mirror of https://github.com/python/cpython
926 lines
34 KiB
ReStructuredText
926 lines
34 KiB
ReStructuredText
:mod:`sqlite3` --- DB-API 2.0 interface for SQLite databases
|
|
============================================================
|
|
|
|
.. module:: sqlite3
|
|
:synopsis: A DB-API 2.0 implementation using SQLite 3.x.
|
|
.. sectionauthor:: Gerhard Häring <gh@ghaering.de>
|
|
|
|
|
|
SQLite is a C library that provides a lightweight disk-based database that
|
|
doesn't require a separate server process and allows accessing the database
|
|
using a nonstandard variant of the SQL query language. Some applications can use
|
|
SQLite for internal data storage. It's also possible to prototype an
|
|
application using SQLite and then port the code to a larger database such as
|
|
PostgreSQL or Oracle.
|
|
|
|
sqlite3 was written by Gerhard Häring and provides a SQL interface compliant
|
|
with the DB-API 2.0 specification described by :pep:`249`.
|
|
|
|
To use the module, you must first create a :class:`Connection` object that
|
|
represents the database. Here the data will be stored in the
|
|
:file:`/tmp/example` file::
|
|
|
|
import sqlite3
|
|
conn = sqlite3.connect('/tmp/example')
|
|
|
|
You can also supply the special name ``:memory:`` to create a database in RAM.
|
|
|
|
Once you have a :class:`Connection`, you can create a :class:`Cursor` object
|
|
and call its :meth:`~Cursor.execute` method to perform SQL commands::
|
|
|
|
c = conn.cursor()
|
|
|
|
# Create table
|
|
c.execute('''create table stocks
|
|
(date text, trans text, symbol text,
|
|
qty real, price real)''')
|
|
|
|
# Insert a row of data
|
|
c.execute("""insert into stocks
|
|
values ('2006-01-05','BUY','RHAT',100,35.14)""")
|
|
|
|
# Save (commit) the changes
|
|
conn.commit()
|
|
|
|
# We can also close the cursor if we are done with it
|
|
c.close()
|
|
|
|
Usually your SQL operations will need to use values from Python variables. You
|
|
shouldn't assemble your query using Python's string operations because doing so
|
|
is insecure; it makes your program vulnerable to an SQL injection attack.
|
|
|
|
Instead, use the DB-API's parameter substitution. Put ``?`` as a placeholder
|
|
wherever you want to use a value, and then provide a tuple of values as the
|
|
second argument to the cursor's :meth:`~Cursor.execute` method. (Other database
|
|
modules may use a different placeholder, such as ``%s`` or ``:1``.) For
|
|
example::
|
|
|
|
# Never do this -- insecure!
|
|
symbol = 'IBM'
|
|
c.execute("select * from stocks where symbol = '%s'" % symbol)
|
|
|
|
# Do this instead
|
|
t = ('IBM',)
|
|
c.execute('select * from stocks where symbol=?', t)
|
|
|
|
# Larger example
|
|
for t in [('2006-03-28', 'BUY', 'IBM', 1000, 45.00),
|
|
('2006-04-05', 'BUY', 'MSFT', 1000, 72.00),
|
|
('2006-04-06', 'SELL', 'IBM', 500, 53.00),
|
|
]:
|
|
c.execute('insert into stocks values (?,?,?,?,?)', t)
|
|
|
|
To retrieve data after executing a SELECT statement, you can either treat the
|
|
cursor as an :term:`iterator`, call the cursor's :meth:`~Cursor.fetchone` method to
|
|
retrieve a single matching row, or call :meth:`~Cursor.fetchall` to get a list of the
|
|
matching rows.
|
|
|
|
This example uses the iterator form::
|
|
|
|
>>> c = conn.cursor()
|
|
>>> c.execute('select * from stocks order by price')
|
|
>>> for row in c:
|
|
... print(row)
|
|
...
|
|
('2006-01-05', 'BUY', 'RHAT', 100, 35.14)
|
|
('2006-03-28', 'BUY', 'IBM', 1000, 45.0)
|
|
('2006-04-06', 'SELL', 'IBM', 500, 53.0)
|
|
('2006-04-05', 'BUY', 'MSOFT', 1000, 72.0)
|
|
>>>
|
|
|
|
|
|
.. seealso::
|
|
|
|
http://code.google.com/p/pysqlite/
|
|
The pysqlite web page -- sqlite3 is developed externally under the name
|
|
"pysqlite".
|
|
|
|
http://www.sqlite.org
|
|
The SQLite web page; the documentation describes the syntax and the
|
|
available data types for the supported SQL dialect.
|
|
|
|
:pep:`249` - Database API Specification 2.0
|
|
PEP written by Marc-André Lemburg.
|
|
|
|
|
|
.. _sqlite3-module-contents:
|
|
|
|
Module functions and constants
|
|
------------------------------
|
|
|
|
|
|
.. data:: version
|
|
|
|
The version number of this module, as a string. This is not the version of
|
|
the SQLite library.
|
|
|
|
|
|
.. data:: version_info
|
|
|
|
The version number of this module, as a tuple of integers. This is not the
|
|
version of the SQLite library.
|
|
|
|
|
|
.. data:: sqlite_version
|
|
|
|
The version number of the run-time SQLite library, as a string.
|
|
|
|
|
|
.. data:: sqlite_version_info
|
|
|
|
The version number of the run-time SQLite library, as a tuple of integers.
|
|
|
|
|
|
.. data:: PARSE_DECLTYPES
|
|
|
|
This constant is meant to be used with the *detect_types* parameter of the
|
|
:func:`connect` function.
|
|
|
|
Setting it makes the :mod:`sqlite3` module parse the declared type for each
|
|
column it returns. It will parse out the first word of the declared type,
|
|
i. e. for "integer primary key", it will parse out "integer", or for
|
|
"number(10)" it will parse out "number". Then for that column, it will look
|
|
into the converters dictionary and use the converter function registered for
|
|
that type there.
|
|
|
|
|
|
.. data:: PARSE_COLNAMES
|
|
|
|
This constant is meant to be used with the *detect_types* parameter of the
|
|
:func:`connect` function.
|
|
|
|
Setting this makes the SQLite interface parse the column name for each column it
|
|
returns. It will look for a string formed [mytype] in there, and then decide
|
|
that 'mytype' is the type of the column. It will try to find an entry of
|
|
'mytype' in the converters dictionary and then use the converter function found
|
|
there to return the value. The column name found in :attr:`Cursor.description`
|
|
is only the first word of the column name, i. e. if you use something like
|
|
``'as "x [datetime]"'`` in your SQL, then we will parse out everything until the
|
|
first blank for the column name: the column name would simply be "x".
|
|
|
|
|
|
.. function:: connect(database[, timeout, detect_types, isolation_level, check_same_thread, factory, cached_statements])
|
|
|
|
Opens a connection to the SQLite database file *database*. You can use
|
|
``":memory:"`` to open a database connection to a database that resides in RAM
|
|
instead of on disk.
|
|
|
|
When a database is accessed by multiple connections, and one of the processes
|
|
modifies the database, the SQLite database is locked until that transaction is
|
|
committed. The *timeout* parameter specifies how long the connection should wait
|
|
for the lock to go away until raising an exception. The default for the timeout
|
|
parameter is 5.0 (five seconds).
|
|
|
|
For the *isolation_level* parameter, please see the
|
|
:attr:`Connection.isolation_level` property of :class:`Connection` objects.
|
|
|
|
SQLite natively supports only the types TEXT, INTEGER, FLOAT, BLOB and NULL. If
|
|
you want to use other types you must add support for them yourself. The
|
|
*detect_types* parameter and the using custom **converters** registered with the
|
|
module-level :func:`register_converter` function allow you to easily do that.
|
|
|
|
*detect_types* defaults to 0 (i. e. off, no type detection), you can set it to
|
|
any combination of :const:`PARSE_DECLTYPES` and :const:`PARSE_COLNAMES` to turn
|
|
type detection on.
|
|
|
|
By default, the :mod:`sqlite3` module uses its :class:`Connection` class for the
|
|
connect call. You can, however, subclass the :class:`Connection` class and make
|
|
:func:`connect` use your class instead by providing your class for the *factory*
|
|
parameter.
|
|
|
|
Consult the section :ref:`sqlite3-types` of this manual for details.
|
|
|
|
The :mod:`sqlite3` module internally uses a statement cache to avoid SQL parsing
|
|
overhead. If you want to explicitly set the number of statements that are cached
|
|
for the connection, you can set the *cached_statements* parameter. The currently
|
|
implemented default is to cache 100 statements.
|
|
|
|
|
|
.. function:: register_converter(typename, callable)
|
|
|
|
Registers a callable to convert a bytestring from the database into a custom
|
|
Python type. The callable will be invoked for all database values that are of
|
|
the type *typename*. Confer the parameter *detect_types* of the :func:`connect`
|
|
function for how the type detection works. Note that the case of *typename* and
|
|
the name of the type in your query must match!
|
|
|
|
|
|
.. function:: register_adapter(type, callable)
|
|
|
|
Registers a callable to convert the custom Python type *type* into one of
|
|
SQLite's supported types. The callable *callable* accepts as single parameter
|
|
the Python value, and must return a value of the following types: int,
|
|
float, str or bytes.
|
|
|
|
|
|
.. function:: complete_statement(sql)
|
|
|
|
Returns :const:`True` if the string *sql* contains one or more complete SQL
|
|
statements terminated by semicolons. It does not verify that the SQL is
|
|
syntactically correct, only that there are no unclosed string literals and the
|
|
statement is terminated by a semicolon.
|
|
|
|
This can be used to build a shell for SQLite, as in the following example:
|
|
|
|
|
|
.. literalinclude:: ../includes/sqlite3/complete_statement.py
|
|
|
|
|
|
.. function:: enable_callback_tracebacks(flag)
|
|
|
|
By default you will not get any tracebacks in user-defined functions,
|
|
aggregates, converters, authorizer callbacks etc. If you want to debug them, you
|
|
can call this function with *flag* as True. Afterwards, you will get tracebacks
|
|
from callbacks on ``sys.stderr``. Use :const:`False` to disable the feature
|
|
again.
|
|
|
|
|
|
.. _sqlite3-connection-objects:
|
|
|
|
Connection Objects
|
|
------------------
|
|
|
|
.. class:: Connection
|
|
|
|
A SQLite database connection has the following attributes and methods:
|
|
|
|
.. attribute:: isolation_level
|
|
|
|
Get or set the current isolation level. :const:`None` for autocommit mode or
|
|
one of "DEFERRED", "IMMEDIATE" or "EXCLUSIVE". See section
|
|
:ref:`sqlite3-controlling-transactions` for a more detailed explanation.
|
|
|
|
.. attribute:: in_transaction
|
|
|
|
:const:`True` if a transaction is active (there are uncommitted changes),
|
|
:const:`False` otherwise. Read-only attribute.
|
|
|
|
.. versionadded:: 3.2
|
|
|
|
.. method:: cursor([cursorClass])
|
|
|
|
The cursor method accepts a single optional parameter *cursorClass*. If
|
|
supplied, this must be a custom cursor class that extends
|
|
:class:`sqlite3.Cursor`.
|
|
|
|
.. method:: commit()
|
|
|
|
This method commits the current transaction. If you don't call this method,
|
|
anything you did since the last call to ``commit()`` is not visible from
|
|
other database connections. If you wonder why you don't see the data you've
|
|
written to the database, please check you didn't forget to call this method.
|
|
|
|
.. method:: rollback()
|
|
|
|
This method rolls back any changes to the database since the last call to
|
|
:meth:`commit`.
|
|
|
|
.. method:: close()
|
|
|
|
This closes the database connection. Note that this does not automatically
|
|
call :meth:`commit`. If you just close your database connection without
|
|
calling :meth:`commit` first, your changes will be lost!
|
|
|
|
.. method:: execute(sql, [parameters])
|
|
|
|
This is a nonstandard shortcut that creates an intermediate cursor object by
|
|
calling the cursor method, then calls the cursor's :meth:`execute
|
|
<Cursor.execute>` method with the parameters given.
|
|
|
|
|
|
.. method:: executemany(sql, [parameters])
|
|
|
|
This is a nonstandard shortcut that creates an intermediate cursor object by
|
|
calling the cursor method, then calls the cursor's :meth:`executemany
|
|
<Cursor.executemany>` method with the parameters given.
|
|
|
|
.. method:: executescript(sql_script)
|
|
|
|
This is a nonstandard shortcut that creates an intermediate cursor object by
|
|
calling the cursor method, then calls the cursor's :meth:`executescript
|
|
<Cursor.executescript>` method with the parameters given.
|
|
|
|
|
|
.. method:: create_function(name, num_params, func)
|
|
|
|
Creates a user-defined function that you can later use from within SQL
|
|
statements under the function name *name*. *num_params* is the number of
|
|
parameters the function accepts, and *func* is a Python callable that is called
|
|
as the SQL function.
|
|
|
|
The function can return any of the types supported by SQLite: bytes, str, int,
|
|
float and None.
|
|
|
|
Example:
|
|
|
|
.. literalinclude:: ../includes/sqlite3/md5func.py
|
|
|
|
|
|
.. method:: create_aggregate(name, num_params, aggregate_class)
|
|
|
|
Creates a user-defined aggregate function.
|
|
|
|
The aggregate class must implement a ``step`` method, which accepts the number
|
|
of parameters *num_params*, and a ``finalize`` method which will return the
|
|
final result of the aggregate.
|
|
|
|
The ``finalize`` method can return any of the types supported by SQLite:
|
|
bytes, str, int, float and None.
|
|
|
|
Example:
|
|
|
|
.. literalinclude:: ../includes/sqlite3/mysumaggr.py
|
|
|
|
|
|
.. method:: create_collation(name, callable)
|
|
|
|
Creates a collation with the specified *name* and *callable*. The callable will
|
|
be passed two string arguments. It should return -1 if the first is ordered
|
|
lower than the second, 0 if they are ordered equal and 1 if the first is ordered
|
|
higher than the second. Note that this controls sorting (ORDER BY in SQL) so
|
|
your comparisons don't affect other SQL operations.
|
|
|
|
Note that the callable will get its parameters as Python bytestrings, which will
|
|
normally be encoded in UTF-8.
|
|
|
|
The following example shows a custom collation that sorts "the wrong way":
|
|
|
|
.. literalinclude:: ../includes/sqlite3/collation_reverse.py
|
|
|
|
To remove a collation, call ``create_collation`` with None as callable::
|
|
|
|
con.create_collation("reverse", None)
|
|
|
|
|
|
.. method:: interrupt()
|
|
|
|
You can call this method from a different thread to abort any queries that might
|
|
be executing on the connection. The query will then abort and the caller will
|
|
get an exception.
|
|
|
|
|
|
.. method:: set_authorizer(authorizer_callback)
|
|
|
|
This routine registers a callback. The callback is invoked for each attempt to
|
|
access a column of a table in the database. The callback should return
|
|
:const:`SQLITE_OK` if access is allowed, :const:`SQLITE_DENY` if the entire SQL
|
|
statement should be aborted with an error and :const:`SQLITE_IGNORE` if the
|
|
column should be treated as a NULL value. These constants are available in the
|
|
:mod:`sqlite3` module.
|
|
|
|
The first argument to the callback signifies what kind of operation is to be
|
|
authorized. The second and third argument will be arguments or :const:`None`
|
|
depending on the first argument. The 4th argument is the name of the database
|
|
("main", "temp", etc.) if applicable. The 5th argument is the name of the
|
|
inner-most trigger or view that is responsible for the access attempt or
|
|
:const:`None` if this access attempt is directly from input SQL code.
|
|
|
|
Please consult the SQLite documentation about the possible values for the first
|
|
argument and the meaning of the second and third argument depending on the first
|
|
one. All necessary constants are available in the :mod:`sqlite3` module.
|
|
|
|
|
|
.. method:: set_progress_handler(handler, n)
|
|
|
|
This routine registers a callback. The callback is invoked for every *n*
|
|
instructions of the SQLite virtual machine. This is useful if you want to
|
|
get called from SQLite during long-running operations, for example to update
|
|
a GUI.
|
|
|
|
If you want to clear any previously installed progress handler, call the
|
|
method with :const:`None` for *handler*.
|
|
|
|
|
|
.. method:: set_trace_callback(trace_callback)
|
|
|
|
Registers *trace_callback* to be called for each SQL statement that is
|
|
actually executed by the SQLite backend.
|
|
|
|
The only argument passed to the callback is the statement (as string) that
|
|
is being executed. The return value of the callback is ignored. Note that
|
|
the backend does not only run statements passed to the :meth:`Cursor.execute`
|
|
methods. Other sources include the transaction management of the Python
|
|
module and the execution of triggers defined in the current database.
|
|
|
|
Passing :const:`None` as *trace_callback* will disable the trace callback.
|
|
|
|
.. versionadded:: 3.3
|
|
|
|
|
|
.. method:: enable_load_extension(enabled)
|
|
|
|
This routine allows/disallows the SQLite engine to load SQLite extensions
|
|
from shared libraries. SQLite extensions can define new functions,
|
|
aggregates or whole new virtual table implementations. One well-known
|
|
extension is the fulltext-search extension distributed with SQLite.
|
|
|
|
Loadable extensions are disabled by default. See [#f1]_.
|
|
|
|
.. versionadded:: 3.2
|
|
|
|
.. literalinclude:: ../includes/sqlite3/load_extension.py
|
|
|
|
.. method:: load_extension(path)
|
|
|
|
This routine loads a SQLite extension from a shared library. You have to
|
|
enable extension loading with :meth:`enable_load_extension` before you can
|
|
use this routine.
|
|
|
|
Loadable extensions are disabled by default. See [#f1]_.
|
|
|
|
.. versionadded:: 3.2
|
|
|
|
.. attribute:: row_factory
|
|
|
|
You can change this attribute to a callable that accepts the cursor and the
|
|
original row as a tuple and will return the real result row. This way, you can
|
|
implement more advanced ways of returning results, such as returning an object
|
|
that can also access columns by name.
|
|
|
|
Example:
|
|
|
|
.. literalinclude:: ../includes/sqlite3/row_factory.py
|
|
|
|
If returning a tuple doesn't suffice and you want name-based access to
|
|
columns, you should consider setting :attr:`row_factory` to the
|
|
highly-optimized :class:`sqlite3.Row` type. :class:`Row` provides both
|
|
index-based and case-insensitive name-based access to columns with almost no
|
|
memory overhead. It will probably be better than your own custom
|
|
dictionary-based approach or even a db_row based solution.
|
|
|
|
.. XXX what's a db_row-based solution?
|
|
|
|
|
|
.. attribute:: text_factory
|
|
|
|
Using this attribute you can control what objects are returned for the ``TEXT``
|
|
data type. By default, this attribute is set to :class:`str` and the
|
|
:mod:`sqlite3` module will return Unicode objects for ``TEXT``. If you want to
|
|
return bytestrings instead, you can set it to :class:`bytes`.
|
|
|
|
For efficiency reasons, there's also a way to return :class:`str` objects
|
|
only for non-ASCII data, and :class:`bytes` otherwise. To activate it, set
|
|
this attribute to :const:`sqlite3.OptimizedUnicode`.
|
|
|
|
You can also set it to any other callable that accepts a single bytestring
|
|
parameter and returns the resulting object.
|
|
|
|
See the following example code for illustration:
|
|
|
|
.. literalinclude:: ../includes/sqlite3/text_factory.py
|
|
|
|
|
|
.. attribute:: total_changes
|
|
|
|
Returns the total number of database rows that have been modified, inserted, or
|
|
deleted since the database connection was opened.
|
|
|
|
|
|
.. attribute:: iterdump
|
|
|
|
Returns an iterator to dump the database in an SQL text format. Useful when
|
|
saving an in-memory database for later restoration. This function provides
|
|
the same capabilities as the :kbd:`.dump` command in the :program:`sqlite3`
|
|
shell.
|
|
|
|
Example::
|
|
|
|
# Convert file existing_db.db to SQL dump file dump.sql
|
|
import sqlite3, os
|
|
|
|
con = sqlite3.connect('existing_db.db')
|
|
with open('dump.sql', 'w') as f:
|
|
for line in con.iterdump():
|
|
f.write('%s\n' % line)
|
|
|
|
|
|
.. _sqlite3-cursor-objects:
|
|
|
|
Cursor Objects
|
|
--------------
|
|
|
|
.. class:: Cursor
|
|
|
|
A :class:`Cursor` instance has the following attributes and methods.
|
|
|
|
.. method:: execute(sql, [parameters])
|
|
|
|
Executes an SQL statement. The SQL statement may be parametrized (i. e.
|
|
placeholders instead of SQL literals). The :mod:`sqlite3` module supports two
|
|
kinds of placeholders: question marks (qmark style) and named placeholders
|
|
(named style).
|
|
|
|
Here's an example of both styles:
|
|
|
|
.. literalinclude:: ../includes/sqlite3/execute_1.py
|
|
|
|
:meth:`execute` will only execute a single SQL statement. If you try to execute
|
|
more than one statement with it, it will raise a Warning. Use
|
|
:meth:`executescript` if you want to execute multiple SQL statements with one
|
|
call.
|
|
|
|
|
|
.. method:: executemany(sql, seq_of_parameters)
|
|
|
|
Executes an SQL command against all parameter sequences or mappings found in
|
|
the sequence *sql*. The :mod:`sqlite3` module also allows using an
|
|
:term:`iterator` yielding parameters instead of a sequence.
|
|
|
|
.. literalinclude:: ../includes/sqlite3/executemany_1.py
|
|
|
|
Here's a shorter example using a :term:`generator`:
|
|
|
|
.. literalinclude:: ../includes/sqlite3/executemany_2.py
|
|
|
|
|
|
.. method:: executescript(sql_script)
|
|
|
|
This is a nonstandard convenience method for executing multiple SQL statements
|
|
at once. It issues a ``COMMIT`` statement first, then executes the SQL script it
|
|
gets as a parameter.
|
|
|
|
*sql_script* can be an instance of :class:`str` or :class:`bytes`.
|
|
|
|
Example:
|
|
|
|
.. literalinclude:: ../includes/sqlite3/executescript.py
|
|
|
|
|
|
.. method:: fetchone()
|
|
|
|
Fetches the next row of a query result set, returning a single sequence,
|
|
or :const:`None` when no more data is available.
|
|
|
|
|
|
.. method:: fetchmany(size=cursor.arraysize)
|
|
|
|
Fetches the next set of rows of a query result, returning a list. An empty
|
|
list is returned when no more rows are available.
|
|
|
|
The number of rows to fetch per call is specified by the *size* parameter.
|
|
If it is not given, the cursor's arraysize determines the number of rows
|
|
to be fetched. The method should try to fetch as many rows as indicated by
|
|
the size parameter. If this is not possible due to the specified number of
|
|
rows not being available, fewer rows may be returned.
|
|
|
|
Note there are performance considerations involved with the *size* parameter.
|
|
For optimal performance, it is usually best to use the arraysize attribute.
|
|
If the *size* parameter is used, then it is best for it to retain the same
|
|
value from one :meth:`fetchmany` call to the next.
|
|
|
|
.. method:: fetchall()
|
|
|
|
Fetches all (remaining) rows of a query result, returning a list. Note that
|
|
the cursor's arraysize attribute can affect the performance of this operation.
|
|
An empty list is returned when no rows are available.
|
|
|
|
|
|
.. attribute:: rowcount
|
|
|
|
Although the :class:`Cursor` class of the :mod:`sqlite3` module implements this
|
|
attribute, the database engine's own support for the determination of "rows
|
|
affected"/"rows selected" is quirky.
|
|
|
|
For :meth:`executemany` statements, the number of modifications are summed up
|
|
into :attr:`rowcount`.
|
|
|
|
As required by the Python DB API Spec, the :attr:`rowcount` attribute "is -1 in
|
|
case no ``executeXX()`` has been performed on the cursor or the rowcount of the
|
|
last operation is not determinable by the interface". This includes ``SELECT``
|
|
statements because we cannot determine the number of rows a query produced
|
|
until all rows were fetched.
|
|
|
|
With SQLite versions before 3.6.5, :attr:`rowcount` is set to 0 if
|
|
you make a ``DELETE FROM table`` without any condition.
|
|
|
|
.. attribute:: lastrowid
|
|
|
|
This read-only attribute provides the rowid of the last modified row. It is
|
|
only set if you issued a ``INSERT`` statement using the :meth:`execute`
|
|
method. For operations other than ``INSERT`` or when :meth:`executemany` is
|
|
called, :attr:`lastrowid` is set to :const:`None`.
|
|
|
|
.. attribute:: description
|
|
|
|
This read-only attribute provides the column names of the last query. To
|
|
remain compatible with the Python DB API, it returns a 7-tuple for each
|
|
column where the last six items of each tuple are :const:`None`.
|
|
|
|
It is set for ``SELECT`` statements without any matching rows as well.
|
|
|
|
.. _sqlite3-row-objects:
|
|
|
|
Row Objects
|
|
-----------
|
|
|
|
.. class:: Row
|
|
|
|
A :class:`Row` instance serves as a highly optimized
|
|
:attr:`~Connection.row_factory` for :class:`Connection` objects.
|
|
It tries to mimic a tuple in most of its features.
|
|
|
|
It supports mapping access by column name and index, iteration,
|
|
representation, equality testing and :func:`len`.
|
|
|
|
If two :class:`Row` objects have exactly the same columns and their
|
|
members are equal, they compare equal.
|
|
|
|
.. method:: keys
|
|
|
|
This method returns a tuple of column names. Immediately after a query,
|
|
it is the first member of each tuple in :attr:`Cursor.description`.
|
|
|
|
Let's assume we initialize a table as in the example given above::
|
|
|
|
conn = sqlite3.connect(":memory:")
|
|
c = conn.cursor()
|
|
c.execute('''create table stocks
|
|
(date text, trans text, symbol text,
|
|
qty real, price real)''')
|
|
c.execute("""insert into stocks
|
|
values ('2006-01-05','BUY','RHAT',100,35.14)""")
|
|
conn.commit()
|
|
c.close()
|
|
|
|
Now we plug :class:`Row` in::
|
|
|
|
>>> conn.row_factory = sqlite3.Row
|
|
>>> c = conn.cursor()
|
|
>>> c.execute('select * from stocks')
|
|
<sqlite3.Cursor object at 0x7f4e7dd8fa80>
|
|
>>> r = c.fetchone()
|
|
>>> type(r)
|
|
<class 'sqlite3.Row'>
|
|
>>> tuple(r)
|
|
('2006-01-05', 'BUY', 'RHAT', 100.0, 35.14)
|
|
>>> len(r)
|
|
5
|
|
>>> r[2]
|
|
'RHAT'
|
|
>>> r.keys()
|
|
['date', 'trans', 'symbol', 'qty', 'price']
|
|
>>> r['qty']
|
|
100.0
|
|
>>> for member in r:
|
|
... print(member)
|
|
...
|
|
2006-01-05
|
|
BUY
|
|
RHAT
|
|
100.0
|
|
35.14
|
|
|
|
|
|
.. _sqlite3-types:
|
|
|
|
SQLite and Python types
|
|
-----------------------
|
|
|
|
|
|
Introduction
|
|
^^^^^^^^^^^^
|
|
|
|
SQLite natively supports the following types: ``NULL``, ``INTEGER``,
|
|
``REAL``, ``TEXT``, ``BLOB``.
|
|
|
|
The following Python types can thus be sent to SQLite without any problem:
|
|
|
|
+-------------------------------+-------------+
|
|
| Python type | SQLite type |
|
|
+===============================+=============+
|
|
| :const:`None` | ``NULL`` |
|
|
+-------------------------------+-------------+
|
|
| :class:`int` | ``INTEGER`` |
|
|
+-------------------------------+-------------+
|
|
| :class:`float` | ``REAL`` |
|
|
+-------------------------------+-------------+
|
|
| :class:`str` | ``TEXT`` |
|
|
+-------------------------------+-------------+
|
|
| :class:`bytes` | ``BLOB`` |
|
|
+-------------------------------+-------------+
|
|
|
|
|
|
This is how SQLite types are converted to Python types by default:
|
|
|
|
+-------------+---------------------------------------------+
|
|
| SQLite type | Python type |
|
|
+=============+=============================================+
|
|
| ``NULL`` | :const:`None` |
|
|
+-------------+---------------------------------------------+
|
|
| ``INTEGER`` | :class:`int` |
|
|
+-------------+---------------------------------------------+
|
|
| ``REAL`` | :class:`float` |
|
|
+-------------+---------------------------------------------+
|
|
| ``TEXT`` | depends on text_factory, str by default |
|
|
+-------------+---------------------------------------------+
|
|
| ``BLOB`` | :class:`bytes` |
|
|
+-------------+---------------------------------------------+
|
|
|
|
The type system of the :mod:`sqlite3` module is extensible in two ways: you can
|
|
store additional Python types in a SQLite database via object adaptation, and
|
|
you can let the :mod:`sqlite3` module convert SQLite types to different Python
|
|
types via converters.
|
|
|
|
|
|
Using adapters to store additional Python types in SQLite databases
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
As described before, SQLite supports only a limited set of types natively. To
|
|
use other Python types with SQLite, you must **adapt** them to one of the
|
|
sqlite3 module's supported types for SQLite: one of NoneType, int, float,
|
|
str, bytes.
|
|
|
|
The :mod:`sqlite3` module uses Python object adaptation, as described in
|
|
:pep:`246` for this. The protocol to use is :class:`PrepareProtocol`.
|
|
|
|
There are two ways to enable the :mod:`sqlite3` module to adapt a custom Python
|
|
type to one of the supported ones.
|
|
|
|
|
|
Letting your object adapt itself
|
|
""""""""""""""""""""""""""""""""
|
|
|
|
This is a good approach if you write the class yourself. Let's suppose you have
|
|
a class like this::
|
|
|
|
class Point:
|
|
def __init__(self, x, y):
|
|
self.x, self.y = x, y
|
|
|
|
Now you want to store the point in a single SQLite column. First you'll have to
|
|
choose one of the supported types first to be used for representing the point.
|
|
Let's just use str and separate the coordinates using a semicolon. Then you need
|
|
to give your class a method ``__conform__(self, protocol)`` which must return
|
|
the converted value. The parameter *protocol* will be :class:`PrepareProtocol`.
|
|
|
|
.. literalinclude:: ../includes/sqlite3/adapter_point_1.py
|
|
|
|
|
|
Registering an adapter callable
|
|
"""""""""""""""""""""""""""""""
|
|
|
|
The other possibility is to create a function that converts the type to the
|
|
string representation and register the function with :meth:`register_adapter`.
|
|
|
|
.. literalinclude:: ../includes/sqlite3/adapter_point_2.py
|
|
|
|
The :mod:`sqlite3` module has two default adapters for Python's built-in
|
|
:class:`datetime.date` and :class:`datetime.datetime` types. Now let's suppose
|
|
we want to store :class:`datetime.datetime` objects not in ISO representation,
|
|
but as a Unix timestamp.
|
|
|
|
.. literalinclude:: ../includes/sqlite3/adapter_datetime.py
|
|
|
|
|
|
Converting SQLite values to custom Python types
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Writing an adapter lets you send custom Python types to SQLite. But to make it
|
|
really useful we need to make the Python to SQLite to Python roundtrip work.
|
|
|
|
Enter converters.
|
|
|
|
Let's go back to the :class:`Point` class. We stored the x and y coordinates
|
|
separated via semicolons as strings in SQLite.
|
|
|
|
First, we'll define a converter function that accepts the string as a parameter
|
|
and constructs a :class:`Point` object from it.
|
|
|
|
.. note::
|
|
|
|
Converter functions **always** get called with a string, no matter under which
|
|
data type you sent the value to SQLite.
|
|
|
|
::
|
|
|
|
def convert_point(s):
|
|
x, y = map(float, s.split(b";"))
|
|
return Point(x, y)
|
|
|
|
Now you need to make the :mod:`sqlite3` module know that what you select from
|
|
the database is actually a point. There are two ways of doing this:
|
|
|
|
* Implicitly via the declared type
|
|
|
|
* Explicitly via the column name
|
|
|
|
Both ways are described in section :ref:`sqlite3-module-contents`, in the entries
|
|
for the constants :const:`PARSE_DECLTYPES` and :const:`PARSE_COLNAMES`.
|
|
|
|
The following example illustrates both approaches.
|
|
|
|
.. literalinclude:: ../includes/sqlite3/converter_point.py
|
|
|
|
|
|
Default adapters and converters
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
There are default adapters for the date and datetime types in the datetime
|
|
module. They will be sent as ISO dates/ISO timestamps to SQLite.
|
|
|
|
The default converters are registered under the name "date" for
|
|
:class:`datetime.date` and under the name "timestamp" for
|
|
:class:`datetime.datetime`.
|
|
|
|
This way, you can use date/timestamps from Python without any additional
|
|
fiddling in most cases. The format of the adapters is also compatible with the
|
|
experimental SQLite date/time functions.
|
|
|
|
The following example demonstrates this.
|
|
|
|
.. literalinclude:: ../includes/sqlite3/pysqlite_datetime.py
|
|
|
|
|
|
.. _sqlite3-controlling-transactions:
|
|
|
|
Controlling Transactions
|
|
------------------------
|
|
|
|
By default, the :mod:`sqlite3` module opens transactions implicitly before a
|
|
Data Modification Language (DML) statement (i.e.
|
|
``INSERT``/``UPDATE``/``DELETE``/``REPLACE``), and commits transactions
|
|
implicitly before a non-DML, non-query statement (i. e.
|
|
anything other than ``SELECT`` or the aforementioned).
|
|
|
|
So if you are within a transaction and issue a command like ``CREATE TABLE
|
|
...``, ``VACUUM``, ``PRAGMA``, the :mod:`sqlite3` module will commit implicitly
|
|
before executing that command. There are two reasons for doing that. The first
|
|
is that some of these commands don't work within transactions. The other reason
|
|
is that sqlite3 needs to keep track of the transaction state (if a transaction
|
|
is active or not). The current transaction state is exposed through the
|
|
:attr:`Connection.in_transaction` attribute of the connection object.
|
|
|
|
You can control which kind of ``BEGIN`` statements sqlite3 implicitly executes
|
|
(or none at all) via the *isolation_level* parameter to the :func:`connect`
|
|
call, or via the :attr:`isolation_level` property of connections.
|
|
|
|
If you want **autocommit mode**, then set :attr:`isolation_level` to None.
|
|
|
|
Otherwise leave it at its default, which will result in a plain "BEGIN"
|
|
statement, or set it to one of SQLite's supported isolation levels: "DEFERRED",
|
|
"IMMEDIATE" or "EXCLUSIVE".
|
|
|
|
|
|
|
|
Using :mod:`sqlite3` efficiently
|
|
--------------------------------
|
|
|
|
|
|
Using shortcut methods
|
|
^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Using the nonstandard :meth:`execute`, :meth:`executemany` and
|
|
:meth:`executescript` methods of the :class:`Connection` object, your code can
|
|
be written more concisely because you don't have to create the (often
|
|
superfluous) :class:`Cursor` objects explicitly. Instead, the :class:`Cursor`
|
|
objects are created implicitly and these shortcut methods return the cursor
|
|
objects. This way, you can execute a ``SELECT`` statement and iterate over it
|
|
directly using only a single call on the :class:`Connection` object.
|
|
|
|
.. literalinclude:: ../includes/sqlite3/shortcut_methods.py
|
|
|
|
|
|
Accessing columns by name instead of by index
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
One useful feature of the :mod:`sqlite3` module is the built-in
|
|
:class:`sqlite3.Row` class designed to be used as a row factory.
|
|
|
|
Rows wrapped with this class can be accessed both by index (like tuples) and
|
|
case-insensitively by name:
|
|
|
|
.. literalinclude:: ../includes/sqlite3/rowclass.py
|
|
|
|
|
|
Using the connection as a context manager
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Connection objects can be used as context managers
|
|
that automatically commit or rollback transactions. In the event of an
|
|
exception, the transaction is rolled back; otherwise, the transaction is
|
|
committed:
|
|
|
|
.. literalinclude:: ../includes/sqlite3/ctx_manager.py
|
|
|
|
|
|
Common issues
|
|
-------------
|
|
|
|
Multithreading
|
|
^^^^^^^^^^^^^^
|
|
|
|
Older SQLite versions had issues with sharing connections between threads.
|
|
That's why the Python module disallows sharing connections and cursors between
|
|
threads. If you still try to do so, you will get an exception at runtime.
|
|
|
|
The only exception is calling the :meth:`~Connection.interrupt` method, which
|
|
only makes sense to call from a different thread.
|
|
|
|
.. rubric:: Footnotes
|
|
|
|
.. [#f1] The sqlite3 module is not built with loadable extension support by
|
|
default, because some platforms (notably Mac OS X) have SQLite
|
|
libraries which are compiled without this feature. To get loadable
|
|
extension support, you must pass --enable-loadable-sqlite-extensions to
|
|
configure.
|