/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_Compass_HMC5843.cpp - Arduino Library for HMC5843 I2C magnetometer * Code by Jordi Muñoz and Jose Julio. DIYDrones.com * * Sensor is conected to I2C port * Sensor is initialized in Continuos mode (10Hz) * */ // AVR LibC Includes #include #include #include "AP_Compass_HMC5843.h" extern const AP_HAL::HAL& hal; #define COMPASS_ADDRESS 0x1E #define ConfigRegA 0x00 #define ConfigRegB 0x01 #define magGain 0x20 #define PositiveBiasConfig 0x11 #define NegativeBiasConfig 0x12 #define NormalOperation 0x10 #define ModeRegister 0x02 #define ContinuousConversion 0x00 #define SingleConversion 0x01 // ConfigRegA valid sample averaging for 5883L #define SampleAveraging_1 0x00 #define SampleAveraging_2 0x01 #define SampleAveraging_4 0x02 #define SampleAveraging_8 0x03 // ConfigRegA valid data output rates for 5883L #define DataOutputRate_0_75HZ 0x00 #define DataOutputRate_1_5HZ 0x01 #define DataOutputRate_3HZ 0x02 #define DataOutputRate_7_5HZ 0x03 #define DataOutputRate_15HZ 0x04 #define DataOutputRate_30HZ 0x05 #define DataOutputRate_75HZ 0x06 // constructor AP_Compass_HMC5843::AP_Compass_HMC5843(Compass &compass): AP_Compass_Backend(compass), _accum_count(0), _retry_time(0), _product_id(0) {} // detect the sensor AP_Compass_Backend *AP_Compass_HMC5843::detect(Compass &compass) { AP_Compass_HMC5843 *sensor = new AP_Compass_HMC5843(compass); if (sensor == NULL) { return NULL; } if (!sensor->init()) { delete sensor; return NULL; } return sensor; } // read_register - read a register value bool AP_Compass_HMC5843::read_register(uint8_t address, uint8_t *value) { if (hal.i2c->readRegister((uint8_t)COMPASS_ADDRESS, address, value) != 0) { _retry_time = hal.scheduler->millis() + 1000; return false; } return true; } // write_register - update a register value bool AP_Compass_HMC5843::write_register(uint8_t address, uint8_t value) { if (hal.i2c->writeRegister((uint8_t)COMPASS_ADDRESS, address, value) != 0) { _retry_time = hal.scheduler->millis() + 1000; return false; } return true; } // Read Sensor data bool AP_Compass_HMC5843::read_raw() { uint8_t buff[6]; if (hal.i2c->readRegisters(COMPASS_ADDRESS, 0x03, 6, buff) != 0) { hal.i2c->setHighSpeed(false); _retry_time = hal.scheduler->millis() + 1000; _i2c_sem->give(); return false; } int16_t rx, ry, rz; rx = (((int16_t)buff[0]) << 8) | buff[1]; if (_product_id == AP_COMPASS_TYPE_HMC5883L) { rz = (((int16_t)buff[2]) << 8) | buff[3]; ry = (((int16_t)buff[4]) << 8) | buff[5]; } else { ry = (((int16_t)buff[2]) << 8) | buff[3]; rz = (((int16_t)buff[4]) << 8) | buff[5]; } if (rx == -4096 || ry == -4096 || rz == -4096) { // no valid data available return false; } _mag_x = -rx; _mag_y = ry; _mag_z = -rz; return true; } // accumulate a reading from the magnetometer void AP_Compass_HMC5843::accumulate(void) { if (!_initialised) { // someone has tried to enable a compass for the first time // mid-flight .... we can't do that yet (especially as we won't // have the right orientation!) return; } uint32_t tnow = hal.scheduler->micros(); if (_accum_count != 0 && (tnow - _last_accum_time) < 13333) { // the compass gets new data at 75Hz return; } if (!_i2c_sem->take(1)) { // the bus is busy - try again later return; } bool result = read_raw(); _i2c_sem->give(); if (result) { // the _mag_N values are in the range -2048 to 2047, so we can // accumulate up to 15 of them in an int16_t. Let's make it 14 // for ease of calculation. We expect to do reads at 10Hz, and // we get new data at most 75Hz, so we don't expect to // accumulate more than 8 before a read _mag_x_accum += _mag_x; _mag_y_accum += _mag_y; _mag_z_accum += _mag_z; _accum_count++; if (_accum_count == 14) { _mag_x_accum /= 2; _mag_y_accum /= 2; _mag_z_accum /= 2; _accum_count = 7; } _last_accum_time = tnow; } } /* * re-initialise after a IO error */ bool AP_Compass_HMC5843::re_initialise() { if (!write_register(ConfigRegA, _base_config) || !write_register(ConfigRegB, magGain) || !write_register(ModeRegister, ContinuousConversion)) return false; return true; } // Public Methods ////////////////////////////////////////////////////////////// bool AP_Compass_HMC5843::init() { int numAttempts = 0, good_count = 0; bool success = false; uint8_t calibration_gain = 0x20; uint16_t expected_x = 715; uint16_t expected_yz = 715; float gain_multiple = 1.0; hal.scheduler->suspend_timer_procs(); hal.scheduler->delay(10); _i2c_sem = hal.i2c->get_semaphore(); if (!_i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { hal.scheduler->panic(PSTR("Failed to get HMC5843 semaphore")); } // determine if we are using 5843 or 5883L _base_config = 0; if (!write_register(ConfigRegA, SampleAveraging_8<<5 | DataOutputRate_75HZ<<2 | NormalOperation) || !read_register(ConfigRegA, &_base_config)) { _i2c_sem->give(); hal.scheduler->resume_timer_procs(); return false; } if ( _base_config == (SampleAveraging_8<<5 | DataOutputRate_75HZ<<2 | NormalOperation)) { // a 5883L supports the sample averaging config _product_id = AP_COMPASS_TYPE_HMC5883L; calibration_gain = 0x60; /* note that the HMC5883 datasheet gives the x and y expected values as 766 and the z as 713. Experiments have shown the x axis is around 766, and the y and z closer to 713. */ expected_x = 766; expected_yz = 713; gain_multiple = 660.0 / 1090; // adjustment for runtime vs calibration gain } else if (_base_config == (NormalOperation | DataOutputRate_75HZ<<2)) { _product_id = AP_COMPASS_TYPE_HMC5843; } else { // not behaving like either supported compass type _i2c_sem->give(); hal.scheduler->resume_timer_procs(); return false; } calibration[0] = 0; calibration[1] = 0; calibration[2] = 0; while ( success == 0 && numAttempts < 25 && good_count < 5) { // record number of attempts at initialisation numAttempts++; // force positiveBias (compass should return 715 for all channels) if (!write_register(ConfigRegA, PositiveBiasConfig)) continue; // compass not responding on the bus hal.scheduler->delay(50); // set gains if (!write_register(ConfigRegB, calibration_gain) || !write_register(ModeRegister, SingleConversion)) continue; // read values from the compass hal.scheduler->delay(50); if (!read_raw()) continue; // we didn't read valid values hal.scheduler->delay(10); float cal[3]; // hal.console->printf_P(PSTR("mag %d %d %d\n"), _mag_x, _mag_y, _mag_z); cal[0] = fabsf(expected_x / (float)_mag_x); cal[1] = fabsf(expected_yz / (float)_mag_y); cal[2] = fabsf(expected_yz / (float)_mag_z); // hal.console->printf_P(PSTR("cal=%.2f %.2f %.2f\n"), cal[0], cal[1], cal[2]); // we throw away the first two samples as the compass may // still be changing its state from the application of the // strap excitation. After that we accept values in a // reasonable range if (numAttempts > 2 && cal[0] > 0.7f && cal[0] < 1.35f && cal[1] > 0.7f && cal[1] < 1.35f && cal[2] > 0.7f && cal[2] < 1.35f) { // hal.console->printf_P(PSTR("cal=%.2f %.2f %.2f good\n"), cal[0], cal[1], cal[2]); good_count++; calibration[0] += cal[0]; calibration[1] += cal[1]; calibration[2] += cal[2]; } #if 0 /* useful for debugging */ hal.console->printf_P(PSTR("MagX: %d MagY: %d MagZ: %d\n"), (int)_mag_x, (int)_mag_y, (int)_mag_z); hal.console->printf_P(PSTR("CalX: %.2f CalY: %.2f CalZ: %.2f\n"), cal[0], cal[1], cal[2]); #endif } if (good_count >= 5) { /* The use of gain_multiple below is incorrect, as the gain difference between 2.5Ga mode and 1Ga mode is already taken into account by the expected_x and expected_yz values. We are not going to fix it however as it would mean all APM1/APM2 users redoing their compass calibration. The impact is that the values we report on APM1/APM2 are lower than they should be (by a multiple of about 0.6). This doesn't have any impact other than the learned compass offsets */ calibration[0] = calibration[0] * gain_multiple / good_count; calibration[1] = calibration[1] * gain_multiple / good_count; calibration[2] = calibration[2] * gain_multiple / good_count; success = true; } else { /* best guess */ calibration[0] = 1.0; calibration[1] = 1.0; calibration[2] = 1.0; } // leave test mode if (!re_initialise()) { _i2c_sem->give(); hal.scheduler->resume_timer_procs(); return false; } _i2c_sem->give(); hal.scheduler->resume_timer_procs(); _initialised = true; // perform an initial read read(); #if 0 hal.console->printf_P(PSTR("CalX: %.2f CalY: %.2f CalZ: %.2f\n"), calibration[0], calibration[1], calibration[2]); #endif if (success) { // register the compass instance in the frontend _compass_instance = register_compass(); } return success; } // Read Sensor data void AP_Compass_HMC5843::read() { if (!_initialised) { // someone has tried to enable a compass for the first time // mid-flight .... we can't do that yet (especially as we won't // have the right orientation!) return; } if (_retry_time != 0) { if (hal.scheduler->millis() < _retry_time) { return; } if (!re_initialise()) { _retry_time = hal.scheduler->millis() + 1000; hal.i2c->setHighSpeed(false); return; } } if (_accum_count == 0) { accumulate(); if (_retry_time != 0) { hal.i2c->setHighSpeed(false); return; } } Vector3f field(_mag_x_accum * calibration[0], _mag_y_accum * calibration[1], _mag_z_accum * calibration[2]); field /= _accum_count; _accum_count = 0; _mag_x_accum = _mag_y_accum = _mag_z_accum = 0; _compass.last_update = hal.scheduler->micros(); // record time of update // rotate to the desired orientation if (_product_id == AP_COMPASS_TYPE_HMC5883L) { field.rotate(ROTATION_YAW_90); } publish_field(field, _compass_instance); _retry_time = 0; }