/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* SRV_Channel_aux.cpp - handling of servo auxillary functions */ #include "SRV_Channel.h" #include #include #include #include extern const AP_HAL::HAL& hal; /// map a function to a servo channel and output it void SRV_Channel::output_ch(void) { int8_t passthrough_from = -1; // take care of special function cases switch(function) { case k_manual: // manual passthrough_from = ch_num; break; case k_rcin1 ... k_rcin16: // rc pass-thru passthrough_from = int8_t(function - k_rcin1); break; case k_motor1 ... k_motor8: case k_motor9 ... k_motor12: // handled by AP_Motors::rc_write() return; } if (passthrough_from != -1) { // we are doing passthrough from input to output for this channel RC_Channel *rc = RC_Channels::rc_channel(passthrough_from); if (rc) { if (SRV_Channels::passthrough_disabled()) { output_pwm = rc->get_radio_trim(); } else { output_pwm = rc->get_radio_in(); } } } hal.rcout->write(ch_num, output_pwm); } /* call output_ch() on all channels */ void SRV_Channels::output_ch_all(void) { for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { channels[i].output_ch(); } } /* return the current function for a channel */ SRV_Channel::Aux_servo_function_t SRV_Channels::channel_function(uint8_t channel) { if (channel < NUM_SERVO_CHANNELS) { return (SRV_Channel::Aux_servo_function_t)channels[channel].function.get(); } return SRV_Channel::k_none; } /* setup a channels aux servo function */ void SRV_Channel::aux_servo_function_setup(void) { if (type_setup) { return; } switch (function) { case k_flap: case k_flap_auto: case k_egg_drop: set_range(100); break; case k_heli_rsc: case k_heli_tail_rsc: case k_motor_tilt: case k_boost_throttle: set_range(1000); break; case k_aileron_with_input: case k_elevator_with_input: case k_aileron: case k_elevator: case k_dspoiler1: case k_dspoiler2: case k_rudder: case k_steering: case k_flaperon1: case k_flaperon2: case k_tiltMotorLeft: case k_tiltMotorRight: case k_elevon_left: case k_elevon_right: case k_vtail_left: case k_vtail_right: set_angle(4500); break; case k_throttle: case k_throttleLeft: case k_throttleRight: // fixed wing throttle set_range(100); break; default: break; } } /// setup the output range types of all functions void SRV_Channels::update_aux_servo_function(void) { function_mask.clearall(); for (uint8_t i = 0; i < SRV_Channel::k_nr_aux_servo_functions; i++) { functions[i].channel_mask = 0; } // set auxiliary ranges for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { channels[i].aux_servo_function_setup(); function_mask.set((uint8_t)channels[i].function.get()); functions[channels[i].function.get()].channel_mask |= 1U<enable_ch(channels[i].ch_num); } } } /// enable output channels using a channel mask void SRV_Channels::enable_by_mask(uint16_t mask) { for (uint8_t i = 0; i < 16; i++) { if (mask & (1U<enable_ch(i); } } } /* set radio_out for all channels matching the given function type */ void SRV_Channels::set_output_pwm(SRV_Channel::Aux_servo_function_t function, uint16_t value) { if (!function_assigned(function)) { return; } for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { if (channels[i].function.get() == function) { channels[i].set_output_pwm(value); channels[i].output_ch(); } } } /* set radio_out for all channels matching the given function type trim the output assuming a 1500 center on the given value */ void SRV_Channels::set_output_pwm_trimmed(SRV_Channel::Aux_servo_function_t function, int16_t value) { if (!function_assigned(function)) { return; } for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { if (channels[i].function.get() == function) { int16_t value2 = value - 1500 + channels[i].get_trim(); channels[i].set_output_pwm(constrain_int16(value2,channels[i].get_output_min(),channels[i].get_output_max())); channels[i].output_ch(); } } } /* set and save the trim value to radio_in for all channels matching the given function type */ void SRV_Channels::set_trim_to_radio_in_for(SRV_Channel::Aux_servo_function_t function) { if (!function_assigned(function)) { return; } for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { if (channels[i].function.get() == function) { RC_Channel *rc = RC_Channels::rc_channel(channels[i].ch_num); if (rc && rc->get_radio_in() != 0) { rc->set_radio_trim(rc->get_radio_in()); rc->save_radio_trim(); } } } } /* copy radio_in to radio_out for a given function */ void SRV_Channels::copy_radio_in_out(SRV_Channel::Aux_servo_function_t function, bool do_input_output) { if (!function_assigned(function)) { return; } for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { if (channels[i].function.get() == function) { RC_Channel *rc = RC_Channels::rc_channel(channels[i].ch_num); if (rc == nullptr) { continue; } if (do_input_output) { rc->read(); } channels[i].set_output_pwm(rc->get_radio_in()); if (do_input_output) { channels[i].output_ch(); } } } } /* setup failsafe value for an auxiliary function type to a LimitValue */ void SRV_Channels::set_failsafe_pwm(SRV_Channel::Aux_servo_function_t function, uint16_t pwm) { if (!function_assigned(function)) { return; } for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { const SRV_Channel &ch = channels[i]; if (ch.function.get() == function) { hal.rcout->set_failsafe_pwm(1U<set_failsafe_pwm(1U<set_safety_pwm(1U<set_radio_in(pwm); } } } } } /* return true if a particular function is assigned to at least one RC channel */ bool SRV_Channels::function_assigned(SRV_Channel::Aux_servo_function_t function) { return function_mask.get(uint16_t(function)); } /* set servo_out and angle_min/max, then calc_pwm and output a value. This is used to move a AP_Mount servo */ void SRV_Channels::move_servo(SRV_Channel::Aux_servo_function_t function, int16_t value, int16_t angle_min, int16_t angle_max) { if (!function_assigned(function)) { return; } if (angle_max <= angle_min) { return; } float v = float(value - angle_min) / float(angle_max - angle_min); v = constrain_float(v, 0.0f, 1.0f); for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { SRV_Channel &ch = channels[i]; if (ch.function.get() == function) { float v2 = ch.get_reversed()? (1-v) : v; uint16_t pwm = ch.servo_min + v2 * (ch.servo_max - ch.servo_min); ch.set_output_pwm(pwm); } } } /* set the default channel an auxiliary output function should be on */ bool SRV_Channels::set_aux_channel_default(SRV_Channel::Aux_servo_function_t function, uint8_t channel) { if (!initialised) { update_aux_servo_function(); } if (function_assigned(function)) { // already assigned return true; } if (channels[channel].function != SRV_Channel::k_none) { if (channels[channel].function == function) { return true; } hal.console->printf("Channel %u already assigned %u\n", (unsigned)channel, (unsigned)channels[channel].function); return false; } channels[channel].type_setup = false; channels[channel].function.set(function); channels[channel].aux_servo_function_setup(); function_mask.set((uint8_t)function); return true; } // find first channel that a function is assigned to bool SRV_Channels::find_channel(SRV_Channel::Aux_servo_function_t function, uint8_t &chan) { if (!initialised) { update_aux_servo_function(); } if (!function_assigned(function)) { return false; } for (uint8_t i=0; i= 0) { set_aux_channel_default(function, default_chan); } if (!find_channel(function, chan)) { return nullptr; } return &channels[chan]; } void SRV_Channels::set_output_scaled(SRV_Channel::Aux_servo_function_t function, int16_t value) { if (function < SRV_Channel::k_nr_aux_servo_functions) { functions[function].output_scaled = value; SRV_Channel::have_pwm_mask &= ~functions[function].channel_mask; } } int16_t SRV_Channels::get_output_scaled(SRV_Channel::Aux_servo_function_t function) { if (function < SRV_Channel::k_nr_aux_servo_functions) { return functions[function].output_scaled; } return 0; } // set the trim for a function channel to given pwm void SRV_Channels::set_trim_to_pwm_for(SRV_Channel::Aux_servo_function_t function, int16_t pwm) { for (uint8_t i=0; iset_esc_scaling(channels[chan].get_output_min(), channels[chan].get_output_max()); } } /* auto-adjust channel trim from an integrator value. Positive v means adjust trim up. Negative means decrease */ void SRV_Channels::adjust_trim(SRV_Channel::Aux_servo_function_t function, float v) { if (is_zero(v)) { return; } for (uint8_t i=0; i 0 && trim_scaled < 0.6f) { new_trim++; } else if (change < 0 && trim_scaled > 0.4f) { new_trim--; } else { return; } c.servo_trim.set(new_trim); trimmed_mask |= 1U<read_last_sent(ch.ch_num); if (last_pwm == ch.output_pwm) { continue; } uint16_t max_change = (ch.get_output_max() - ch.get_output_min()) * slew_rate * dt * 0.01f; if (max_change == 0) { // always allow some change max_change = 1; } ch.output_pwm = constrain_int16(ch.output_pwm, last_pwm-max_change, last_pwm+max_change); } } } // call set_angle() on matching channels void SRV_Channels::set_angle(SRV_Channel::Aux_servo_function_t function, uint16_t angle) { for (uint8_t i=0; iconfigured_in_storage()) { // not configured yet in new eeprom if (m.type == AP_PARAM_INT16) { ((AP_Int16 *)m.new_srv_param)->set_and_save_ifchanged(v16.get()); } else { ((AP_Int8 *)m.new_srv_param)->set_and_save_ifchanged(v8.get()); } } if (m.new_rc_param && !m.new_rc_param->configured_in_storage()) { // not configured yet in new eeprom if (m.type == AP_PARAM_INT16) { ((AP_Int16 *)m.new_rc_param)->set_and_save_ifchanged(v16.get()); } else { ((AP_Int8 *)m.new_rc_param)->set_and_save_ifchanged(v8.get()); } } } } if (rcmap != nullptr) { // we need to make the output functions from the rcmapped inputs const int8_t func_map[4] = { channels[0].function.get(), channels[1].function.get(), channels[2].function.get(), channels[3].function.get() }; const uint8_t map[4] = { rcmap->roll(), rcmap->pitch(), rcmap->throttle(), rcmap->yaw() }; for (uint8_t i=0; i<4; i++) { uint8_t m = uint8_t(map[i]-1); if (m != i && m < 4) { channels[m].function.set_and_save_ifchanged(func_map[i]); } } } // mark the upgrade as having been done channels[15].function.set_and_save(channels[15].function.get()); return true; } /* Upgrade servo MIN/MAX/TRIM/REVERSE parameters for a single AP_Motors RC_Channel servo from previous firmwares, setting the equivalent parameter in the new SRV_Channels object */ void SRV_Channels::upgrade_motors_servo(uint8_t ap_motors_key, uint8_t ap_motors_idx, uint8_t new_channel) { SRV_Channel &srv_chan = channels[new_channel]; enum { FLAG_NONE=0, FLAG_IS_REVERSE=1 }; const struct mapping { uint8_t old_index; AP_Param *new_srv_param; enum ap_var_type type; uint8_t flags; } mapping[] = { { 0, &srv_chan.servo_min, AP_PARAM_INT16, FLAG_NONE }, { 1, &srv_chan.servo_trim, AP_PARAM_INT16, FLAG_NONE }, { 2, &srv_chan.servo_max, AP_PARAM_INT16, FLAG_NONE }, { 3, &srv_chan.reversed, AP_PARAM_INT8, FLAG_IS_REVERSE }, }; for (uint8_t j=0; jset_and_save_ifchanged(v16.get()); } else { ((AP_Int8 *)m.new_srv_param)->set_and_save_ifchanged(v8.get()); } } } // set RC output frequency on a function output void SRV_Channels::set_rc_frequency(SRV_Channel::Aux_servo_function_t function, uint16_t frequency_hz) { uint16_t mask = 0; for (uint8_t i=0; iset_freq(mask, frequency_hz); } }