#include "Rover.h" #if CLI_ENABLED == ENABLED // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Common for implementation details static const struct Menu::command test_menu_commands[] = { {"passthru", MENU_FUNC(test_passthru)}, {"failsafe", MENU_FUNC(test_failsafe)}, {"relay", MENU_FUNC(test_relay)}, {"waypoints", MENU_FUNC(test_wp)}, {"modeswitch", MENU_FUNC(test_modeswitch)}, // Tests below here are for hardware sensors only present // when real sensors are attached or they are emulated {"gps", MENU_FUNC(test_gps)}, {"ins", MENU_FUNC(test_ins)}, {"sonartest", MENU_FUNC(test_sonar)}, {"compass", MENU_FUNC(test_mag)}, {"logging", MENU_FUNC(test_logging)}, #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN {"shell", MENU_FUNC(test_shell)}, #endif }; // A Macro to create the Menu MENU(test_menu, "test", test_menu_commands); int8_t Rover::test_mode(uint8_t argc, const Menu::arg *argv) { cliSerial->printf("Test Mode\n\n"); test_menu.run(); return 0; } void Rover::print_hit_enter() { cliSerial->printf("Hit Enter to exit.\n\n"); } int8_t Rover::test_passthru(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while (1) { delay(20); // New radio frame? (we could use also if((millis()- timer) > 20) if (hal.rcin->new_input()) { cliSerial->print("CH:"); for (int i = 0; i < 8; i++) { cliSerial->print(hal.rcin->read(i)); // Print channel values cliSerial->print(","); hal.rcout->write(i, hal.rcin->read(i)); // Copy input to Servos } cliSerial->println(); } if (cliSerial->available() > 0){ return (0); } } return 0; } int8_t Rover::test_failsafe(uint8_t argc, const Menu::arg *argv) { uint8_t fail_test = 0; print_hit_enter(); for (int i = 0; i < 50; i++) { delay(20); read_radio(); } // read the radio to set trims // --------------------------- trim_radio(); oldSwitchPosition = readSwitch(); cliSerial->println("Unplug battery, throttle in neutral, turn off radio."); while (channel_throttle->get_control_in() > 0) { delay(20); read_radio(); } while (1) { delay(20); read_radio(); if (channel_throttle->get_control_in() > 0) { cliSerial->printf("THROTTLE CHANGED %d \n", channel_throttle->get_control_in()); fail_test++; } if (oldSwitchPosition != readSwitch()){ cliSerial->print("CONTROL MODE CHANGED: "); print_mode(cliSerial, readSwitch()); cliSerial->println(); fail_test++; } if (throttle_failsafe_active()) { cliSerial->printf("THROTTLE FAILSAFE ACTIVATED: %d, ", channel_throttle->get_radio_in()); print_mode(cliSerial, readSwitch()); cliSerial->println(); fail_test++; } if (fail_test > 0) { return (0); } if (cliSerial->available() > 0) { cliSerial->println("LOS caused no change in APM."); return (0); } } } int8_t Rover::test_relay(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while (1) { cliSerial->println("Relay on"); relay.on(0); delay(3000); if (cliSerial->available() > 0) { return (0); } cliSerial->println("Relay off"); relay.off(0); delay(3000); if (cliSerial->available() > 0) { return (0); } } } int8_t Rover::test_wp(uint8_t argc, const Menu::arg *argv) { delay(1000); cliSerial->printf("%u waypoints\n", (unsigned)mission.num_commands()); cliSerial->printf("Hit radius: %f\n", (double)g.waypoint_radius.get()); for (uint8_t i = 0; i < mission.num_commands(); i++) { AP_Mission::Mission_Command temp_cmd; if (mission.read_cmd_from_storage(i, temp_cmd)) { test_wp_print(temp_cmd); } } return (0); } void Rover::test_wp_print(const AP_Mission::Mission_Command& cmd) { cliSerial->printf("command #: %d id:%d options:%d p1:%d p2:%ld p3:%ld p4:%ld \n", (int)cmd.index, (int)cmd.id, (int)cmd.content.location.options, (int)cmd.p1, (long)cmd.content.location.alt, (long)cmd.content.location.lat, (long)cmd.content.location.lng); } int8_t Rover::test_modeswitch(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); cliSerial->print("Control CH "); cliSerial->println(MODE_CHANNEL, BASE_DEC); while (1) { delay(20); uint8_t switchPosition = readSwitch(); if (oldSwitchPosition != switchPosition){ cliSerial->printf("Position %d\n", switchPosition); oldSwitchPosition = switchPosition; } if (cliSerial->available() > 0) { return (0); } } } /* test the dataflash is working */ int8_t Rover::test_logging(uint8_t argc, const Menu::arg *argv) { cliSerial->println("Testing dataflash logging"); DataFlash.ShowDeviceInfo(cliSerial); return 0; } //------------------------------------------------------------------------------------------- // tests in this section are for real sensors or sensors that have been simulated int8_t Rover::test_gps(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); uint32_t last_message_time_ms = 0; while (1) { delay(100); gps.update(); if (gps.last_message_time_ms() != last_message_time_ms) { last_message_time_ms = gps.last_message_time_ms(); const Location &loc = gps.location(); cliSerial->printf("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n", (long)loc.lat, (long)loc.lng, (long)loc.alt/100, (int)gps.num_sats()); } else { cliSerial->print("."); } if (cliSerial->available() > 0) { return (0); } } } int8_t Rover::test_ins(uint8_t argc, const Menu::arg *argv) { // cliSerial->print("Calibrating."); ahrs.init(); ahrs.set_fly_forward(true); ins.init(scheduler.get_loop_rate_hz()); ahrs.reset(); print_hit_enter(); delay(1000); uint8_t medium_loopCounter = 0; while (1) { ins.wait_for_sample(); ahrs.update(); if (g.compass_enabled) { medium_loopCounter++; if (medium_loopCounter >= 5) { compass.read(); medium_loopCounter = 0; } } // We are using the IMU // --------------------- Vector3f gyros = ins.get_gyro(); Vector3f accels = ins.get_accel(); cliSerial->printf("r:%4d p:%4d y:%3d g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f)\n", (int)ahrs.roll_sensor / 100, (int)ahrs.pitch_sensor / 100, (uint16_t)ahrs.yaw_sensor / 100, (double)gyros.x, (double)gyros.y, (double)gyros.z, (double)accels.x, (double)accels.y, (double)accels.z); if (cliSerial->available() > 0) { return (0); } } } void Rover::print_enabled(bool b) { if (b) { cliSerial->print("en"); } else { cliSerial->print("dis"); } cliSerial->println("abled"); } int8_t Rover::test_mag(uint8_t argc, const Menu::arg *argv) { if (!g.compass_enabled) { cliSerial->print("Compass: "); print_enabled(false); return (0); } if (!compass.init()) { cliSerial->println("Compass initialisation failed!"); return 0; } ahrs.init(); ahrs.set_fly_forward(true); ahrs.set_compass(&compass); // we need the AHRS initialised for this test ins.init(scheduler.get_loop_rate_hz()); ahrs.reset(); int counter = 0; float heading = 0; print_hit_enter(); uint8_t medium_loopCounter = 0; while (1) { ins.wait_for_sample(); ahrs.update(); medium_loopCounter++; if (medium_loopCounter >= 5) { if (compass.read()) { // Calculate heading Matrix3f m = ahrs.get_rotation_body_to_ned(); heading = compass.calculate_heading(m); compass.learn_offsets(); } medium_loopCounter = 0; } counter++; if (counter > 20) { if (compass.healthy()) { const Vector3f mag_ofs = compass.get_offsets(); const Vector3f mag = compass.get_field(); cliSerial->printf("Heading: %f, XYZ: %.0f, %.0f, %.0f,\tXYZoff: %6.2f, %6.2f, %6.2f\n", (double)(wrap_360_cd(ToDeg(heading) * 100)) /100, (double)mag.x, (double)mag.y, (double)mag.z, (double)mag_ofs.x, (double)mag_ofs.y, (double)mag_ofs.z); } else { cliSerial->println("compass not healthy"); } counter = 0; } if (cliSerial->available() > 0) { break; } } // save offsets. This allows you to get sane offset values using // the CLI before you go flying. cliSerial->println("saving offsets"); compass.save_offsets(); return (0); } //------------------------------------------------------------------------------------------- // real sensors that have not been simulated yet go here int8_t Rover::test_sonar(uint8_t argc, const Menu::arg *argv) { init_sonar(); delay(20); sonar.update(); if (sonar.status() == RangeFinder::RangeFinder_NotConnected) { cliSerial->println("WARNING: Sonar is not enabled"); } print_hit_enter(); float sonar_dist_cm_min = 0.0f; float sonar_dist_cm_max = 0.0f; float voltage_min = 0.0f, voltage_max = 0.0f; float sonar2_dist_cm_min = 0.0f; float sonar2_dist_cm_max = 0.0f; float voltage2_min = 0.0f, voltage2_max = 0.0f; uint32_t last_print = 0; while (true) { delay(20); sonar.update(); uint32_t now = millis(); float dist_cm = sonar.distance_cm(0); float voltage = sonar.voltage_mv(0); if (is_zero(sonar_dist_cm_min)) { sonar_dist_cm_min = dist_cm; voltage_min = voltage; } sonar_dist_cm_max = MAX(sonar_dist_cm_max, dist_cm); sonar_dist_cm_min = MIN(sonar_dist_cm_min, dist_cm); voltage_min = MIN(voltage_min, voltage); voltage_max = MAX(voltage_max, voltage); dist_cm = sonar.distance_cm(1); voltage = sonar.voltage_mv(1); if (is_zero(sonar2_dist_cm_min)) { sonar2_dist_cm_min = dist_cm; voltage2_min = voltage; } sonar2_dist_cm_max = MAX(sonar2_dist_cm_max, dist_cm); sonar2_dist_cm_min = MIN(sonar2_dist_cm_min, dist_cm); voltage2_min = MIN(voltage2_min, voltage); voltage2_max = MAX(voltage2_max, voltage); if (now - last_print >= 200) { cliSerial->printf("sonar1 dist=%.1f:%.1fcm volt1=%.2f:%.2f sonar2 dist=%.1f:%.1fcm volt2=%.2f:%.2f\n", (double)sonar_dist_cm_min, (double)sonar_dist_cm_max, (double)voltage_min, (double)voltage_max, (double)sonar2_dist_cm_min, (double)sonar2_dist_cm_max, (double)voltage2_min, (double)voltage2_max); voltage_min = voltage_max = 0.0f; voltage2_min = voltage2_max = 0.0f; sonar_dist_cm_min = sonar_dist_cm_max = 0.0f; sonar2_dist_cm_min = sonar2_dist_cm_max = 0.0f; last_print = now; } if (cliSerial->available() > 0) { break; } } return (0); } #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN /* * run a debug shell */ int8_t Rover::test_shell(uint8_t argc, const Menu::arg *argv) { hal.util->run_debug_shell(cliSerial); return 0; } #endif #endif // CLI_ENABLED