mirror of https://github.com/python/cpython
536 lines
19 KiB
Python
Executable File
536 lines
19 KiB
Python
Executable File
# Originally contributed by Sjoerd Mullender.
|
|
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
|
|
|
|
"""Fraction, infinite-precision, real numbers."""
|
|
|
|
import math
|
|
import numbers
|
|
import operator
|
|
import re
|
|
|
|
__all__ = ["Fraction"]
|
|
|
|
|
|
|
|
def gcd(a, b):
|
|
"""Calculate the Greatest Common Divisor of a and b.
|
|
|
|
Unless b==0, the result will have the same sign as b (so that when
|
|
b is divided by it, the result comes out positive).
|
|
"""
|
|
while b:
|
|
a, b = b, a%b
|
|
return a
|
|
|
|
|
|
_RATIONAL_FORMAT = re.compile(r"""
|
|
\A\s* # optional whitespace at the start, then
|
|
(?P<sign>[-+]?) # an optional sign, then
|
|
(?=\d|\.\d) # lookahead for digit or .digit
|
|
(?P<num>\d*) # numerator (possibly empty)
|
|
(?: # followed by an optional
|
|
/(?P<denom>\d+) # / and denominator
|
|
| # or
|
|
\.(?P<decimal>\d*) # decimal point and fractional part
|
|
)?
|
|
\s*\Z # and optional whitespace to finish
|
|
""", re.VERBOSE)
|
|
|
|
|
|
class Fraction(numbers.Rational):
|
|
"""This class implements rational numbers.
|
|
|
|
Fraction(8, 6) will produce a rational number equivalent to
|
|
4/3. Both arguments must be Integral. The numerator defaults to 0
|
|
and the denominator defaults to 1 so that Fraction(3) == 3 and
|
|
Fraction() == 0.
|
|
|
|
Fraction can also be constructed from strings of the form
|
|
'[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces.
|
|
|
|
"""
|
|
|
|
__slots__ = ('_numerator', '_denominator')
|
|
|
|
# We're immutable, so use __new__ not __init__
|
|
def __new__(cls, numerator=0, denominator=1):
|
|
"""Constructs a Rational.
|
|
|
|
Takes a string like '3/2' or '1.5', another Rational, or a
|
|
numerator/denominator pair.
|
|
|
|
"""
|
|
self = super(Fraction, cls).__new__(cls)
|
|
|
|
if denominator == 1:
|
|
if isinstance(numerator, str):
|
|
# Handle construction from strings.
|
|
input = numerator
|
|
m = _RATIONAL_FORMAT.match(input)
|
|
if m is None:
|
|
raise ValueError('Invalid literal for Fraction: ' + input)
|
|
numerator = m.group('num')
|
|
decimal = m.group('decimal')
|
|
if decimal:
|
|
# The literal is a decimal number.
|
|
numerator = int(numerator + decimal)
|
|
denominator = 10**len(decimal)
|
|
else:
|
|
# The literal is an integer or fraction.
|
|
numerator = int(numerator)
|
|
# Default denominator to 1.
|
|
denominator = int(m.group('denom') or 1)
|
|
|
|
if m.group('sign') == '-':
|
|
numerator = -numerator
|
|
|
|
elif (not isinstance(numerator, numbers.Integral) and
|
|
isinstance(numerator, numbers.Rational)):
|
|
# Handle copies from other rationals.
|
|
other_rational = numerator
|
|
numerator = other_rational.numerator
|
|
denominator = other_rational.denominator
|
|
|
|
if (not isinstance(numerator, numbers.Integral) or
|
|
not isinstance(denominator, numbers.Integral)):
|
|
raise TypeError("Fraction(%(numerator)s, %(denominator)s):"
|
|
" Both arguments must be integral." % locals())
|
|
|
|
if denominator == 0:
|
|
raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
|
|
|
|
g = gcd(numerator, denominator)
|
|
self._numerator = int(numerator // g)
|
|
self._denominator = int(denominator // g)
|
|
return self
|
|
|
|
@classmethod
|
|
def from_float(cls, f):
|
|
"""Converts a finite float to a rational number, exactly.
|
|
|
|
Beware that Fraction.from_float(0.3) != Fraction(3, 10).
|
|
|
|
"""
|
|
if not isinstance(f, float):
|
|
raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
|
|
(cls.__name__, f, type(f).__name__))
|
|
if math.isnan(f) or math.isinf(f):
|
|
raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
|
|
return cls(*f.as_integer_ratio())
|
|
|
|
@classmethod
|
|
def from_decimal(cls, dec):
|
|
"""Converts a finite Decimal instance to a rational number, exactly."""
|
|
from decimal import Decimal
|
|
if not isinstance(dec, Decimal):
|
|
raise TypeError(
|
|
"%s.from_decimal() only takes Decimals, not %r (%s)" %
|
|
(cls.__name__, dec, type(dec).__name__))
|
|
if not dec.is_finite():
|
|
# Catches infinities and nans.
|
|
raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__))
|
|
sign, digits, exp = dec.as_tuple()
|
|
digits = int(''.join(map(str, digits)))
|
|
if sign:
|
|
digits = -digits
|
|
if exp >= 0:
|
|
return cls(digits * 10 ** exp)
|
|
else:
|
|
return cls(digits, 10 ** -exp)
|
|
|
|
@classmethod
|
|
def from_continued_fraction(cls, seq):
|
|
'Build a Fraction from a continued fraction expessed as a sequence'
|
|
n, d = 1, 0
|
|
for e in reversed(seq):
|
|
n, d = d, n
|
|
n += e * d
|
|
return cls(n, d) if seq else cls(0)
|
|
|
|
def as_continued_fraction(self):
|
|
'Return continued fraction expressed as a list'
|
|
n = self.numerator
|
|
d = self.denominator
|
|
cf = []
|
|
while d:
|
|
e = int(n // d)
|
|
cf.append(e)
|
|
n -= e * d
|
|
n, d = d, n
|
|
return cf
|
|
|
|
def approximate(self, max_denominator):
|
|
'Best rational approximation with a denominator <= max_denominator'
|
|
# XXX First cut at algorithm
|
|
# Still needs rounding rules as specified at
|
|
# http://en.wikipedia.org/wiki/Continued_fraction
|
|
if self.denominator <= max_denominator:
|
|
return self
|
|
cf = self.as_continued_fraction()
|
|
result = Fraction(0)
|
|
for i in range(1, len(cf)):
|
|
new = self.from_continued_fraction(cf[:i])
|
|
if new.denominator > max_denominator:
|
|
break
|
|
result = new
|
|
return result
|
|
|
|
@property
|
|
def numerator(a):
|
|
return a._numerator
|
|
|
|
@property
|
|
def denominator(a):
|
|
return a._denominator
|
|
|
|
def __repr__(self):
|
|
"""repr(self)"""
|
|
return ('Fraction(%r,%r)' % (self.numerator, self.denominator))
|
|
|
|
def __str__(self):
|
|
"""str(self)"""
|
|
if self.denominator == 1:
|
|
return str(self.numerator)
|
|
else:
|
|
return '%s/%s' % (self.numerator, self.denominator)
|
|
|
|
def _operator_fallbacks(monomorphic_operator, fallback_operator):
|
|
"""Generates forward and reverse operators given a purely-rational
|
|
operator and a function from the operator module.
|
|
|
|
Use this like:
|
|
__op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
|
|
|
|
In general, we want to implement the arithmetic operations so
|
|
that mixed-mode operations either call an implementation whose
|
|
author knew about the types of both arguments, or convert both
|
|
to the nearest built in type and do the operation there. In
|
|
Fraction, that means that we define __add__ and __radd__ as:
|
|
|
|
def __add__(self, other):
|
|
# Both types have numerators/denominator attributes,
|
|
# so do the operation directly
|
|
if isinstance(other, (int, Fraction)):
|
|
return Fraction(self.numerator * other.denominator +
|
|
other.numerator * self.denominator,
|
|
self.denominator * other.denominator)
|
|
# float and complex don't have those operations, but we
|
|
# know about those types, so special case them.
|
|
elif isinstance(other, float):
|
|
return float(self) + other
|
|
elif isinstance(other, complex):
|
|
return complex(self) + other
|
|
# Let the other type take over.
|
|
return NotImplemented
|
|
|
|
def __radd__(self, other):
|
|
# radd handles more types than add because there's
|
|
# nothing left to fall back to.
|
|
if isinstance(other, numbers.Rational):
|
|
return Fraction(self.numerator * other.denominator +
|
|
other.numerator * self.denominator,
|
|
self.denominator * other.denominator)
|
|
elif isinstance(other, Real):
|
|
return float(other) + float(self)
|
|
elif isinstance(other, Complex):
|
|
return complex(other) + complex(self)
|
|
return NotImplemented
|
|
|
|
|
|
There are 5 different cases for a mixed-type addition on
|
|
Fraction. I'll refer to all of the above code that doesn't
|
|
refer to Fraction, float, or complex as "boilerplate". 'r'
|
|
will be an instance of Fraction, which is a subtype of
|
|
Rational (r : Fraction <: Rational), and b : B <:
|
|
Complex. The first three involve 'r + b':
|
|
|
|
1. If B <: Fraction, int, float, or complex, we handle
|
|
that specially, and all is well.
|
|
2. If Fraction falls back to the boilerplate code, and it
|
|
were to return a value from __add__, we'd miss the
|
|
possibility that B defines a more intelligent __radd__,
|
|
so the boilerplate should return NotImplemented from
|
|
__add__. In particular, we don't handle Rational
|
|
here, even though we could get an exact answer, in case
|
|
the other type wants to do something special.
|
|
3. If B <: Fraction, Python tries B.__radd__ before
|
|
Fraction.__add__. This is ok, because it was
|
|
implemented with knowledge of Fraction, so it can
|
|
handle those instances before delegating to Real or
|
|
Complex.
|
|
|
|
The next two situations describe 'b + r'. We assume that b
|
|
didn't know about Fraction in its implementation, and that it
|
|
uses similar boilerplate code:
|
|
|
|
4. If B <: Rational, then __radd_ converts both to the
|
|
builtin rational type (hey look, that's us) and
|
|
proceeds.
|
|
5. Otherwise, __radd__ tries to find the nearest common
|
|
base ABC, and fall back to its builtin type. Since this
|
|
class doesn't subclass a concrete type, there's no
|
|
implementation to fall back to, so we need to try as
|
|
hard as possible to return an actual value, or the user
|
|
will get a TypeError.
|
|
|
|
"""
|
|
def forward(a, b):
|
|
if isinstance(b, (int, Fraction)):
|
|
return monomorphic_operator(a, b)
|
|
elif isinstance(b, float):
|
|
return fallback_operator(float(a), b)
|
|
elif isinstance(b, complex):
|
|
return fallback_operator(complex(a), b)
|
|
else:
|
|
return NotImplemented
|
|
forward.__name__ = '__' + fallback_operator.__name__ + '__'
|
|
forward.__doc__ = monomorphic_operator.__doc__
|
|
|
|
def reverse(b, a):
|
|
if isinstance(a, numbers.Rational):
|
|
# Includes ints.
|
|
return monomorphic_operator(a, b)
|
|
elif isinstance(a, numbers.Real):
|
|
return fallback_operator(float(a), float(b))
|
|
elif isinstance(a, numbers.Complex):
|
|
return fallback_operator(complex(a), complex(b))
|
|
else:
|
|
return NotImplemented
|
|
reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
|
|
reverse.__doc__ = monomorphic_operator.__doc__
|
|
|
|
return forward, reverse
|
|
|
|
def _add(a, b):
|
|
"""a + b"""
|
|
return Fraction(a.numerator * b.denominator +
|
|
b.numerator * a.denominator,
|
|
a.denominator * b.denominator)
|
|
|
|
__add__, __radd__ = _operator_fallbacks(_add, operator.add)
|
|
|
|
def _sub(a, b):
|
|
"""a - b"""
|
|
return Fraction(a.numerator * b.denominator -
|
|
b.numerator * a.denominator,
|
|
a.denominator * b.denominator)
|
|
|
|
__sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
|
|
|
|
def _mul(a, b):
|
|
"""a * b"""
|
|
return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)
|
|
|
|
__mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
|
|
|
|
def _div(a, b):
|
|
"""a / b"""
|
|
return Fraction(a.numerator * b.denominator,
|
|
a.denominator * b.numerator)
|
|
|
|
__truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
|
|
|
|
def __floordiv__(a, b):
|
|
"""a // b"""
|
|
return math.floor(a / b)
|
|
|
|
def __rfloordiv__(b, a):
|
|
"""a // b"""
|
|
return math.floor(a / b)
|
|
|
|
def __mod__(a, b):
|
|
"""a % b"""
|
|
div = a // b
|
|
return a - b * div
|
|
|
|
def __rmod__(b, a):
|
|
"""a % b"""
|
|
div = a // b
|
|
return a - b * div
|
|
|
|
def __pow__(a, b):
|
|
"""a ** b
|
|
|
|
If b is not an integer, the result will be a float or complex
|
|
since roots are generally irrational. If b is an integer, the
|
|
result will be rational.
|
|
|
|
"""
|
|
if isinstance(b, numbers.Rational):
|
|
if b.denominator == 1:
|
|
power = b.numerator
|
|
if power >= 0:
|
|
return Fraction(a.numerator ** power,
|
|
a.denominator ** power)
|
|
else:
|
|
return Fraction(a.denominator ** -power,
|
|
a.numerator ** -power)
|
|
else:
|
|
# A fractional power will generally produce an
|
|
# irrational number.
|
|
return float(a) ** float(b)
|
|
else:
|
|
return float(a) ** b
|
|
|
|
def __rpow__(b, a):
|
|
"""a ** b"""
|
|
if b.denominator == 1 and b.numerator >= 0:
|
|
# If a is an int, keep it that way if possible.
|
|
return a ** b.numerator
|
|
|
|
if isinstance(a, numbers.Rational):
|
|
return Fraction(a.numerator, a.denominator) ** b
|
|
|
|
if b.denominator == 1:
|
|
return a ** b.numerator
|
|
|
|
return a ** float(b)
|
|
|
|
def __pos__(a):
|
|
"""+a: Coerces a subclass instance to Fraction"""
|
|
return Fraction(a.numerator, a.denominator)
|
|
|
|
def __neg__(a):
|
|
"""-a"""
|
|
return Fraction(-a.numerator, a.denominator)
|
|
|
|
def __abs__(a):
|
|
"""abs(a)"""
|
|
return Fraction(abs(a.numerator), a.denominator)
|
|
|
|
def __trunc__(a):
|
|
"""trunc(a)"""
|
|
if a.numerator < 0:
|
|
return -(-a.numerator // a.denominator)
|
|
else:
|
|
return a.numerator // a.denominator
|
|
|
|
def __floor__(a):
|
|
"""Will be math.floor(a) in 3.0."""
|
|
return a.numerator // a.denominator
|
|
|
|
def __ceil__(a):
|
|
"""Will be math.ceil(a) in 3.0."""
|
|
# The negations cleverly convince floordiv to return the ceiling.
|
|
return -(-a.numerator // a.denominator)
|
|
|
|
def __round__(self, ndigits=None):
|
|
"""Will be round(self, ndigits) in 3.0.
|
|
|
|
Rounds half toward even.
|
|
"""
|
|
if ndigits is None:
|
|
floor, remainder = divmod(self.numerator, self.denominator)
|
|
if remainder * 2 < self.denominator:
|
|
return floor
|
|
elif remainder * 2 > self.denominator:
|
|
return floor + 1
|
|
# Deal with the half case:
|
|
elif floor % 2 == 0:
|
|
return floor
|
|
else:
|
|
return floor + 1
|
|
shift = 10**abs(ndigits)
|
|
# See _operator_fallbacks.forward to check that the results of
|
|
# these operations will always be Fraction and therefore have
|
|
# round().
|
|
if ndigits > 0:
|
|
return Fraction(round(self * shift), shift)
|
|
else:
|
|
return Fraction(round(self / shift) * shift)
|
|
|
|
def __hash__(self):
|
|
"""hash(self)
|
|
|
|
Tricky because values that are exactly representable as a
|
|
float must have the same hash as that float.
|
|
|
|
"""
|
|
# XXX since this method is expensive, consider caching the result
|
|
if self.denominator == 1:
|
|
# Get integers right.
|
|
return hash(self.numerator)
|
|
# Expensive check, but definitely correct.
|
|
if self == float(self):
|
|
return hash(float(self))
|
|
else:
|
|
# Use tuple's hash to avoid a high collision rate on
|
|
# simple fractions.
|
|
return hash((self.numerator, self.denominator))
|
|
|
|
def __eq__(a, b):
|
|
"""a == b"""
|
|
if isinstance(b, numbers.Rational):
|
|
return (a.numerator == b.numerator and
|
|
a.denominator == b.denominator)
|
|
if isinstance(b, numbers.Complex) and b.imag == 0:
|
|
b = b.real
|
|
if isinstance(b, float):
|
|
return a == a.from_float(b)
|
|
else:
|
|
# XXX: If b.__eq__ is implemented like this method, it may
|
|
# give the wrong answer after float(a) changes a's
|
|
# value. Better ways of doing this are welcome.
|
|
return float(a) == b
|
|
|
|
def _subtractAndCompareToZero(a, b, op):
|
|
"""Helper function for comparison operators.
|
|
|
|
Subtracts b from a, exactly if possible, and compares the
|
|
result with 0 using op, in such a way that the comparison
|
|
won't recurse. If the difference raises a TypeError, returns
|
|
NotImplemented instead.
|
|
|
|
"""
|
|
if isinstance(b, numbers.Complex) and b.imag == 0:
|
|
b = b.real
|
|
if isinstance(b, float):
|
|
b = a.from_float(b)
|
|
try:
|
|
# XXX: If b <: Real but not <: Rational, this is likely
|
|
# to fall back to a float. If the actual values differ by
|
|
# less than MIN_FLOAT, this could falsely call them equal,
|
|
# which would make <= inconsistent with ==. Better ways of
|
|
# doing this are welcome.
|
|
diff = a - b
|
|
except TypeError:
|
|
return NotImplemented
|
|
if isinstance(diff, numbers.Rational):
|
|
return op(diff.numerator, 0)
|
|
return op(diff, 0)
|
|
|
|
def __lt__(a, b):
|
|
"""a < b"""
|
|
return a._subtractAndCompareToZero(b, operator.lt)
|
|
|
|
def __gt__(a, b):
|
|
"""a > b"""
|
|
return a._subtractAndCompareToZero(b, operator.gt)
|
|
|
|
def __le__(a, b):
|
|
"""a <= b"""
|
|
return a._subtractAndCompareToZero(b, operator.le)
|
|
|
|
def __ge__(a, b):
|
|
"""a >= b"""
|
|
return a._subtractAndCompareToZero(b, operator.ge)
|
|
|
|
def __bool__(a):
|
|
"""a != 0"""
|
|
return a.numerator != 0
|
|
|
|
# support for pickling, copy, and deepcopy
|
|
|
|
def __reduce__(self):
|
|
return (self.__class__, (str(self),))
|
|
|
|
def __copy__(self):
|
|
if type(self) == Fraction:
|
|
return self # I'm immutable; therefore I am my own clone
|
|
return self.__class__(self.numerator, self.denominator)
|
|
|
|
def __deepcopy__(self, memo):
|
|
if type(self) == Fraction:
|
|
return self # My components are also immutable
|
|
return self.__class__(self.numerator, self.denominator)
|