#!/usr/bin/env python from quadcopter import QuadCopter import euclid, util, time, os, sys, math import socket, struct import select, fgFDM # find the mavlink.py module for d in [ 'pymavlink', os.path.join(os.path.dirname(os.path.realpath(__file__)), '../pymavlink') ]: if os.path.exists(d): sys.path.insert(0, d) import mavlink def sim_send(m, a, r): '''send flight information to mavproxy and flightgear''' global fdm fdm.set('latitude', a.latitude, units='degrees') fdm.set('longitude', a.longitude, units='degrees') fdm.set('altitude', a.altitude, units='meters') fdm.set('phi', a.roll, units='degrees') fdm.set('theta', a.pitch, units='degrees') fdm.set('psi', a.yaw, units='degrees') fdm.set('phidot', a.roll_rate, units='dps') fdm.set('thetadot', a.pitch_rate, units='dps') fdm.set('psidot', a.yaw_rate, units='dps') fdm.set('vcas', math.sqrt(a.velocity.x*a.velocity.x + a.velocity.y*a.velocity.y), units='mps') fdm.set('v_north', a.velocity.x, units='mps') fdm.set('v_east', a.velocity.y, units='mps') fdm.set('num_engines', 4) for i in range(4): fdm.set('rpm', 1000*m[i], idx=i) fg_out.send(fdm.pack()) buf = struct.pack('>ddddddddddddddddI', a.latitude, a.longitude, util.m2ft(a.altitude), a.yaw, util.m2ft(a.velocity.x), util.m2ft(a.velocity.y), util.m2ft(a.accelerometer.x), util.m2ft(a.accelerometer.y), util.m2ft(a.accelerometer.z), a.roll_rate, a.pitch_rate, a.yaw_rate, a.roll, a.pitch, a.yaw, util.m2ft(math.sqrt(a.velocity.x*a.velocity.x + a.velocity.y*a.velocity.y)), 0x4c56414d) sim_out.send(buf) def sim_recv(m, a, r): '''receive control information from SITL''' while True: fd = sim_in.fileno() rin = [fd] try: (rin, win, xin) = select.select(rin, [], [], 1.0) except select.error: util.check_parent() continue if fd in rin: break util.check_parent() buf = sim_in.recv(32) if len(buf) != 32: return (m0, m1, m2, m3, r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7]) = struct.unpack('>ffffHHHHHHHH', buf) m[0] = m0 m[1] = m1 m[2] = m2 m[3] = m3 def interpret_address(addrstr): '''interpret a IP:port string''' a = addrstr.split(':') a[1] = int(a[1]) return tuple(a) ################## # main program from optparse import OptionParser parser = OptionParser("sim_quad.py [options]") parser.add_option("--fgout", dest="fgout", help="flightgear output (IP:port)", default="127.0.0.1:5503") parser.add_option("--simin", dest="simin", help="SIM input (IP:port)", default="127.0.0.1:5502") parser.add_option("--simout", dest="simout", help="SIM output (IP:port)", default="127.0.0.1:5501") parser.add_option("--home", dest="home", type='string', default=None, help="home lat,lng,alt,hdg (required)") parser.add_option("--rate", dest="rate", type='int', help="SIM update rate", default=50) (opts, args) = parser.parse_args() for m in [ 'home' ]: if not opts.__dict__[m]: print("Missing required option '%s'" % m) parser.print_help() sys.exit(1) parent_pid = os.getppid() # UDP socket addresses fg_out_address = interpret_address(opts.fgout) sim_out_address = interpret_address(opts.simout) sim_in_address = interpret_address(opts.simin) # setup output to flightgear fg_out = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) fg_out.connect(fg_out_address) fg_out.setblocking(0) # setup input from SITL sim_in = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sim_in.bind(sim_in_address) sim_in.setblocking(0) # setup output to SITL sim_out = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sim_out.connect(sim_out_address) sim_out.setblocking(0) # FG FDM object fdm = fgFDM.fgFDM() # create the quadcopter model a = QuadCopter() a.update_frequency = opts.rate # motors initially off m = [0, 0, 0, 0] # raw PWM r = [0, 0, 0, 0, 0, 0, 0, 0] lastt = time.time() frame_count = 0 # parse home v = opts.home.split(',') if len(v) != 4: print("home should be lat,lng,alt,hdg") sys.exit(1) a.home_latitude = float(v[0]) a.home_longitude = float(v[1]) a.home_altitude = float(v[2]) a.latitude = a.home_latitude a.longitude = a.home_longitude a.altitude = a.home_altitude a.yaw = float(v[3]) a.ground_level = a.home_altitude a.position.z = 0 print("Starting at lat=%f lon=%f alt=%.1f heading=%.1f" % ( a.home_latitude, a.home_longitude, a.home_altitude, a.yaw)) while True: sim_recv(m, a, r) # allow for adding inbalance in flight m2 = m[:] a.update(m2) sim_send(m, a, r) frame_count += 1 t = time.time() if t - lastt > 1.0: print("%.2f fps zspeed=%.2f zaccel=%.2f h=%.1f a=%.1f yaw=%.1f yawrate=%.1f" % ( frame_count/(t-lastt), a.velocity.z, a.accel.z, a.position.z, a.altitude, a.yaw, a.yaw_rate)) lastt = t frame_count = 0