/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_VisualOdom_IntelT265.h" #if HAL_VISUALODOM_ENABLED #include #include #include #include #define VISUALODOM_RESET_IGNORE_DURATION_MS 1000 // sensor data is ignored for 1sec after a position reset extern const AP_HAL::HAL& hal; // consume vision position estimate data and send to EKF. distances in meters void AP_VisualOdom_IntelT265::handle_vision_position_estimate(uint64_t remote_time_us, uint32_t time_ms, float x, float y, float z, const Quaternion &attitude, float posErr, float angErr, uint8_t reset_counter) { const float scale_factor = _frontend.get_pos_scale(); Vector3f pos{x * scale_factor, y * scale_factor, z * scale_factor}; Quaternion att = attitude; // handle request to align sensor's yaw with vehicle's AHRS/EKF attitude if (_align_yaw) { if (align_yaw_to_ahrs(pos, attitude)) { _align_yaw = false; } } if (_align_posxy || _align_posz) { if (align_position_to_ahrs(pos, _align_posxy, _align_posz)) { _align_posxy = _align_posz = false; } } // rotate position and attitude to align with vehicle rotate_and_correct_position(pos); rotate_attitude(att); posErr = constrain_float(posErr, _frontend.get_pos_noise(), 100.0f); angErr = constrain_float(angErr, _frontend.get_yaw_noise(), 1.5f); // check for recent position reset bool consume = should_consume_sensor_data(true, reset_counter); if (consume) { // send attitude and position to EKF AP::ahrs().writeExtNavData(pos, att, posErr, angErr, time_ms, _frontend.get_delay_ms(), get_reset_timestamp_ms(reset_counter)); } // calculate euler orientation for logging float roll; float pitch; float yaw; att.to_euler(roll, pitch, yaw); // log sensor data Write_VisualPosition(remote_time_us, time_ms, pos.x, pos.y, pos.z, degrees(roll), degrees(pitch), wrap_360(degrees(yaw)), posErr, angErr, reset_counter, !consume); // store corrected attitude for use in pre-arm checks _attitude_last = att; // record time for health monitoring _last_update_ms = AP_HAL::millis(); } // consume vision velocity estimate data and send to EKF, velocity in NED meters per second void AP_VisualOdom_IntelT265::handle_vision_speed_estimate(uint64_t remote_time_us, uint32_t time_ms, const Vector3f &vel, uint8_t reset_counter) { // rotate velocity to align with vehicle Vector3f vel_corrected = vel; rotate_velocity(vel_corrected); // check for recent position reset bool consume = should_consume_sensor_data(false, reset_counter); if (consume) { // send velocity to EKF AP::ahrs().writeExtNavVelData(vel_corrected, _frontend.get_vel_noise(), time_ms, _frontend.get_delay_ms()); } // record time for health monitoring _last_update_ms = AP_HAL::millis(); Write_VisualVelocity(remote_time_us, time_ms, vel_corrected, reset_counter, !consume); } // apply rotation and correction to position void AP_VisualOdom_IntelT265::rotate_and_correct_position(Vector3f &position) const { if (_use_posvel_rotation) { position = _posvel_rotation * position; } position += _pos_correction; } // apply rotation to velocity void AP_VisualOdom_IntelT265::rotate_velocity(Vector3f &velocity) const { if (_use_posvel_rotation) { velocity = _posvel_rotation * velocity; } } // rotate attitude using _yaw_trim void AP_VisualOdom_IntelT265::rotate_attitude(Quaternion &attitude) const { // apply orientation rotation if (_use_att_rotation) { attitude *= _att_rotation; } // apply earth-frame yaw rotation if (!is_zero(_yaw_trim)) { attitude = _yaw_rotation * attitude; } return; } // use sensor provided attitude to calculate rotation to align sensor with AHRS/EKF attitude bool AP_VisualOdom_IntelT265::align_yaw_to_ahrs(const Vector3f &position, const Quaternion &attitude) { // do not align to ahrs if we are its yaw source if (AP::ahrs().using_extnav_for_yaw()) { return false; } // do not align until ahrs yaw initialised if (!AP::ahrs().initialised() || !AP::ahrs().dcm_yaw_initialised()) { return false; } align_yaw(position, attitude, AP::ahrs().get_yaw()); return true; } // align sensor yaw with any new yaw (in radians) void AP_VisualOdom_IntelT265::align_yaw(const Vector3f &position, const Quaternion &attitude, float yaw_rad) { // clear any existing errors _error_orientation = false; // create rotation quaternion to correct for orientation const Rotation rot = _frontend.get_orientation(); _att_rotation.initialise(); _use_att_rotation = false; if (rot != Rotation::ROTATION_NONE) { _att_rotation.rotate(rot); _att_rotation.invert(); _use_att_rotation = true; } Quaternion att_corrected = attitude; att_corrected *= _att_rotation; // extract sensor's corrected yaw const float sens_yaw = att_corrected.get_euler_yaw(); // trim yaw by difference between ahrs and sensor yaw const float yaw_trim_orig = _yaw_trim; _yaw_trim = wrap_2PI(yaw_rad - sens_yaw); gcs().send_text(MAV_SEVERITY_INFO, "VisOdom: yaw shifted %d to %d deg", (int)degrees(_yaw_trim - yaw_trim_orig), (int)wrap_360(degrees(sens_yaw + _yaw_trim))); // convert _yaw_trim to _yaw_rotation to speed up processing later _yaw_rotation.from_euler(0.0f, 0.0f, _yaw_trim); // calculate position with current rotation and correction Vector3f pos_orig = position; rotate_and_correct_position(pos_orig); // create position and velocity rotation from yaw trim _use_posvel_rotation = false; if (!is_zero(_yaw_trim)) { _posvel_rotation.from_euler(0.0f, 0.0f, _yaw_trim); _use_posvel_rotation = true; } // recalculate position with new rotation Vector3f pos_new = position; rotate_and_correct_position(pos_new); // update position correction to remove change due to rotation _pos_correction += (pos_orig - pos_new); } // align position with ahrs position by updating _pos_correction // sensor_pos should be the position directly from the sensor with only scaling applied (i.e. no yaw or position corrections) bool AP_VisualOdom_IntelT265::align_position_to_ahrs(const Vector3f &sensor_pos, bool align_xy, bool align_z) { // fail immediately if ahrs cannot provide position Vector3f ahrs_pos_ned; if (!AP::ahrs().get_relative_position_NED_origin(ahrs_pos_ned)) { return false; } align_position(sensor_pos, ahrs_pos_ned, align_xy, align_z); return true; } // align position with a new position by updating _pos_correction // sensor_pos should be the position directly from the sensor with only scaling applied (i.e. no yaw or position corrections) // new_pos should be a NED position offset from the EKF origin void AP_VisualOdom_IntelT265::align_position(const Vector3f &sensor_pos, const Vector3f &new_pos, bool align_xy, bool align_z) { // calculate position with current rotation and correction Vector3f pos_orig = sensor_pos; rotate_and_correct_position(pos_orig); // update position correction if (align_xy) { _pos_correction.x += (new_pos.x - pos_orig.x); _pos_correction.y += (new_pos.y - pos_orig.y); } if (align_z) { _pos_correction.z += (new_pos.z - pos_orig.z); } } // returns false if we fail arming checks, in which case the buffer will be populated with a failure message bool AP_VisualOdom_IntelT265::pre_arm_check(char *failure_msg, uint8_t failure_msg_len) const { // exit immediately if not healthy if (!healthy()) { hal.util->snprintf(failure_msg, failure_msg_len, "not healthy"); return false; } // check for unsupported orientation if (_error_orientation) { hal.util->snprintf(failure_msg, failure_msg_len, "check VISO_ORIENT parameter"); return false; } // get ahrs attitude Quaternion ahrs_quat; if (!AP::ahrs().get_quaternion(ahrs_quat)) { hal.util->snprintf(failure_msg, failure_msg_len, "waiting for AHRS attitude"); return false; } // check if roll and pitch is different by > 10deg (using NED so cannot determine whether roll or pitch specifically) const float rp_diff_deg = degrees(ahrs_quat.roll_pitch_difference(_attitude_last)); if (rp_diff_deg > 10.0f) { hal.util->snprintf(failure_msg, failure_msg_len, "roll/pitch diff %4.1f deg (>10)",(double)rp_diff_deg); return false; } // check if yaw is different by > 10deg Vector3f angle_diff; ahrs_quat.angular_difference(_attitude_last).to_axis_angle(angle_diff); const float yaw_diff_deg = degrees(fabsf(angle_diff.z)); if (yaw_diff_deg > 10.0f) { hal.util->snprintf(failure_msg, failure_msg_len, "yaw diff %4.1f deg (>10)",(double)yaw_diff_deg); return false; } return true; } // returns true if sensor data should be consumed, false if it should be ignored // set vision_position_estimate to true if reset_counter is from the VISION_POSITION_ESTIMATE source, false otherwise // only the VISION_POSITION_ESTIMATE message's reset_counter is used to determine if sensor data should be ignored bool AP_VisualOdom_IntelT265::should_consume_sensor_data(bool vision_position_estimate, uint8_t reset_counter) { if (get_type() == AP_VisualOdom::VisualOdom_Type::VOXL) { // we don't discard data after a reset for VOXL return true; } uint32_t now_ms = AP_HAL::millis(); // set ignore start time if reset counter has changed if (vision_position_estimate) { if (reset_counter != _pos_reset_counter_last) { _pos_reset_counter_last = reset_counter; _pos_reset_ignore_start_ms = now_ms; } } // check if 1 second has passed since the last reset if ((now_ms - _pos_reset_ignore_start_ms) > VISUALODOM_RESET_IGNORE_DURATION_MS) { _pos_reset_ignore_start_ms = 0; } return (_pos_reset_ignore_start_ms == 0); } #endif