mirror of https://github.com/python/cpython
135 lines
5.5 KiB
C
135 lines
5.5 KiB
C
#ifndef Py_CPYTHON_CRITICAL_SECTION_H
|
|
# error "this header file must not be included directly"
|
|
#endif
|
|
|
|
// Python critical sections
|
|
//
|
|
// Conceptually, critical sections are a deadlock avoidance layer on top of
|
|
// per-object locks. These helpers, in combination with those locks, replace
|
|
// our usage of the global interpreter lock to provide thread-safety for
|
|
// otherwise thread-unsafe objects, such as dict.
|
|
//
|
|
// NOTE: These APIs are no-ops in non-free-threaded builds.
|
|
//
|
|
// Straightforward per-object locking could introduce deadlocks that were not
|
|
// present when running with the GIL. Threads may hold locks for multiple
|
|
// objects simultaneously because Python operations can nest. If threads were
|
|
// to acquire the same locks in different orders, they would deadlock.
|
|
//
|
|
// One way to avoid deadlocks is to allow threads to hold only the lock (or
|
|
// locks) for a single operation at a time (typically a single lock, but some
|
|
// operations involve two locks). When a thread begins a nested operation it
|
|
// could suspend the locks for any outer operation: before beginning the nested
|
|
// operation, the locks for the outer operation are released and when the
|
|
// nested operation completes, the locks for the outer operation are
|
|
// reacquired.
|
|
//
|
|
// To improve performance, this API uses a variation of the above scheme.
|
|
// Instead of immediately suspending locks any time a nested operation begins,
|
|
// locks are only suspended if the thread would block. This reduces the number
|
|
// of lock acquisitions and releases for nested operations, while still
|
|
// avoiding deadlocks.
|
|
//
|
|
// Additionally, the locks for any active operation are suspended around
|
|
// other potentially blocking operations, such as I/O. This is because the
|
|
// interaction between locks and blocking operations can lead to deadlocks in
|
|
// the same way as the interaction between multiple locks.
|
|
//
|
|
// Each thread's critical sections and their corresponding locks are tracked in
|
|
// a stack in `PyThreadState.critical_section`. When a thread calls
|
|
// `_PyThreadState_Detach()`, such as before a blocking I/O operation or when
|
|
// waiting to acquire a lock, the thread suspends all of its active critical
|
|
// sections, temporarily releasing the associated locks. When the thread calls
|
|
// `_PyThreadState_Attach()`, it resumes the top-most (i.e., most recent)
|
|
// critical section by reacquiring the associated lock or locks. See
|
|
// `_PyCriticalSection_Resume()`.
|
|
//
|
|
// NOTE: Only the top-most critical section is guaranteed to be active.
|
|
// Operations that need to lock two objects at once must use
|
|
// `Py_BEGIN_CRITICAL_SECTION2()`. You *CANNOT* use nested critical sections
|
|
// to lock more than one object at once, because the inner critical section
|
|
// may suspend the outer critical sections. This API does not provide a way
|
|
// to lock more than two objects at once (though it could be added later
|
|
// if actually needed).
|
|
//
|
|
// NOTE: Critical sections implicitly behave like reentrant locks because
|
|
// attempting to acquire the same lock will suspend any outer (earlier)
|
|
// critical sections. However, they are less efficient for this use case than
|
|
// purposefully designed reentrant locks.
|
|
//
|
|
// Example usage:
|
|
// Py_BEGIN_CRITICAL_SECTION(op);
|
|
// ...
|
|
// Py_END_CRITICAL_SECTION();
|
|
//
|
|
// To lock two objects at once:
|
|
// Py_BEGIN_CRITICAL_SECTION2(op1, op2);
|
|
// ...
|
|
// Py_END_CRITICAL_SECTION2();
|
|
|
|
typedef struct PyCriticalSection PyCriticalSection;
|
|
typedef struct PyCriticalSection2 PyCriticalSection2;
|
|
|
|
PyAPI_FUNC(void)
|
|
PyCriticalSection_Begin(PyCriticalSection *c, PyObject *op);
|
|
|
|
PyAPI_FUNC(void)
|
|
PyCriticalSection_End(PyCriticalSection *c);
|
|
|
|
PyAPI_FUNC(void)
|
|
PyCriticalSection2_Begin(PyCriticalSection2 *c, PyObject *a, PyObject *b);
|
|
|
|
PyAPI_FUNC(void)
|
|
PyCriticalSection2_End(PyCriticalSection2 *c);
|
|
|
|
#ifndef Py_GIL_DISABLED
|
|
# define Py_BEGIN_CRITICAL_SECTION(op) \
|
|
{
|
|
# define Py_END_CRITICAL_SECTION() \
|
|
}
|
|
# define Py_BEGIN_CRITICAL_SECTION2(a, b) \
|
|
{
|
|
# define Py_END_CRITICAL_SECTION2() \
|
|
}
|
|
#else /* !Py_GIL_DISABLED */
|
|
|
|
// NOTE: the contents of this struct are private and may change betweeen
|
|
// Python releases without a deprecation period.
|
|
struct PyCriticalSection {
|
|
// Tagged pointer to an outer active critical section (or 0).
|
|
uintptr_t _cs_prev;
|
|
|
|
// Mutex used to protect critical section
|
|
PyMutex *_cs_mutex;
|
|
};
|
|
|
|
// A critical section protected by two mutexes. Use
|
|
// Py_BEGIN_CRITICAL_SECTION2 and Py_END_CRITICAL_SECTION2.
|
|
// NOTE: the contents of this struct are private and may change betweeen
|
|
// Python releases without a deprecation period.
|
|
struct PyCriticalSection2 {
|
|
PyCriticalSection _cs_base;
|
|
|
|
PyMutex *_cs_mutex2;
|
|
};
|
|
|
|
# define Py_BEGIN_CRITICAL_SECTION(op) \
|
|
{ \
|
|
PyCriticalSection _py_cs; \
|
|
PyCriticalSection_Begin(&_py_cs, _PyObject_CAST(op))
|
|
|
|
# define Py_END_CRITICAL_SECTION() \
|
|
PyCriticalSection_End(&_py_cs); \
|
|
}
|
|
|
|
# define Py_BEGIN_CRITICAL_SECTION2(a, b) \
|
|
{ \
|
|
PyCriticalSection2 _py_cs2; \
|
|
PyCriticalSection2_Begin(&_py_cs2, _PyObject_CAST(a), _PyObject_CAST(b))
|
|
|
|
# define Py_END_CRITICAL_SECTION2() \
|
|
PyCriticalSection2_End(&_py_cs2); \
|
|
}
|
|
|
|
#endif
|