cpython/Tools/cases_generator/generate_cases.py

931 lines
36 KiB
Python

"""Generate the main interpreter switch.
Reads the instruction definitions from bytecodes.c.
Writes the cases to generated_cases.c.h, which is #included in ceval.c.
"""
import argparse
import contextlib
import itertools
import os
import posixpath
import sys
import textwrap
import typing
from collections.abc import Iterator
import stacking # Early import to avoid circular import
from _typing_backports import assert_never
from analysis import Analyzer
from formatting import Formatter, list_effect_size
from flags import InstructionFlags, variable_used
from instructions import (
AnyInstruction,
AbstractInstruction,
Component,
Instruction,
MacroInstruction,
MacroParts,
PseudoInstruction,
OverriddenInstructionPlaceHolder,
TIER_ONE,
TIER_TWO,
)
import parsing
from parsing import StackEffect
HERE = os.path.dirname(__file__)
ROOT = os.path.join(HERE, "../..")
THIS = os.path.relpath(__file__, ROOT).replace(os.path.sep, posixpath.sep)
DEFAULT_INPUT = os.path.relpath(os.path.join(ROOT, "Python/bytecodes.c"))
DEFAULT_OUTPUT = os.path.relpath(os.path.join(ROOT, "Python/generated_cases.c.h"))
DEFAULT_OPCODE_IDS_H_OUTPUT = os.path.relpath(
os.path.join(ROOT, "Include/opcode_ids.h")
)
DEFAULT_OPCODE_TARGETS_H_OUTPUT = os.path.relpath(
os.path.join(ROOT, "Python/opcode_targets.h")
)
DEFAULT_METADATA_OUTPUT = os.path.relpath(
os.path.join(ROOT, "Include/internal/pycore_opcode_metadata.h")
)
DEFAULT_PYMETADATA_OUTPUT = os.path.relpath(
os.path.join(ROOT, "Lib/_opcode_metadata.py")
)
DEFAULT_EXECUTOR_OUTPUT = os.path.relpath(
os.path.join(ROOT, "Python/executor_cases.c.h")
)
DEFAULT_ABSTRACT_INTERPRETER_OUTPUT = os.path.relpath(
os.path.join(ROOT, "Python/abstract_interp_cases.c.h")
)
# Constants used instead of size for macro expansions.
# Note: 1, 2, 4 must match actual cache entry sizes.
OPARG_SIZES = {
"OPARG_FULL": 0,
"OPARG_CACHE_1": 1,
"OPARG_CACHE_2": 2,
"OPARG_CACHE_4": 4,
"OPARG_TOP": 5,
"OPARG_BOTTOM": 6,
"OPARG_SAVE_IP": 7,
}
INSTR_FMT_PREFIX = "INSTR_FMT_"
# TODO: generate all these after updating the DSL
SPECIALLY_HANDLED_ABSTRACT_INSTR = {
"LOAD_FAST",
"LOAD_FAST_CHECK",
"LOAD_FAST_AND_CLEAR",
"LOAD_CONST",
"STORE_FAST",
"STORE_FAST_MAYBE_NULL",
"COPY",
# Arithmetic
"_BINARY_OP_MULTIPLY_INT",
"_BINARY_OP_ADD_INT",
"_BINARY_OP_SUBTRACT_INT",
}
arg_parser = argparse.ArgumentParser(
description="Generate the code for the interpreter switch.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
arg_parser.add_argument(
"-o", "--output", type=str, help="Generated code", default=DEFAULT_OUTPUT
)
arg_parser.add_argument(
"-n",
"--opcode_ids_h",
type=str,
help="Header file with opcode number definitions",
default=DEFAULT_OPCODE_IDS_H_OUTPUT,
)
arg_parser.add_argument(
"-t",
"--opcode_targets_h",
type=str,
help="File with opcode targets for computed gotos",
default=DEFAULT_OPCODE_TARGETS_H_OUTPUT,
)
arg_parser.add_argument(
"-m",
"--metadata",
type=str,
help="Generated C metadata",
default=DEFAULT_METADATA_OUTPUT,
)
arg_parser.add_argument(
"-p",
"--pymetadata",
type=str,
help="Generated Python metadata",
default=DEFAULT_PYMETADATA_OUTPUT,
)
arg_parser.add_argument(
"-l", "--emit-line-directives", help="Emit #line directives", action="store_true"
)
arg_parser.add_argument(
"input", nargs=argparse.REMAINDER, help="Instruction definition file(s)"
)
arg_parser.add_argument(
"-e",
"--executor-cases",
type=str,
help="Write executor cases to this file",
default=DEFAULT_EXECUTOR_OUTPUT,
)
arg_parser.add_argument(
"-a",
"--abstract-interpreter-cases",
type=str,
help="Write abstract interpreter cases to this file",
default=DEFAULT_ABSTRACT_INTERPRETER_OUTPUT,
)
class Generator(Analyzer):
def get_stack_effect_info(
self, thing: parsing.InstDef | parsing.Macro | parsing.Pseudo
) -> tuple[AnyInstruction | None, str, str]:
def effect_str(effects: list[StackEffect]) -> str:
n_effect, sym_effect = list_effect_size(effects)
if sym_effect:
return f"{sym_effect} + {n_effect}" if n_effect else sym_effect
return str(n_effect)
instr: AnyInstruction | None
popped: str | None = None
pushed: str | None = None
match thing:
case parsing.InstDef():
if thing.kind != "op" or self.instrs[thing.name].is_viable_uop():
instr = self.instrs[thing.name]
popped = effect_str(instr.input_effects)
pushed = effect_str(instr.output_effects)
else:
instr = None
popped = ""
pushed = ""
case parsing.Macro():
instr = self.macro_instrs[thing.name]
popped, pushed = stacking.get_stack_effect_info_for_macro(instr)
case parsing.Pseudo():
instr = self.pseudo_instrs[thing.name]
# Calculate stack effect, and check that it's the the same
# for all targets.
for target in self.pseudos[thing.name].targets:
target_instr = self.instrs.get(target)
# Currently target is always an instr. This could change
# in the future, e.g., if we have a pseudo targetting a
# macro instruction.
assert target_instr
target_popped = effect_str(target_instr.input_effects)
target_pushed = effect_str(target_instr.output_effects)
if popped is None:
popped, pushed = target_popped, target_pushed
else:
assert popped == target_popped
assert pushed == target_pushed
case _:
assert_never(thing)
assert popped is not None and pushed is not None
return instr, popped, pushed
@contextlib.contextmanager
def metadata_item(self, signature: str, open: str, close: str) -> Iterator[None]:
self.out.emit("")
self.out.emit(f"extern {signature};")
self.out.emit("#ifdef NEED_OPCODE_METADATA")
with self.out.block(f"{signature} {open}", close):
yield
self.out.emit("#endif // NEED_OPCODE_METADATA")
def write_stack_effect_functions(self) -> None:
popped_data: list[tuple[AnyInstruction, str]] = []
pushed_data: list[tuple[AnyInstruction, str]] = []
for thing in self.everything:
if isinstance(thing, OverriddenInstructionPlaceHolder):
continue
instr, popped, pushed = self.get_stack_effect_info(thing)
if instr is not None:
popped_data.append((instr, popped))
pushed_data.append((instr, pushed))
def write_function(
direction: str, data: list[tuple[AnyInstruction, str]]
) -> None:
with self.metadata_item(
f"int _PyOpcode_num_{direction}(int opcode, int oparg, bool jump)",
"",
"",
):
with self.out.block("switch(opcode)"):
for instr, effect in data:
self.out.emit(f"case {instr.name}:")
self.out.emit(f" return {effect};")
self.out.emit("default:")
self.out.emit(" return -1;")
write_function("popped", popped_data)
write_function("pushed", pushed_data)
self.out.emit("")
def from_source_files(self) -> str:
filenames = []
for filename in self.input_filenames:
try:
filename = os.path.relpath(filename, ROOT)
except ValueError:
# May happen on Windows if root and temp on different volumes
pass
filenames.append(filename.replace(os.path.sep, posixpath.sep))
paths = f"\n{self.out.comment} ".join(filenames)
return f"{self.out.comment} from:\n{self.out.comment} {paths}\n"
def write_provenance_header(self) -> None:
self.out.write_raw(f"{self.out.comment} This file is generated by {THIS}\n")
self.out.write_raw(self.from_source_files())
self.out.write_raw(f"{self.out.comment} Do not edit!\n")
def assign_opcode_ids(self) -> None:
"""Assign IDs to opcodes"""
ops: list[tuple[bool, str]] = [] # (has_arg, name) for each opcode
instrumented_ops: list[str] = []
for instr in itertools.chain(
[instr for instr in self.instrs.values() if instr.kind != "op"],
self.macro_instrs.values(),
):
assert isinstance(instr, (Instruction, MacroInstruction, PseudoInstruction))
name = instr.name
if name.startswith("INSTRUMENTED_"):
instrumented_ops.append(name)
else:
ops.append((instr.instr_flags.HAS_ARG_FLAG, name))
# Special case: this instruction is implemented in ceval.c
# rather than bytecodes.c, so we need to add it explicitly
# here (at least until we add something to bytecodes.c to
# declare external instructions).
instrumented_ops.append("INSTRUMENTED_LINE")
# assert lists are unique
assert len(set(ops)) == len(ops)
assert len(set(instrumented_ops)) == len(instrumented_ops)
opname: list[str | None] = [None] * 512
opmap: dict[str, int] = {}
markers: dict[str, int] = {}
def map_op(op: int, name: str) -> None:
assert op < len(opname)
assert opname[op] is None
assert name not in opmap
opname[op] = name
opmap[name] = op
# 0 is reserved for cache entries. This helps debugging.
map_op(0, "CACHE")
# 17 is reserved as it is the initial value for the specializing counter.
# This helps catch cases where we attempt to execute a cache.
map_op(17, "RESERVED")
# 166 is RESUME - it is hard coded as such in Tools/build/deepfreeze.py
map_op(166, "RESUME")
next_opcode = 1
for has_arg, name in sorted(ops):
if name in opmap:
continue # an anchored name, like CACHE
while opname[next_opcode] is not None:
next_opcode += 1
assert next_opcode < 255
map_op(next_opcode, name)
if has_arg and "HAVE_ARGUMENT" not in markers:
markers["HAVE_ARGUMENT"] = next_opcode
# Instrumented opcodes are at the end of the valid range
min_instrumented = 254 - (len(instrumented_ops) - 1)
assert next_opcode <= min_instrumented
markers["MIN_INSTRUMENTED_OPCODE"] = min_instrumented
for i, op in enumerate(instrumented_ops):
map_op(min_instrumented + i, op)
# Pseudo opcodes are after the valid range
for i, op in enumerate(sorted(self.pseudos)):
map_op(256 + i, op)
assert 255 not in opmap.values() # 255 is reserved
self.opmap = opmap
self.markers = markers
def write_opcode_ids(
self, opcode_ids_h_filename: str, opcode_targets_filename: str
) -> None:
"""Write header file that defined the opcode IDs"""
with open(opcode_ids_h_filename, "w") as f:
# Create formatter
self.out = Formatter(f, 0)
self.write_provenance_header()
self.out.emit("")
self.out.emit("#ifndef Py_OPCODE_IDS_H")
self.out.emit("#define Py_OPCODE_IDS_H")
self.out.emit("#ifdef __cplusplus")
self.out.emit('extern "C" {')
self.out.emit("#endif")
self.out.emit("")
self.out.emit("/* Instruction opcodes for compiled code */")
def define(name: str, opcode: int) -> None:
self.out.emit(f"#define {name:<38} {opcode:>3}")
all_pairs: list[tuple[int, int, str]] = []
# the second item in the tuple sorts the markers before the ops
all_pairs.extend((i, 1, name) for (name, i) in self.markers.items())
all_pairs.extend((i, 2, name) for (name, i) in self.opmap.items())
for i, _, name in sorted(all_pairs):
assert name is not None
define(name, i)
self.out.emit("")
self.out.emit("#ifdef __cplusplus")
self.out.emit("}")
self.out.emit("#endif")
self.out.emit("#endif /* !Py_OPCODE_IDS_H */")
with open(opcode_targets_filename, "w") as f:
# Create formatter
self.out = Formatter(f, 0)
with self.out.block("static void *opcode_targets[256] =", ";"):
targets = ["_unknown_opcode"] * 256
for name, op in self.opmap.items():
if op < 256:
targets[op] = f"TARGET_{name}"
f.write(",\n".join([f" &&{s}" for s in targets]))
def write_metadata(self, metadata_filename: str, pymetadata_filename: str) -> None:
"""Write instruction metadata to output file."""
# Compute the set of all instruction formats.
all_formats: set[str] = set()
for thing in self.everything:
format: str | None = None
match thing:
case OverriddenInstructionPlaceHolder():
continue
case parsing.InstDef():
format = self.instrs[thing.name].instr_fmt
case parsing.Macro():
format = self.macro_instrs[thing.name].instr_fmt
case parsing.Pseudo():
for target in self.pseudos[thing.name].targets:
target_instr = self.instrs.get(target)
assert target_instr
if format is None:
format = target_instr.instr_fmt
else:
assert format == target_instr.instr_fmt
case _:
assert_never(thing)
assert format is not None
all_formats.add(format)
# Turn it into a sorted list of enum values.
format_enums = [INSTR_FMT_PREFIX + format for format in sorted(all_formats)]
with open(metadata_filename, "w") as f:
# Create formatter
self.out = Formatter(f, 0)
self.write_provenance_header()
self.out.emit("\n" + textwrap.dedent("""
#ifndef Py_BUILD_CORE
# error "this header requires Py_BUILD_CORE define"
#endif
""").strip())
self.out.emit("\n#include <stdbool.h> // bool")
self.write_pseudo_instrs()
self.out.emit("")
self.write_uop_items(lambda name, counter: f"#define {name} {counter}")
self.write_stack_effect_functions()
# Write the enum definition for instruction formats.
with self.out.block("enum InstructionFormat", ";"):
for enum in format_enums:
self.out.emit(enum + ",")
self.out.emit("")
self.out.emit(
"#define IS_VALID_OPCODE(OP) \\\n"
" (((OP) >= 0) && ((OP) < OPCODE_METADATA_SIZE) && \\\n"
" (_PyOpcode_opcode_metadata[(OP)].valid_entry))"
)
self.out.emit("")
InstructionFlags.emit_macros(self.out)
self.out.emit("")
with self.out.block("struct opcode_metadata", ";"):
self.out.emit("bool valid_entry;")
self.out.emit("enum InstructionFormat instr_format;")
self.out.emit("int flags;")
self.out.emit("")
with self.out.block("struct opcode_macro_expansion", ";"):
self.out.emit("int nuops;")
self.out.emit(
"struct { int16_t uop; int8_t size; int8_t offset; } uops[12];"
)
self.out.emit("")
for key, value in OPARG_SIZES.items():
self.out.emit(f"#define {key} {value}")
self.out.emit("")
self.out.emit(
"#define OPCODE_METADATA_FMT(OP) "
"(_PyOpcode_opcode_metadata[(OP)].instr_format)"
)
self.out.emit("#define SAME_OPCODE_METADATA(OP1, OP2) \\")
self.out.emit(
" (OPCODE_METADATA_FMT(OP1) == OPCODE_METADATA_FMT(OP2))"
)
self.out.emit("")
# Write metadata array declaration
self.out.emit("#define OPCODE_METADATA_SIZE 512")
self.out.emit("#define OPCODE_UOP_NAME_SIZE 512")
self.out.emit("#define OPCODE_MACRO_EXPANSION_SIZE 256")
with self.metadata_item(
"const struct opcode_metadata "
"_PyOpcode_opcode_metadata[OPCODE_METADATA_SIZE]",
"=",
";",
):
# Write metadata for each instruction
for thing in self.everything:
match thing:
case OverriddenInstructionPlaceHolder():
continue
case parsing.InstDef():
self.write_metadata_for_inst(self.instrs[thing.name])
case parsing.Macro():
self.write_metadata_for_macro(self.macro_instrs[thing.name])
case parsing.Pseudo():
self.write_metadata_for_pseudo(
self.pseudo_instrs[thing.name]
)
case _:
assert_never(thing)
with self.metadata_item(
"const struct opcode_macro_expansion "
"_PyOpcode_macro_expansion[OPCODE_MACRO_EXPANSION_SIZE]",
"=",
";",
):
# Write macro expansion for each non-pseudo instruction
for thing in self.everything:
match thing:
case OverriddenInstructionPlaceHolder():
pass
case parsing.InstDef(name=name):
instr = self.instrs[name]
# Since an 'op' is not a bytecode, it has no expansion; but 'inst' is
if instr.kind == "inst" and instr.is_viable_uop():
# Construct a dummy Component -- input/output mappings are not used
part = Component(instr, instr.active_caches)
self.write_macro_expansions(
instr.name, [part], instr.cache_offset
)
elif instr.kind == "inst" and variable_used(
instr.inst, "oparg1"
):
assert variable_used(
instr.inst, "oparg2"
), "Half super-instr?"
self.write_super_expansions(instr.name)
case parsing.Macro():
mac = self.macro_instrs[thing.name]
self.write_macro_expansions(
mac.name, mac.parts, mac.cache_offset
)
case parsing.Pseudo():
pass
case _:
assert_never(thing)
with self.metadata_item(
"const char * const _PyOpcode_uop_name[OPCODE_UOP_NAME_SIZE]", "=", ";"
):
self.write_uop_items(lambda name, counter: f'[{name}] = "{name}",')
with self.metadata_item(
f"const char *const _PyOpcode_OpName[{1 + max(self.opmap.values())}]",
"=",
";",
):
for name in self.opmap:
self.out.emit(f'[{name}] = "{name}",')
with self.metadata_item(
f"const uint8_t _PyOpcode_Caches[256]",
"=",
";",
):
for name, _ in self.families.items():
instr = self.instrs[name]
if instr.cache_offset > 0:
self.out.emit(f'[{name}] = {instr.cache_offset},')
# Irregular case:
self.out.emit('[JUMP_BACKWARD] = 1,')
deoptcodes = {}
for name, op in self.opmap.items():
if op < 256:
deoptcodes[name] = name
for name, family in self.families.items():
for m in family.members:
deoptcodes[m] = name
# special case:
deoptcodes["BINARY_OP_INPLACE_ADD_UNICODE"] = "BINARY_OP"
with self.metadata_item(f"const uint8_t _PyOpcode_Deopt[256]", "=", ";"):
for opt, deopt in sorted(deoptcodes.items()):
self.out.emit(f"[{opt}] = {deopt},")
self.out.emit("")
self.out.emit("#define EXTRA_CASES \\")
valid_opcodes = set(self.opmap.values())
with self.out.indent():
for op in range(256):
if op not in valid_opcodes:
self.out.emit(f"case {op}: \\")
self.out.emit(" ;\n")
with open(pymetadata_filename, "w") as f:
# Create formatter
self.out = Formatter(f, 0, comment="#")
self.write_provenance_header()
# emit specializations
specialized_ops = set()
self.out.emit("")
self.out.emit("_specializations = {")
for name, family in self.families.items():
with self.out.indent():
self.out.emit(f'"{family.name}": [')
with self.out.indent():
for m in family.members:
self.out.emit(f'"{m}",')
specialized_ops.update(family.members)
self.out.emit(f"],")
self.out.emit("}")
# Handle special case
self.out.emit("")
self.out.emit("# An irregular case:")
self.out.emit(
'_specializations["BINARY_OP"].append('
'"BINARY_OP_INPLACE_ADD_UNICODE")'
)
specialized_ops.add("BINARY_OP_INPLACE_ADD_UNICODE")
ops = sorted((id, name) for (name, id) in self.opmap.items())
# emit specialized opmap
self.out.emit("")
with self.out.block("_specialized_opmap ="):
for op, name in ops:
if name in specialized_ops:
self.out.emit(f"'{name}': {op},")
# emit opmap
self.out.emit("")
with self.out.block("opmap ="):
for op, name in ops:
if name not in specialized_ops:
self.out.emit(f"'{name}': {op},")
for name in ["MIN_INSTRUMENTED_OPCODE", "HAVE_ARGUMENT"]:
self.out.emit(f"{name} = {self.markers[name]}")
def write_pseudo_instrs(self) -> None:
"""Write the IS_PSEUDO_INSTR macro"""
self.out.emit("\n\n#define IS_PSEUDO_INSTR(OP) ( \\")
for op in self.pseudos:
self.out.emit(f" ((OP) == {op}) || \\")
self.out.emit(f" 0)")
def write_uop_items(self, make_text: typing.Callable[[str, int], str]) -> None:
"""Write '#define XXX NNN' for each uop"""
counter = 300 # TODO: Avoid collision with pseudo instructions
seen = set()
def add(name: str) -> None:
if name in seen:
return
nonlocal counter
self.out.emit(make_text(name, counter))
counter += 1
seen.add(name)
# These two are first by convention
add("EXIT_TRACE")
add("SAVE_IP")
for instr in self.instrs.values():
if instr.kind == "op":
add(instr.name)
def write_macro_expansions(
self, name: str, parts: MacroParts, cache_offset: int
) -> None:
"""Write the macro expansions for a macro-instruction."""
# TODO: Refactor to share code with write_cody(), is_viaible_uop(), etc.
offset = 0 # Cache effect offset
expansions: list[tuple[str, int, int]] = [] # [(name, size, offset), ...]
for part in parts:
if isinstance(part, Component):
# All component instructions must be viable uops
if not part.instr.is_viable_uop():
# This note just reminds us about macros that cannot
# be expanded to Tier 2 uops. It is not an error.
# It is sometimes emitted for macros that have a
# manual translation in translate_bytecode_to_trace()
# in Python/optimizer.c.
self.note(
f"Part {part.instr.name} of {name} is not a viable uop",
part.instr.inst,
)
return
if not part.active_caches:
if part.instr.name == "SAVE_IP":
size, offset = OPARG_SIZES["OPARG_SAVE_IP"], cache_offset
else:
size, offset = OPARG_SIZES["OPARG_FULL"], 0
else:
# If this assert triggers, is_viable_uops() lied
assert len(part.active_caches) == 1, (name, part.instr.name)
cache = part.active_caches[0]
size, offset = cache.effect.size, cache.offset
expansions.append((part.instr.name, size, offset))
assert len(expansions) > 0, f"Macro {name} has empty expansion?!"
self.write_expansions(name, expansions)
def write_super_expansions(self, name: str) -> None:
"""Write special macro expansions for super-instructions.
If you get an assertion failure here, you probably have accidentally
violated one of the assumptions here.
- A super-instruction's name is of the form FIRST_SECOND where
FIRST and SECOND are regular instructions whose name has the
form FOO_BAR. Thus, there must be exactly 3 underscores.
Example: LOAD_CONST_STORE_FAST.
- A super-instruction's body uses `oparg1 and `oparg2`, and no
other instruction's body uses those variable names.
- A super-instruction has no active (used) cache entries.
In the expansion, the first instruction's operand is all but the
bottom 4 bits of the super-instruction's oparg, and the second
instruction's operand is the bottom 4 bits. We use the special
size codes OPARG_TOP and OPARG_BOTTOM for these.
"""
pieces = name.split("_")
assert len(pieces) == 4, f"{name} doesn't look like a super-instr"
name1 = "_".join(pieces[:2])
name2 = "_".join(pieces[2:])
assert name1 in self.instrs, f"{name1} doesn't match any instr"
assert name2 in self.instrs, f"{name2} doesn't match any instr"
instr1 = self.instrs[name1]
instr2 = self.instrs[name2]
assert not instr1.active_caches, f"{name1} has active caches"
assert not instr2.active_caches, f"{name2} has active caches"
expansions: list[tuple[str, int, int]] = [
(name1, OPARG_SIZES["OPARG_TOP"], 0),
(name2, OPARG_SIZES["OPARG_BOTTOM"], 0),
]
self.write_expansions(name, expansions)
def write_expansions(
self, name: str, expansions: list[tuple[str, int, int]]
) -> None:
pieces = [
f"{{ {name}, {size}, {offset} }}" for name, size, offset in expansions
]
self.out.emit(
f"[{name}] = "
f"{{ .nuops = {len(pieces)}, .uops = {{ {', '.join(pieces)} }} }},"
)
def emit_metadata_entry(self, name: str, fmt: str, flags: InstructionFlags) -> None:
flag_names = flags.names(value=True)
if not flag_names:
flag_names.append("0")
self.out.emit(
f"[{name}] = {{ true, {INSTR_FMT_PREFIX}{fmt},"
f" {' | '.join(flag_names)} }},"
)
def write_metadata_for_inst(self, instr: Instruction) -> None:
"""Write metadata for a single instruction."""
self.emit_metadata_entry(instr.name, instr.instr_fmt, instr.instr_flags)
def write_metadata_for_macro(self, mac: MacroInstruction) -> None:
"""Write metadata for a macro-instruction."""
self.emit_metadata_entry(mac.name, mac.instr_fmt, mac.instr_flags)
def write_metadata_for_pseudo(self, ps: PseudoInstruction) -> None:
"""Write metadata for a macro-instruction."""
self.emit_metadata_entry(ps.name, ps.instr_fmt, ps.instr_flags)
def write_instructions(
self, output_filename: str, emit_line_directives: bool
) -> None:
"""Write instructions to output file."""
with open(output_filename, "w") as f:
# Create formatter
self.out = Formatter(f, 8, emit_line_directives)
self.write_provenance_header()
# Write and count instructions of all kinds
n_instrs = 0
n_macros = 0
for thing in self.everything:
match thing:
case OverriddenInstructionPlaceHolder():
self.write_overridden_instr_place_holder(thing)
case parsing.InstDef():
if thing.kind != "op":
n_instrs += 1
self.write_instr(self.instrs[thing.name])
case parsing.Macro():
n_macros += 1
mac = self.macro_instrs[thing.name]
stacking.write_macro_instr(
mac, self.out, self.families.get(mac.name)
)
# self.write_macro(self.macro_instrs[thing.name])
case parsing.Pseudo():
pass
case _:
assert_never(thing)
print(
f"Wrote {n_instrs} instructions and {n_macros} macros "
f"to {output_filename}",
file=sys.stderr,
)
def write_executor_instructions(
self, executor_filename: str, emit_line_directives: bool
) -> None:
"""Generate cases for the Tier 2 interpreter."""
n_instrs = 0
n_uops = 0
with open(executor_filename, "w") as f:
self.out = Formatter(f, 8, emit_line_directives)
self.write_provenance_header()
for thing in self.everything:
match thing:
case OverriddenInstructionPlaceHolder():
# TODO: Is this helpful?
self.write_overridden_instr_place_holder(thing)
case parsing.InstDef():
instr = self.instrs[thing.name]
if instr.is_viable_uop():
if instr.kind == "op":
n_uops += 1
else:
n_instrs += 1
self.out.emit("")
with self.out.block(f"case {thing.name}:"):
stacking.write_single_instr(
instr, self.out, tier=TIER_TWO
)
if instr.check_eval_breaker:
self.out.emit("CHECK_EVAL_BREAKER();")
self.out.emit("break;")
# elif instr.kind != "op":
# print(f"NOTE: {thing.name} is not a viable uop")
case parsing.Macro():
pass
case parsing.Pseudo():
pass
case _:
assert_never(thing)
print(
f"Wrote {n_instrs} instructions and {n_uops} ops to {executor_filename}",
file=sys.stderr,
)
def write_abstract_interpreter_instructions(
self, abstract_interpreter_filename: str, emit_line_directives: bool
) -> None:
"""Generate cases for the Tier 2 abstract interpreter/analzyer."""
with open(abstract_interpreter_filename, "w") as f:
self.out = Formatter(f, 8, emit_line_directives)
self.write_provenance_header()
for thing in self.everything:
match thing:
case OverriddenInstructionPlaceHolder():
pass
case parsing.InstDef():
instr = AbstractInstruction(self.instrs[thing.name].inst)
if (
instr.is_viable_uop()
and instr.name not in SPECIALLY_HANDLED_ABSTRACT_INSTR
):
self.out.emit("")
with self.out.block(f"case {thing.name}:"):
instr.write(self.out, tier=TIER_TWO)
self.out.emit("break;")
case parsing.Macro():
pass
case parsing.Pseudo():
pass
case _:
assert_never(thing)
print(
f"Wrote some stuff to {abstract_interpreter_filename}",
file=sys.stderr,
)
def write_overridden_instr_place_holder(
self, place_holder: OverriddenInstructionPlaceHolder
) -> None:
self.out.emit("")
self.out.emit(
f"{self.out.comment} TARGET({place_holder.name}) overridden by later definition"
)
def write_instr(self, instr: Instruction) -> None:
name = instr.name
self.out.emit("")
if instr.inst.override:
self.out.emit("{self.out.comment} Override")
with self.out.block(f"TARGET({name})"):
if instr.predicted:
self.out.emit(f"PREDICTED({name});")
self.out.static_assert_family_size(
instr.name, instr.family, instr.cache_offset
)
stacking.write_single_instr(instr, self.out, tier=TIER_ONE)
if not instr.always_exits:
if instr.cache_offset:
self.out.emit(f"next_instr += {instr.cache_offset};")
if instr.check_eval_breaker:
self.out.emit("CHECK_EVAL_BREAKER();")
self.out.emit(f"DISPATCH();")
def main() -> None:
"""Parse command line, parse input, analyze, write output."""
args = arg_parser.parse_args() # Prints message and sys.exit(2) on error
if len(args.input) == 0:
args.input.append(DEFAULT_INPUT)
# Raises OSError if input unreadable
a = Generator(args.input)
a.parse() # Raises SyntaxError on failure
a.analyze() # Prints messages and sets a.errors on failure
if a.errors:
sys.exit(f"Found {a.errors} errors")
# These raise OSError if output can't be written
a.write_instructions(args.output, args.emit_line_directives)
a.assign_opcode_ids()
a.write_opcode_ids(args.opcode_ids_h, args.opcode_targets_h)
a.write_metadata(args.metadata, args.pymetadata)
a.write_executor_instructions(args.executor_cases, args.emit_line_directives)
a.write_abstract_interpreter_instructions(
args.abstract_interpreter_cases, args.emit_line_directives
)
if __name__ == "__main__":
main()