diff --git a/libraries/SITL/SIM_BalanceBot.cpp b/libraries/SITL/SIM_BalanceBot.cpp index 967b122248..0abdc0631c 100644 --- a/libraries/SITL/SIM_BalanceBot.cpp +++ b/libraries/SITL/SIM_BalanceBot.cpp @@ -53,22 +53,23 @@ float BalanceBot::calc_yaw_rate(float steering) void BalanceBot::update(const struct sitl_input &input) { // pendulum/chassis constants - const float m_p = 3.060f; //pendulum mass(kg) - const float width = 0.0650f; //width(m) - const float height = 0.240f; //height(m) - const float l = 0.120f; //height of center of mass from base(m) - const float i_p = (1/12.0f)*m_p*(width*width + height*height); //Moment of inertia about pitch axis(SI units) + const float m_p = 3.0f; //pendulum mass(kg) + // const float width = 0.0650f; //width(m) + // const float height = 0.240f; //height(m) + const float l = 0.10f; //height of center of mass from base(m) + const float i_p = 0.01250f; //Moment of inertia about pitch axis(SI units) // wheel constants - const float r_w = 0.10f; //wheel radius(m) - const float m_w = 0.120f; //wheel mass(kg) - const float i_w = 0.5f*m_w*r_w*r_w; // moment of inertia of wheel(SI units) + const float r_w = 0.05f; //wheel radius(m) + const float m_w = 0.1130f; //wheel mass(kg) + const float i_w = 0.00015480f; // moment of inertia of wheel(SI units) // motor constants - const float R = 1.0f; //Winding resistance(ohm) - const float k_e = 0.13f; //back-emf constant(SI units) - const float k_t = 0.242f; //torque constant(SI units) + const float R = 3.0f; //Winding resistance(ohm) + const float k_e = 0.240f; //back-emf constant(SI units) + const float k_t = 0.240f; //torque constant(SI units) const float v_max = 12.0f; //max input voltage(V) + const float gear_ratio = 50.0f; // balance bot uses skid steering const float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f); @@ -93,36 +94,36 @@ void BalanceBot::update(const struct sitl_input &input) float ang_vel = gyro.y; //radians/s // t1,t2,t3 are terms in the equation to find vehicle frame x acceleration - const float t1 = ((2.0f*k_t*v/(R*r_w)) - (2.0f*k_t*k_e*velocity_vf_x/(R*r_w*r_w)) - (m_p*l*ang_vel*ang_vel*sin(theta))) * (i_p + m_p*l*l); - const float t2 = -m_p*l*cos(theta)*((2.0f*k_t*k_e*velocity_vf_x/(R*r_w)) - (2.0f*k_t*v/(R)) + (m_p*GRAVITY_MSS*l*sin(theta))); + const float t1 = ((2.0f*gear_ratio*k_t*v/(R*r_w)) - (2.0f*gear_ratio*k_t*k_e*velocity_vf_x/(R*r_w*r_w)) - (m_p*l*ang_vel*ang_vel*sin(theta))) * (i_p + m_p*l*l); + const float t2 = -m_p*l*cos(theta)*((2.0f*gear_ratio*k_t*k_e*velocity_vf_x/(R*r_w)) - (2.0f*gear_ratio*k_t*v/(R)) + (m_p*GRAVITY_MSS*l*sin(theta))); const float t3 = ( ((2.0f*m_w + 2.0f*i_w/(r_w*r_w) + m_p) * (i_p + m_p*l*l)) - (m_p*m_p*l*l*cos(theta)*cos(theta)) ); //vehicle frame x acceleration const float accel_vf_x = (t1-t2)/t3; - const float angular_accel_bf_y = ((2.0f*k_t*k_e*velocity_vf_x/(R*r_w)) - (2.0f*k_t*v/(R)) + m_p*l*accel_vf_x*cos(theta) + m_p*GRAVITY_MSS*l*sin(theta)) + const float angular_accel_bf_y = ((2.0f*gear_ratio*k_t*k_e*velocity_vf_x/(R*r_w)) - (2.0f*gear_ratio*k_t*v/(R)) + m_p*l*accel_vf_x*cos(theta) + m_p*GRAVITY_MSS*l*sin(theta)) / (i_p + m_p*l*l); + // accel in body frame due to motor + accel_body = Vector3f(accel_vf_x*cos(theta), 0, -accel_vf_x*sin(theta)); + // update theta and angular velocity ang_vel += angular_accel_bf_y * delta_time; theta += ang_vel * delta_time; theta = fmod(theta, radians(360)); - // update x velocity in vehicle frame - velocity_vf_x += accel_vf_x * delta_time; - gyro = Vector3f(0, ang_vel, radians(yaw_rate)); // update attitude dcm.rotate(gyro * delta_time); dcm.normalize(); - // accel in body frame due to motor - accel_body = Vector3f(accel_vf_x*cos(theta), 0, -accel_vf_x*sin(theta)); - // add in accel due to direction change accel_body.y += radians(yaw_rate) * velocity_vf_x; + // update x velocity in vehicle frame + velocity_vf_x += accel_vf_x * delta_time; + // now in earth frame Vector3f accel_earth = dcm * accel_body; accel_earth += Vector3f(0, 0, GRAVITY_MSS); @@ -137,8 +138,6 @@ void BalanceBot::update(const struct sitl_input &input) dcm.identity(); gyro.zero(); velocity_vf_x =0; - theta = radians(0); - ang_vel = 0; } // work out acceleration as seen by the accelerometers. It sees the kinematic