::micros(); // read voltage if (read_word(BATTMONITOR_SMBUS_VOLTAGE, data)) { _state.voltage = (float)data / 1000.0f; _state.last_time_micros = tnow; _state.healthy = true; } // read current if (read_block(BATTMONITOR_SMBUS_CURRENT, buff, 4, false) == 4) { _state.current_amps = (float)((int32_t)((uint32_t)buff[3]<<24 | (uint32_t)buff[2]<<16 | (uint32_t)buff[1]<<8 | (uint32_t)buff[0])) / 1000.0f; _state.last_time_micros = tnow; } // timeout after 5 seconds if ((tnow - _state.last_time_micros) > AP_BATTMONITOR_SMBUS_TIMEOUT_MICROS) { _state.healthy = false; } } // read word from register // returns true if read was successful, false if failed bool AP_BattMonitor_SMBus_I2C::read_word(uint8_t reg, uint16_t& data) const { uint8_t buff[3]; // buffer to hold results // read three bytes and place in last three bytes of buffer if (!_dev->read_registers(reg, buff, sizeof(buff))) { return false; } // check PEC uint8_t pec = get_PEC(BATTMONITOR_SMBUS_I2C_ADDR, reg, true, buff, 2); if (pec != buff[2]) { return false; } // convert buffer to word data = (uint16_t)buff[1]<<8 | (uint16_t)buff[0]; // return success return true; } // read_block - returns number of characters read if successful, zero if unsuccessful uint8_t AP_BattMonitor_SMBus_I2C::read_block(uint8_t reg, uint8_t* data, uint8_t max_len, bool append_zero) const { uint8_t buff[max_len+2]; // buffer to hold results (2 extra byte returned holding length and PEC) // read bytes if (!_dev->read_registers(reg, buff, sizeof(buff))) { return 0; } // get length uint8_t bufflen = buff[0]; // sanity check length returned by smbus if (bufflen == 0 || bufflen > max_len) { return 0; } // check PEC uint8_t pec = get_PEC(BATTMONITOR_SMBUS_I2C_ADDR, reg, true, buff, bufflen+1); if (pec != buff[bufflen+1]) { return 0; } // copy data (excluding PEC) memcpy(data, &buff[1], bufflen); // optionally add zero to end if (append_zero) { data[bufflen] = '\0'; } // return success return bufflen; } #define SMBUS_PEC_POLYNOME 0x07 // Polynome for CRC generation /// get_PEC - calculate packet error correction code of buffer uint8_t AP_BattMonitor_SMBus_I2C::get_PEC(const uint8_t i2c_addr, uint8_t cmd, bool reading, const uint8_t buff[], uint8_t len) const { // exit immediately if no data if (len <= 0) { return 0; } // prepare temp buffer for calcing crc uint8_t tmp_buff[len+3]; tmp_buff[0] = i2c_addr << 1; tmp_buff[1] = cmd; tmp_buff[2] = tmp_buff[0] | (uint8_t)reading; memcpy(&tmp_buff[3],buff,len); // initialise crc to zero uint8_t crc = 0; uint8_t shift_reg = 0; bool do_invert; // for each byte in the stream for (uint8_t i=0; i