#include "Python.h" #include "pycore_time.h" // PyTime_t #include // gmtime_r() #ifdef HAVE_SYS_TIME_H # include // gettimeofday() #endif #ifdef MS_WINDOWS # include // struct timeval #endif #if defined(__APPLE__) # include // mach_absolute_time(), mach_timebase_info() #if defined(__APPLE__) && defined(__has_builtin) # if __has_builtin(__builtin_available) # define HAVE_CLOCK_GETTIME_RUNTIME __builtin_available(macOS 10.12, iOS 10.0, tvOS 10.0, watchOS 3.0, *) # endif #endif #endif /* To millisecond (10^-3) */ #define SEC_TO_MS 1000 /* To microseconds (10^-6) */ #define MS_TO_US 1000 #define SEC_TO_US (SEC_TO_MS * MS_TO_US) /* To nanoseconds (10^-9) */ #define US_TO_NS 1000 #define MS_TO_NS (MS_TO_US * US_TO_NS) #define SEC_TO_NS (SEC_TO_MS * MS_TO_NS) /* Conversion from nanoseconds */ #define NS_TO_MS (1000 * 1000) #define NS_TO_US (1000) #define NS_TO_100NS (100) #if SIZEOF_TIME_T == SIZEOF_LONG_LONG # define PY_TIME_T_MAX LLONG_MAX # define PY_TIME_T_MIN LLONG_MIN #elif SIZEOF_TIME_T == SIZEOF_LONG # define PY_TIME_T_MAX LONG_MAX # define PY_TIME_T_MIN LONG_MIN #else # error "unsupported time_t size" #endif #if PY_TIME_T_MAX + PY_TIME_T_MIN != -1 # error "time_t is not a two's complement integer type" #endif #if PyTime_MIN + PyTime_MAX != -1 # error "PyTime_t is not a two's complement integer type" #endif #ifdef MS_WINDOWS static _PyTimeFraction py_qpc_base = {0, 0}; // Forward declaration static int py_win_perf_counter_frequency(_PyTimeFraction *base, int raise_exc); #endif static PyTime_t _PyTime_GCD(PyTime_t x, PyTime_t y) { // Euclidean algorithm assert(x >= 1); assert(y >= 1); while (y != 0) { PyTime_t tmp = y; y = x % y; x = tmp; } assert(x >= 1); return x; } int _PyTimeFraction_Set(_PyTimeFraction *frac, PyTime_t numer, PyTime_t denom) { if (numer < 1 || denom < 1) { return -1; } PyTime_t gcd = _PyTime_GCD(numer, denom); frac->numer = numer / gcd; frac->denom = denom / gcd; return 0; } double _PyTimeFraction_Resolution(const _PyTimeFraction *frac) { return (double)frac->numer / (double)frac->denom / 1e9; } static void pytime_time_t_overflow(void) { PyErr_SetString(PyExc_OverflowError, "timestamp out of range for platform time_t"); } static void pytime_overflow(void) { PyErr_SetString(PyExc_OverflowError, "timestamp too large to convert to C PyTime_t"); } // Compute t1 + t2. Clamp to [PyTime_MIN; PyTime_MAX] on overflow. static inline int pytime_add(PyTime_t *t1, PyTime_t t2) { if (t2 > 0 && *t1 > PyTime_MAX - t2) { *t1 = PyTime_MAX; return -1; } else if (t2 < 0 && *t1 < PyTime_MIN - t2) { *t1 = PyTime_MIN; return -1; } else { *t1 += t2; return 0; } } PyTime_t _PyTime_Add(PyTime_t t1, PyTime_t t2) { (void)pytime_add(&t1, t2); return t1; } static inline int pytime_mul_check_overflow(PyTime_t a, PyTime_t b) { if (b != 0) { assert(b > 0); return ((a < PyTime_MIN / b) || (PyTime_MAX / b < a)); } else { return 0; } } // Compute t * k. Clamp to [PyTime_MIN; PyTime_MAX] on overflow. static inline int pytime_mul(PyTime_t *t, PyTime_t k) { assert(k >= 0); if (pytime_mul_check_overflow(*t, k)) { *t = (*t >= 0) ? PyTime_MAX : PyTime_MIN; return -1; } else { *t *= k; return 0; } } // Compute t * k. Clamp to [PyTime_MIN; PyTime_MAX] on overflow. static inline PyTime_t _PyTime_Mul(PyTime_t t, PyTime_t k) { (void)pytime_mul(&t, k); return t; } PyTime_t _PyTimeFraction_Mul(PyTime_t ticks, const _PyTimeFraction *frac) { const PyTime_t mul = frac->numer; const PyTime_t div = frac->denom; if (div == 1) { // Fast-path taken by mach_absolute_time() with 1/1 time base. return _PyTime_Mul(ticks, mul); } /* Compute (ticks * mul / div) in two parts to reduce the risk of integer overflow: compute the integer part, and then the remaining part. (ticks * mul) / div == (ticks / div) * mul + (ticks % div) * mul / div */ PyTime_t intpart, remaining; intpart = ticks / div; ticks %= div; remaining = _PyTime_Mul(ticks, mul) / div; // intpart * mul + remaining return _PyTime_Add(_PyTime_Mul(intpart, mul), remaining); } time_t _PyLong_AsTime_t(PyObject *obj) { #if SIZEOF_TIME_T == SIZEOF_LONG_LONG long long val = PyLong_AsLongLong(obj); #elif SIZEOF_TIME_T <= SIZEOF_LONG long val = PyLong_AsLong(obj); #else # error "unsupported time_t size" #endif if (val == -1 && PyErr_Occurred()) { if (PyErr_ExceptionMatches(PyExc_OverflowError)) { pytime_time_t_overflow(); } return -1; } return (time_t)val; } PyObject * _PyLong_FromTime_t(time_t t) { #if SIZEOF_TIME_T == SIZEOF_LONG_LONG return PyLong_FromLongLong((long long)t); #elif SIZEOF_TIME_T <= SIZEOF_LONG return PyLong_FromLong((long)t); #else # error "unsupported time_t size" #endif } // Convert PyTime_t to time_t. // Return 0 on success. Return -1 and clamp the value on overflow. static int _PyTime_AsTime_t(PyTime_t t, time_t *t2) { #if SIZEOF_TIME_T < _SIZEOF_PYTIME_T if ((PyTime_t)PY_TIME_T_MAX < t) { *t2 = PY_TIME_T_MAX; return -1; } if (t < (PyTime_t)PY_TIME_T_MIN) { *t2 = PY_TIME_T_MIN; return -1; } #endif *t2 = (time_t)t; return 0; } #ifdef MS_WINDOWS // Convert PyTime_t to long. // Return 0 on success. Return -1 and clamp the value on overflow. static int _PyTime_AsCLong(PyTime_t t, long *t2) { #if SIZEOF_LONG < _SIZEOF_PYTIME_T if ((PyTime_t)LONG_MAX < t) { *t2 = LONG_MAX; return -1; } if (t < (PyTime_t)LONG_MIN) { *t2 = LONG_MIN; return -1; } #endif *t2 = (long)t; return 0; } #endif /* Round to nearest with ties going to nearest even integer (_PyTime_ROUND_HALF_EVEN) */ static double pytime_round_half_even(double x) { double rounded = round(x); if (fabs(x-rounded) == 0.5) { /* halfway case: round to even */ rounded = 2.0 * round(x / 2.0); } return rounded; } static double pytime_round(double x, _PyTime_round_t round) { /* volatile avoids optimization changing how numbers are rounded */ volatile double d; d = x; if (round == _PyTime_ROUND_HALF_EVEN) { d = pytime_round_half_even(d); } else if (round == _PyTime_ROUND_CEILING) { d = ceil(d); } else if (round == _PyTime_ROUND_FLOOR) { d = floor(d); } else { assert(round == _PyTime_ROUND_UP); d = (d >= 0.0) ? ceil(d) : floor(d); } return d; } static int pytime_double_to_denominator(double d, time_t *sec, long *numerator, long idenominator, _PyTime_round_t round) { double denominator = (double)idenominator; double intpart; /* volatile avoids optimization changing how numbers are rounded */ volatile double floatpart; floatpart = modf(d, &intpart); floatpart *= denominator; floatpart = pytime_round(floatpart, round); if (floatpart >= denominator) { floatpart -= denominator; intpart += 1.0; } else if (floatpart < 0) { floatpart += denominator; intpart -= 1.0; } assert(0.0 <= floatpart && floatpart < denominator); /* Conversion of an out-of-range value to time_t gives undefined behaviour (C99 ยง6.3.1.4p1), so we must guard against it. However, checking that `intpart` is in range is delicate: the obvious expression `intpart <= PY_TIME_T_MAX` will first convert the value `PY_TIME_T_MAX` to a double, potentially changing its value and leading to us failing to catch some UB-inducing values. The code below works correctly under the mild assumption that time_t is a two's complement integer type with no trap representation, and that `PY_TIME_T_MIN` is within the representable range of a C double. Note: we want the `if` condition below to be true for NaNs; therefore, resist any temptation to simplify by applying De Morgan's laws. */ if (!((double)PY_TIME_T_MIN <= intpart && intpart < -(double)PY_TIME_T_MIN)) { pytime_time_t_overflow(); return -1; } *sec = (time_t)intpart; *numerator = (long)floatpart; assert(0 <= *numerator && *numerator < idenominator); return 0; } static int pytime_object_to_denominator(PyObject *obj, time_t *sec, long *numerator, long denominator, _PyTime_round_t round) { assert(denominator >= 1); if (PyFloat_Check(obj)) { double d = PyFloat_AsDouble(obj); if (isnan(d)) { *numerator = 0; PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); return -1; } return pytime_double_to_denominator(d, sec, numerator, denominator, round); } else { *sec = _PyLong_AsTime_t(obj); *numerator = 0; if (*sec == (time_t)-1 && PyErr_Occurred()) { if (PyErr_ExceptionMatches(PyExc_TypeError)) { PyErr_Format(PyExc_TypeError, "argument must be int or float, not %T", obj); } return -1; } return 0; } } int _PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round) { if (PyFloat_Check(obj)) { double intpart; /* volatile avoids optimization changing how numbers are rounded */ volatile double d; d = PyFloat_AsDouble(obj); if (isnan(d)) { PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); return -1; } d = pytime_round(d, round); (void)modf(d, &intpart); /* See comments in pytime_double_to_denominator */ if (!((double)PY_TIME_T_MIN <= intpart && intpart < -(double)PY_TIME_T_MIN)) { pytime_time_t_overflow(); return -1; } *sec = (time_t)intpart; return 0; } else { *sec = _PyLong_AsTime_t(obj); if (*sec == (time_t)-1 && PyErr_Occurred()) { return -1; } return 0; } } int _PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec, _PyTime_round_t round) { return pytime_object_to_denominator(obj, sec, nsec, SEC_TO_NS, round); } int _PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec, _PyTime_round_t round) { return pytime_object_to_denominator(obj, sec, usec, SEC_TO_US, round); } PyTime_t _PyTime_FromSeconds(int seconds) { /* ensure that integer overflow cannot happen, int type should have 32 bits, whereas PyTime_t type has at least 64 bits (SEC_TO_NS takes 30 bits). */ static_assert(INT_MAX <= PyTime_MAX / SEC_TO_NS, "PyTime_t overflow"); static_assert(INT_MIN >= PyTime_MIN / SEC_TO_NS, "PyTime_t underflow"); PyTime_t t = (PyTime_t)seconds; assert((t >= 0 && t <= PyTime_MAX / SEC_TO_NS) || (t < 0 && t >= PyTime_MIN / SEC_TO_NS)); t *= SEC_TO_NS; return t; } PyTime_t _PyTime_FromMicrosecondsClamp(PyTime_t us) { PyTime_t ns = _PyTime_Mul(us, US_TO_NS); return ns; } int _PyTime_FromLong(PyTime_t *tp, PyObject *obj) { if (!PyLong_Check(obj)) { PyErr_Format(PyExc_TypeError, "expect int, got %s", Py_TYPE(obj)->tp_name); return -1; } static_assert(sizeof(long long) == sizeof(PyTime_t), "PyTime_t is not long long"); long long nsec = PyLong_AsLongLong(obj); if (nsec == -1 && PyErr_Occurred()) { if (PyErr_ExceptionMatches(PyExc_OverflowError)) { pytime_overflow(); } return -1; } PyTime_t t = (PyTime_t)nsec; *tp = t; return 0; } #ifdef HAVE_CLOCK_GETTIME static int pytime_fromtimespec(PyTime_t *tp, const struct timespec *ts, int raise_exc) { PyTime_t t, tv_nsec; static_assert(sizeof(ts->tv_sec) <= sizeof(PyTime_t), "timespec.tv_sec is larger than PyTime_t"); t = (PyTime_t)ts->tv_sec; int res1 = pytime_mul(&t, SEC_TO_NS); tv_nsec = ts->tv_nsec; int res2 = pytime_add(&t, tv_nsec); *tp = t; if (raise_exc && (res1 < 0 || res2 < 0)) { pytime_overflow(); return -1; } return 0; } int _PyTime_FromTimespec(PyTime_t *tp, const struct timespec *ts) { return pytime_fromtimespec(tp, ts, 1); } #endif #ifndef MS_WINDOWS static int pytime_fromtimeval(PyTime_t *tp, struct timeval *tv, int raise_exc) { static_assert(sizeof(tv->tv_sec) <= sizeof(PyTime_t), "timeval.tv_sec is larger than PyTime_t"); PyTime_t t = (PyTime_t)tv->tv_sec; int res1 = pytime_mul(&t, SEC_TO_NS); PyTime_t usec = (PyTime_t)tv->tv_usec * US_TO_NS; int res2 = pytime_add(&t, usec); *tp = t; if (raise_exc && (res1 < 0 || res2 < 0)) { pytime_overflow(); return -1; } return 0; } int _PyTime_FromTimeval(PyTime_t *tp, struct timeval *tv) { return pytime_fromtimeval(tp, tv, 1); } #endif static int pytime_from_double(PyTime_t *tp, double value, _PyTime_round_t round, long unit_to_ns) { /* volatile avoids optimization changing how numbers are rounded */ volatile double d; /* convert to a number of nanoseconds */ d = value; d *= (double)unit_to_ns; d = pytime_round(d, round); /* See comments in pytime_double_to_denominator */ if (!((double)PyTime_MIN <= d && d < -(double)PyTime_MIN)) { pytime_time_t_overflow(); *tp = 0; return -1; } PyTime_t ns = (PyTime_t)d; *tp = ns; return 0; } static int pytime_from_object(PyTime_t *tp, PyObject *obj, _PyTime_round_t round, long unit_to_ns) { if (PyFloat_Check(obj)) { double d; d = PyFloat_AsDouble(obj); if (isnan(d)) { PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); return -1; } return pytime_from_double(tp, d, round, unit_to_ns); } else { long long sec = PyLong_AsLongLong(obj); if (sec == -1 && PyErr_Occurred()) { if (PyErr_ExceptionMatches(PyExc_OverflowError)) { pytime_overflow(); } return -1; } static_assert(sizeof(long long) <= sizeof(PyTime_t), "PyTime_t is smaller than long long"); PyTime_t ns = (PyTime_t)sec; if (pytime_mul(&ns, unit_to_ns) < 0) { pytime_overflow(); return -1; } *tp = ns; return 0; } } int _PyTime_FromSecondsObject(PyTime_t *tp, PyObject *obj, _PyTime_round_t round) { return pytime_from_object(tp, obj, round, SEC_TO_NS); } int _PyTime_FromMillisecondsObject(PyTime_t *tp, PyObject *obj, _PyTime_round_t round) { return pytime_from_object(tp, obj, round, MS_TO_NS); } double PyTime_AsSecondsDouble(PyTime_t ns) { /* volatile avoids optimization changing how numbers are rounded */ volatile double d; if (ns % SEC_TO_NS == 0) { /* Divide using integers to avoid rounding issues on the integer part. 1e-9 cannot be stored exactly in IEEE 64-bit. */ PyTime_t secs = ns / SEC_TO_NS; d = (double)secs; } else { d = (double)ns; d /= 1e9; } return d; } PyObject * _PyTime_AsLong(PyTime_t ns) { static_assert(sizeof(long long) >= sizeof(PyTime_t), "PyTime_t is larger than long long"); return PyLong_FromLongLong((long long)ns); } int _PyTime_FromSecondsDouble(double seconds, _PyTime_round_t round, PyTime_t *result) { return pytime_from_double(result, seconds, round, SEC_TO_NS); } static PyTime_t pytime_divide_round_up(const PyTime_t t, const PyTime_t k) { assert(k > 1); if (t >= 0) { // Don't use (t + k - 1) / k to avoid integer overflow // if t is equal to PyTime_MAX PyTime_t q = t / k; if (t % k) { q += 1; } return q; } else { // Don't use (t - (k - 1)) / k to avoid integer overflow // if t is equals to PyTime_MIN. PyTime_t q = t / k; if (t % k) { q -= 1; } return q; } } static PyTime_t pytime_divide(const PyTime_t t, const PyTime_t k, const _PyTime_round_t round) { assert(k > 1); if (round == _PyTime_ROUND_HALF_EVEN) { PyTime_t x = t / k; PyTime_t r = t % k; PyTime_t abs_r = Py_ABS(r); if (abs_r > k / 2 || (abs_r == k / 2 && (Py_ABS(x) & 1))) { if (t >= 0) { x++; } else { x--; } } return x; } else if (round == _PyTime_ROUND_CEILING) { if (t >= 0) { return pytime_divide_round_up(t, k); } else { return t / k; } } else if (round == _PyTime_ROUND_FLOOR){ if (t >= 0) { return t / k; } else { return pytime_divide_round_up(t, k); } } else { assert(round == _PyTime_ROUND_UP); return pytime_divide_round_up(t, k); } } // Compute (t / k, t % k) in (pq, pr). // Make sure that 0 <= pr < k. // Return 0 on success. // Return -1 on underflow and store (PyTime_MIN, 0) in (pq, pr). static int pytime_divmod(const PyTime_t t, const PyTime_t k, PyTime_t *pq, PyTime_t *pr) { assert(k > 1); PyTime_t q = t / k; PyTime_t r = t % k; if (r < 0) { if (q == PyTime_MIN) { *pq = PyTime_MIN; *pr = 0; return -1; } r += k; q -= 1; } assert(0 <= r && r < k); *pq = q; *pr = r; return 0; } #ifdef MS_WINDOWS PyTime_t _PyTime_As100Nanoseconds(PyTime_t ns, _PyTime_round_t round) { return pytime_divide(ns, NS_TO_100NS, round); } #endif PyTime_t _PyTime_AsMicroseconds(PyTime_t ns, _PyTime_round_t round) { return pytime_divide(ns, NS_TO_US, round); } PyTime_t _PyTime_AsMilliseconds(PyTime_t ns, _PyTime_round_t round) { return pytime_divide(ns, NS_TO_MS, round); } static int pytime_as_timeval(PyTime_t ns, PyTime_t *ptv_sec, int *ptv_usec, _PyTime_round_t round) { PyTime_t us = pytime_divide(ns, US_TO_NS, round); PyTime_t tv_sec, tv_usec; int res = pytime_divmod(us, SEC_TO_US, &tv_sec, &tv_usec); *ptv_sec = tv_sec; *ptv_usec = (int)tv_usec; return res; } static int pytime_as_timeval_struct(PyTime_t t, struct timeval *tv, _PyTime_round_t round, int raise_exc) { PyTime_t tv_sec; int tv_usec; int res = pytime_as_timeval(t, &tv_sec, &tv_usec, round); int res2; #ifdef MS_WINDOWS // On Windows, timeval.tv_sec type is long res2 = _PyTime_AsCLong(tv_sec, &tv->tv_sec); #else res2 = _PyTime_AsTime_t(tv_sec, &tv->tv_sec); #endif if (res2 < 0) { tv_usec = 0; } tv->tv_usec = tv_usec; if (raise_exc && (res < 0 || res2 < 0)) { pytime_time_t_overflow(); return -1; } return 0; } int _PyTime_AsTimeval(PyTime_t t, struct timeval *tv, _PyTime_round_t round) { return pytime_as_timeval_struct(t, tv, round, 1); } void _PyTime_AsTimeval_clamp(PyTime_t t, struct timeval *tv, _PyTime_round_t round) { (void)pytime_as_timeval_struct(t, tv, round, 0); } int _PyTime_AsTimevalTime_t(PyTime_t t, time_t *p_secs, int *us, _PyTime_round_t round) { PyTime_t secs; if (pytime_as_timeval(t, &secs, us, round) < 0) { pytime_time_t_overflow(); return -1; } if (_PyTime_AsTime_t(secs, p_secs) < 0) { pytime_time_t_overflow(); return -1; } return 0; } #if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE) static int pytime_as_timespec(PyTime_t ns, struct timespec *ts, int raise_exc) { PyTime_t tv_sec, tv_nsec; int res = pytime_divmod(ns, SEC_TO_NS, &tv_sec, &tv_nsec); int res2 = _PyTime_AsTime_t(tv_sec, &ts->tv_sec); if (res2 < 0) { tv_nsec = 0; } ts->tv_nsec = tv_nsec; if (raise_exc && (res < 0 || res2 < 0)) { pytime_time_t_overflow(); return -1; } return 0; } void _PyTime_AsTimespec_clamp(PyTime_t t, struct timespec *ts) { (void)pytime_as_timespec(t, ts, 0); } int _PyTime_AsTimespec(PyTime_t t, struct timespec *ts) { return pytime_as_timespec(t, ts, 1); } #endif // N.B. If raise_exc=0, this may be called without the GIL. static int py_get_system_clock(PyTime_t *tp, _Py_clock_info_t *info, int raise_exc) { assert(info == NULL || raise_exc); if (raise_exc) { // raise_exc requires to hold the GIL assert(PyGILState_Check()); } #ifdef MS_WINDOWS FILETIME system_time; ULARGE_INTEGER large; GetSystemTimePreciseAsFileTime(&system_time); large.u.LowPart = system_time.dwLowDateTime; large.u.HighPart = system_time.dwHighDateTime; /* 11,644,473,600,000,000,000: number of nanoseconds between the 1st january 1601 and the 1st january 1970 (369 years + 89 leap days). */ PyTime_t ns = large.QuadPart * 100 - 11644473600000000000; *tp = ns; if (info) { // GetSystemTimePreciseAsFileTime() is implemented using // QueryPerformanceCounter() internally. if (py_qpc_base.denom == 0) { if (py_win_perf_counter_frequency(&py_qpc_base, raise_exc) < 0) { return -1; } } info->implementation = "GetSystemTimePreciseAsFileTime()"; info->monotonic = 0; info->resolution = _PyTimeFraction_Resolution(&py_qpc_base); info->adjustable = 1; } #else /* MS_WINDOWS */ int err; #if defined(HAVE_CLOCK_GETTIME) struct timespec ts; #endif #if !defined(HAVE_CLOCK_GETTIME) || defined(__APPLE__) struct timeval tv; #endif #ifdef HAVE_CLOCK_GETTIME #ifdef HAVE_CLOCK_GETTIME_RUNTIME if (HAVE_CLOCK_GETTIME_RUNTIME) { #endif err = clock_gettime(CLOCK_REALTIME, &ts); if (err) { if (raise_exc) { PyErr_SetFromErrno(PyExc_OSError); } return -1; } if (pytime_fromtimespec(tp, &ts, raise_exc) < 0) { return -1; } if (info) { struct timespec res; info->implementation = "clock_gettime(CLOCK_REALTIME)"; info->monotonic = 0; info->adjustable = 1; if (clock_getres(CLOCK_REALTIME, &res) == 0) { info->resolution = (double)res.tv_sec + (double)res.tv_nsec * 1e-9; } else { info->resolution = 1e-9; } } #ifdef HAVE_CLOCK_GETTIME_RUNTIME } else { #endif #endif #if !defined(HAVE_CLOCK_GETTIME) || defined(HAVE_CLOCK_GETTIME_RUNTIME) /* test gettimeofday() */ err = gettimeofday(&tv, (struct timezone *)NULL); if (err) { if (raise_exc) { PyErr_SetFromErrno(PyExc_OSError); } return -1; } if (pytime_fromtimeval(tp, &tv, raise_exc) < 0) { return -1; } if (info) { info->implementation = "gettimeofday()"; info->resolution = 1e-6; info->monotonic = 0; info->adjustable = 1; } #if defined(HAVE_CLOCK_GETTIME_RUNTIME) && defined(HAVE_CLOCK_GETTIME) } /* end of availability block */ #endif #endif /* !HAVE_CLOCK_GETTIME */ #endif /* !MS_WINDOWS */ return 0; } int PyTime_Time(PyTime_t *result) { if (py_get_system_clock(result, NULL, 1) < 0) { *result = 0; return -1; } return 0; } int PyTime_TimeRaw(PyTime_t *result) { if (py_get_system_clock(result, NULL, 0) < 0) { *result = 0; return -1; } return 0; } int _PyTime_TimeWithInfo(PyTime_t *t, _Py_clock_info_t *info) { return py_get_system_clock(t, info, 1); } #ifdef MS_WINDOWS static int py_win_perf_counter_frequency(_PyTimeFraction *base, int raise_exc) { LARGE_INTEGER freq; // Since Windows XP, the function cannot fail. (void)QueryPerformanceFrequency(&freq); LONGLONG frequency = freq.QuadPart; // Since Windows XP, frequency cannot be zero. assert(frequency >= 1); Py_BUILD_ASSERT(sizeof(PyTime_t) == sizeof(frequency)); PyTime_t denom = (PyTime_t)frequency; // Known QueryPerformanceFrequency() values: // // * 10,000,000 (10 MHz): 100 ns resolution // * 3,579,545 Hz (3.6 MHz): 279 ns resolution if (_PyTimeFraction_Set(base, SEC_TO_NS, denom) < 0) { if (raise_exc) { PyErr_SetString(PyExc_RuntimeError, "invalid QueryPerformanceFrequency"); } return -1; } return 0; } // N.B. If raise_exc=0, this may be called without the GIL. static int py_get_win_perf_counter(PyTime_t *tp, _Py_clock_info_t *info, int raise_exc) { assert(info == NULL || raise_exc); if (py_qpc_base.denom == 0) { if (py_win_perf_counter_frequency(&py_qpc_base, raise_exc) < 0) { return -1; } } if (info) { info->implementation = "QueryPerformanceCounter()"; info->resolution = _PyTimeFraction_Resolution(&py_qpc_base); info->monotonic = 1; info->adjustable = 0; } LARGE_INTEGER now; QueryPerformanceCounter(&now); LONGLONG ticksll = now.QuadPart; /* Make sure that casting LONGLONG to PyTime_t cannot overflow, both types are signed */ PyTime_t ticks; static_assert(sizeof(ticksll) <= sizeof(ticks), "LONGLONG is larger than PyTime_t"); ticks = (PyTime_t)ticksll; *tp = _PyTimeFraction_Mul(ticks, &py_qpc_base); return 0; } #endif // MS_WINDOWS #ifdef __APPLE__ static int py_mach_timebase_info(_PyTimeFraction *base, int raise_exc) { mach_timebase_info_data_t timebase; // According to the Technical Q&A QA1398, mach_timebase_info() cannot // fail: https://developer.apple.com/library/mac/#qa/qa1398/ (void)mach_timebase_info(&timebase); // Check that timebase.numer and timebase.denom can be casted to // PyTime_t. In practice, timebase uses uint32_t, so casting cannot // overflow. At the end, only make sure that the type is uint32_t // (PyTime_t is 64-bit long). Py_BUILD_ASSERT(sizeof(timebase.numer) <= sizeof(PyTime_t)); Py_BUILD_ASSERT(sizeof(timebase.denom) <= sizeof(PyTime_t)); PyTime_t numer = (PyTime_t)timebase.numer; PyTime_t denom = (PyTime_t)timebase.denom; // Known time bases: // // * (1, 1) on Intel: 1 ns // * (1000000000, 33333335) on PowerPC: ~30 ns // * (1000000000, 25000000) on PowerPC: 40 ns if (_PyTimeFraction_Set(base, numer, denom) < 0) { if (raise_exc) { PyErr_SetString(PyExc_RuntimeError, "invalid mach_timebase_info"); } return -1; } return 0; } #endif // N.B. If raise_exc=0, this may be called without the GIL. static int py_get_monotonic_clock(PyTime_t *tp, _Py_clock_info_t *info, int raise_exc) { assert(info == NULL || raise_exc); if (raise_exc) { // raise_exc requires to hold the GIL assert(PyGILState_Check()); } #if defined(MS_WINDOWS) if (py_get_win_perf_counter(tp, info, raise_exc) < 0) { return -1; } #elif defined(__APPLE__) static _PyTimeFraction base = {0, 0}; if (base.denom == 0) { if (py_mach_timebase_info(&base, raise_exc) < 0) { return -1; } } if (info) { info->implementation = "mach_absolute_time()"; info->resolution = _PyTimeFraction_Resolution(&base); info->monotonic = 1; info->adjustable = 0; } uint64_t uticks = mach_absolute_time(); // unsigned => signed assert(uticks <= (uint64_t)PyTime_MAX); PyTime_t ticks = (PyTime_t)uticks; PyTime_t ns = _PyTimeFraction_Mul(ticks, &base); *tp = ns; #elif defined(__hpux) hrtime_t time = gethrtime(); if (time == -1) { if (raise_exc) { PyErr_SetFromErrno(PyExc_OSError); } return -1; } *tp = time; if (info) { info->implementation = "gethrtime()"; info->resolution = 1e-9; info->monotonic = 1; info->adjustable = 0; } #else #ifdef CLOCK_HIGHRES const clockid_t clk_id = CLOCK_HIGHRES; const char *implementation = "clock_gettime(CLOCK_HIGHRES)"; #else const clockid_t clk_id = CLOCK_MONOTONIC; const char *implementation = "clock_gettime(CLOCK_MONOTONIC)"; #endif struct timespec ts; if (clock_gettime(clk_id, &ts) != 0) { if (raise_exc) { PyErr_SetFromErrno(PyExc_OSError); return -1; } return -1; } if (pytime_fromtimespec(tp, &ts, raise_exc) < 0) { return -1; } if (info) { info->monotonic = 1; info->implementation = implementation; info->adjustable = 0; struct timespec res; if (clock_getres(clk_id, &res) != 0) { PyErr_SetFromErrno(PyExc_OSError); return -1; } info->resolution = res.tv_sec + res.tv_nsec * 1e-9; } #endif return 0; } int PyTime_Monotonic(PyTime_t *result) { if (py_get_monotonic_clock(result, NULL, 1) < 0) { *result = 0; return -1; } return 0; } int PyTime_MonotonicRaw(PyTime_t *result) { if (py_get_monotonic_clock(result, NULL, 0) < 0) { *result = 0; return -1; } return 0; } int _PyTime_MonotonicWithInfo(PyTime_t *tp, _Py_clock_info_t *info) { return py_get_monotonic_clock(tp, info, 1); } int _PyTime_PerfCounterWithInfo(PyTime_t *t, _Py_clock_info_t *info) { return _PyTime_MonotonicWithInfo(t, info); } int PyTime_PerfCounter(PyTime_t *result) { return PyTime_Monotonic(result); } int PyTime_PerfCounterRaw(PyTime_t *result) { return PyTime_MonotonicRaw(result); } int _PyTime_localtime(time_t t, struct tm *tm) { #ifdef MS_WINDOWS int error; error = localtime_s(tm, &t); if (error != 0) { errno = error; PyErr_SetFromErrno(PyExc_OSError); return -1; } return 0; #else /* !MS_WINDOWS */ #if defined(_AIX) && (SIZEOF_TIME_T < 8) /* bpo-34373: AIX does not return NULL if t is too small or too large */ if (t < -2145916800 /* 1902-01-01 */ || t > 2145916800 /* 2038-01-01 */) { errno = EINVAL; PyErr_SetString(PyExc_OverflowError, "localtime argument out of range"); return -1; } #endif errno = 0; if (localtime_r(&t, tm) == NULL) { if (errno == 0) { errno = EINVAL; } PyErr_SetFromErrno(PyExc_OSError); return -1; } return 0; #endif /* MS_WINDOWS */ } int _PyTime_gmtime(time_t t, struct tm *tm) { #ifdef MS_WINDOWS int error; error = gmtime_s(tm, &t); if (error != 0) { errno = error; PyErr_SetFromErrno(PyExc_OSError); return -1; } return 0; #else /* !MS_WINDOWS */ if (gmtime_r(&t, tm) == NULL) { #ifdef EINVAL if (errno == 0) { errno = EINVAL; } #endif PyErr_SetFromErrno(PyExc_OSError); return -1; } return 0; #endif /* MS_WINDOWS */ } PyTime_t _PyDeadline_Init(PyTime_t timeout) { PyTime_t now; // silently ignore error: cannot report error to the caller (void)PyTime_MonotonicRaw(&now); return _PyTime_Add(now, timeout); } PyTime_t _PyDeadline_Get(PyTime_t deadline) { PyTime_t now; // silently ignore error: cannot report error to the caller (void)PyTime_MonotonicRaw(&now); return deadline - now; }