#include "Copter.h" #if CLI_ENABLED == ENABLED #define PWM_CALIB_MIN 1000 #define PWM_CALIB_MAX 2000 #define PWM_HIGHEST_MAX 2200 #define PWM_LOWEST_MAX 1200 #define PWM_HIGHEST_MIN 1800 #define PWM_LOWEST_MIN 800 // Command/function table for the setup menu static const struct Menu::command setup_menu_commands[] = { {"reset", MENU_FUNC(setup_factory)}, {"show", MENU_FUNC(setup_show)}, {"set", MENU_FUNC(setup_set)}, {"esc_calib", MENU_FUNC(esc_calib)}, }; // Create the setup menu object. MENU(setup_menu, "setup", setup_menu_commands); // Called from the top-level menu to run the setup menu. int8_t Copter::setup_mode(uint8_t argc, const Menu::arg *argv) { // Give the user some guidance cliSerial->printf("Setup Mode\n\n\n"); // Run the setup menu. When the menu exits, we will return to the main menu. setup_menu.run(); return 0; } // Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults). // Called by the setup menu 'factoryreset' command. int8_t Copter::setup_factory(uint8_t argc, const Menu::arg *argv) { int16_t c; cliSerial->printf("\n'Y' = factory reset, any other key to abort:\n"); do { c = cliSerial->read(); } while (-1 == c); if (('y' != c) && ('Y' != c)) return(-1); AP_Param::erase_all(); cliSerial->printf("\nReboot board"); delay(1000); for (;; ) { } // note, cannot actually return here return(0); } //Set a parameter to a specified value. It will cast the value to the current type of the //parameter and make sure it fits in case of INT8 and INT16 int8_t Copter::setup_set(uint8_t argc, const Menu::arg *argv) { int8_t value_int8; int16_t value_int16; AP_Param *param; enum ap_var_type p_type; if(argc!=3) { cliSerial->println("Invalid command. Usage: set "); return 0; } param = AP_Param::find(argv[1].str, &p_type); if(!param) { cliSerial->printf("Param not found: %s\n", argv[1].str); return 0; } const char *strType = "Value out of range for type"; switch(p_type) { case AP_PARAM_INT8: value_int8 = (int8_t)(argv[2].i); if(argv[2].i!=value_int8) { cliSerial->printf("%s INT8\n", strType); return 0; } ((AP_Int8*)param)->set_and_save(value_int8); break; case AP_PARAM_INT16: value_int16 = (int16_t)(argv[2].i); if(argv[2].i!=value_int16) { cliSerial->printf("%s INT16\n", strType); return 0; } ((AP_Int16*)param)->set_and_save(value_int16); break; //int32 and float don't need bounds checking, just use the value provoded by Menu::arg case AP_PARAM_INT32: ((AP_Int32*)param)->set_and_save(argv[2].i); break; case AP_PARAM_FLOAT: ((AP_Float*)param)->set_and_save(argv[2].f); break; default: cliSerial->printf("Cannot set parameter of type %d.\n", p_type); break; } return 0; } // Print the current configuration. // Called by the setup menu 'show' command. int8_t Copter::setup_show(uint8_t argc, const Menu::arg *argv) { AP_Param *param; ap_var_type type; //If a parameter name is given as an argument to show, print only that parameter if(argc>=2) { param=AP_Param::find(argv[1].str, &type); if(!param) { cliSerial->printf("Parameter not found: '%s'\n", argv[1].str); return 0; } AP_Param::show(param, argv[1].str, type, cliSerial); return 0; } // clear the area print_blanks(8); report_version(); report_radio(); report_frame(); report_batt_monitor(); report_flight_modes(); report_ins(); report_compass(); report_optflow(); AP_Param::show_all(cliSerial); return(0); } int8_t Copter::esc_calib(uint8_t argc,const Menu::arg *argv) { char c; unsigned max_channels = 0; uint32_t set_mask = 0; uint16_t pwm_high = PWM_CALIB_MAX; uint16_t pwm_low = PWM_CALIB_MIN; if (argc < 2) { cliSerial->printf("Pls provide Channel Mask\n" "\tusage: esc_calib 1010 - enables calibration for 2nd and 4th Motor\n"); return(0); } set_mask = strtol (argv[1].str, nullptr, 2); if (set_mask == 0) cliSerial->print("no channels chosen"); //cliSerial->printf("\n%d\n",set_mask); set_mask<<=1; /* wait 50 ms */ hal.scheduler->delay(50); cliSerial->printf("\nATTENTION, please remove or fix propellers before starting calibration!\n" "\n" "Make sure\n" "\t - that the ESCs are not powered\n" "\t - that safety is off\n" "\t - that the controllers are stopped\n" "\n" "Do you want to start calibration now: y or n?\n"); /* wait for user input */ const char *strEscCalib = "ESC calibration"; while (1) { c= cliSerial->read(); if (c == 'y' || c == 'Y') { break; } else if (c == 0x03 || c == 0x63 || c == 'q') { cliSerial->printf("%s exited\n", strEscCalib); return(0); } else if (c == 'n' || c == 'N') { cliSerial->printf("%s aborted\n", strEscCalib); return(0); } /* rate limit to ~ 20 Hz */ hal.scheduler->delay(50); } /* get number of channels available on the device */ max_channels = AP_MOTORS_MAX_NUM_MOTORS; /* tell IO/FMU that the system is armed (it will output values if safety is off) */ motors->armed(true); cliSerial->println("Outputs armed"); /* wait for user confirmation */ cliSerial->printf("\nHigh PWM set: %d\n" "\n" "Connect battery now and hit c+ENTER after the ESCs confirm the first calibration step\n" "\n", pwm_high); while (1) { /* set max PWM */ for (unsigned i = 0; i < max_channels; i++) { if (set_mask & 1<output_test(i, pwm_high); } } c = cliSerial->read(); if (c == 'c') { break; } else if (c == 0x03 || c == 'q') { cliSerial->printf("%s exited\n", strEscCalib); return(0); } /* rate limit to ~ 20 Hz */ hal.scheduler->delay(50); } cliSerial->printf("Low PWM set: %d\n" "\n" "Hit c+Enter when finished\n" "\n", pwm_low); while (1) { /* set disarmed PWM */ for (unsigned i = 0; i < max_channels; i++) { if (set_mask & 1<output_test(i, pwm_low); } } c = cliSerial->read(); if (c == 'c') { break; } else if (c == 0x03 || c == 'q') { cliSerial->printf("%s exited\n", strEscCalib); return(0); } /* rate limit to ~ 20 Hz */ hal.scheduler->delay(50); } /* disarm */ motors->armed(false); cliSerial->println("Outputs disarmed"); cliSerial->printf("%s finished\n", strEscCalib); return(0); } /***************************************************************************/ // CLI reports /***************************************************************************/ void Copter::report_batt_monitor() { cliSerial->printf("\nBatt Mon:\n"); print_divider(); if (battery.num_instances() == 0) { print_enabled(false); } else if (!battery.has_current()) { cliSerial->print("volts"); } else { cliSerial->print("volts and cur"); } print_blanks(2); } void Copter::report_frame() { cliSerial->println("Frame"); print_divider(); cliSerial->println(get_frame_string()); print_blanks(2); } void Copter::report_radio() { cliSerial->println("Radio"); print_divider(); // radio print_radio_values(); print_blanks(2); } void Copter::report_ins() { cliSerial->println("INS"); print_divider(); print_gyro_offsets(); print_accel_offsets_and_scaling(); print_blanks(2); } void Copter::report_flight_modes() { cliSerial->println("Flight modes"); print_divider(); for(int16_t i = 0; i < 6; i++ ) { print_switch(i, (control_mode_t)flight_modes[i].get(), BIT_IS_SET(g.simple_modes, i)); } print_blanks(2); } void Copter::report_optflow() { #if OPTFLOW == ENABLED cliSerial->println("OptFlow"); print_divider(); print_enabled(optflow.enabled()); print_blanks(2); #endif // OPTFLOW == ENABLED } /***************************************************************************/ // CLI utilities /***************************************************************************/ void Copter::print_radio_values() { for (uint8_t i=0; i<8; i++) { RC_Channel *rc = RC_Channels::rc_channel(i); cliSerial->printf("CH%u: %d | %d\n", (unsigned)i, rc->get_radio_min(), rc->get_radio_max()); } } void Copter::print_switch(uint8_t p, uint8_t m, bool b) { cliSerial->printf("Pos %d:\t",p); print_flight_mode(cliSerial, m); cliSerial->printf(",\t\tSimple: "); if(b) cliSerial->println("ON"); else cliSerial->println("OFF"); } void Copter::print_accel_offsets_and_scaling(void) { const Vector3f &accel_offsets = ins.get_accel_offsets(); const Vector3f &accel_scale = ins.get_accel_scale(); cliSerial->printf("A_off: %4.2f, %4.2f, %4.2f\nA_scale: %4.2f, %4.2f, %4.2f\n", (double)accel_offsets.x, // Pitch (double)accel_offsets.y, // Roll (double)accel_offsets.z, // YAW (double)accel_scale.x, // Pitch (double)accel_scale.y, // Roll (double)accel_scale.z); // YAW } void Copter::print_gyro_offsets(void) { const Vector3f &gyro_offsets = ins.get_gyro_offsets(); cliSerial->printf("G_off: %4.2f, %4.2f, %4.2f\n", (double)gyro_offsets.x, (double)gyro_offsets.y, (double)gyro_offsets.z); } #endif // CLI_ENABLED // report_compass - displays compass information. Also called by compassmot.pde void Copter::report_compass() { cliSerial->println("Compass"); print_divider(); print_enabled(g.compass_enabled); // mag declination cliSerial->printf("Mag Dec: %4.4f\n", (double)degrees(compass.get_declination())); // mag offsets Vector3f offsets; for (uint8_t i=0; iprintf("Mag%d off: %4.4f, %4.4f, %4.4f\n", (int)i, (double)offsets.x, (double)offsets.y, (double)offsets.z); } // motor compensation cliSerial->print("Motor Comp: "); if( compass.get_motor_compensation_type() == AP_COMPASS_MOT_COMP_DISABLED ) { cliSerial->println("Off"); }else{ if( compass.get_motor_compensation_type() == AP_COMPASS_MOT_COMP_THROTTLE ) { cliSerial->print("Throttle"); } if( compass.get_motor_compensation_type() == AP_COMPASS_MOT_COMP_CURRENT ) { cliSerial->print("Current"); } Vector3f motor_compensation; for (uint8_t i=0; iprintf("\nComMot%d: %4.2f, %4.2f, %4.2f\n", (int)i, (double)motor_compensation.x, (double)motor_compensation.y, (double)motor_compensation.z); } } print_blanks(1); } void Copter::print_blanks(int16_t num) { while(num > 0) { num--; cliSerial->println(""); } } void Copter::print_divider(void) { for (int i = 0; i < 40; i++) { cliSerial->print("-"); } cliSerial->println(); } void Copter::print_enabled(bool b) { if(b) cliSerial->print("en"); else cliSerial->print("dis"); cliSerial->println("abled"); } void Copter::report_version() { cliSerial->printf("FW Ver: %d\n",(int)(g.k_format_version)); print_divider(); print_blanks(2); }