/* Type object implementation */ #include "Python.h" #include "pycore_abstract.h" // _PySequence_IterSearch() #include "pycore_call.h" // _PyObject_VectorcallTstate() #include "pycore_code.h" // CO_FAST_FREE #include "pycore_dict.h" // _PyDict_KeysSize() #include "pycore_frame.h" // _PyInterpreterFrame #include "pycore_lock.h" // _PySeqLock_* #include "pycore_long.h" // _PyLong_IsNegative(), _PyLong_GetOne() #include "pycore_memoryobject.h" // _PyMemoryView_FromBufferProc() #include "pycore_modsupport.h" // _PyArg_NoKwnames() #include "pycore_moduleobject.h" // _PyModule_GetDef() #include "pycore_object.h" // _PyType_HasFeature() #include "pycore_object_alloc.h" // _PyObject_MallocWithType() #include "pycore_pyerrors.h" // _PyErr_Occurred() #include "pycore_pystate.h" // _PyThreadState_GET() #include "pycore_symtable.h" // _Py_Mangle() #include "pycore_typeobject.h" // struct type_cache #include "pycore_unionobject.h" // _Py_union_type_or #include "pycore_weakref.h" // _PyWeakref_GET_REF() #include "opcode.h" // MAKE_CELL #include // ptrdiff_t /*[clinic input] class type "PyTypeObject *" "&PyType_Type" class object "PyObject *" "&PyBaseObject_Type" [clinic start generated code]*/ /*[clinic end generated code: output=da39a3ee5e6b4b0d input=4b94608d231c434b]*/ #include "clinic/typeobject.c.h" /* Support type attribute lookup cache */ /* The cache can keep references to the names alive for longer than they normally would. This is why the maximum size is limited to MCACHE_MAX_ATTR_SIZE, since it might be a problem if very large strings are used as attribute names. */ #define MCACHE_MAX_ATTR_SIZE 100 #define MCACHE_HASH(version, name_hash) \ (((unsigned int)(version) ^ (unsigned int)(name_hash)) \ & ((1 << MCACHE_SIZE_EXP) - 1)) #define MCACHE_HASH_METHOD(type, name) \ MCACHE_HASH(FT_ATOMIC_LOAD_UINT32_RELAXED((type)->tp_version_tag), \ ((Py_ssize_t)(name)) >> 3) #define MCACHE_CACHEABLE_NAME(name) \ PyUnicode_CheckExact(name) && \ PyUnicode_IS_READY(name) && \ (PyUnicode_GET_LENGTH(name) <= MCACHE_MAX_ATTR_SIZE) #define NEXT_GLOBAL_VERSION_TAG _PyRuntime.types.next_version_tag #define NEXT_VERSION_TAG(interp) \ (interp)->types.next_version_tag #ifdef Py_GIL_DISABLED // There's a global lock for mutation of types. This avoids having to take // additional locks while doing various subclass processing which may result // in odd behaviors w.r.t. running with the GIL as the outer type lock could // be released and reacquired during a subclass update if there's contention // on the subclass lock. #define TYPE_LOCK &PyInterpreterState_Get()->types.mutex #define BEGIN_TYPE_LOCK() Py_BEGIN_CRITICAL_SECTION_MUT(TYPE_LOCK) #define END_TYPE_LOCK() Py_END_CRITICAL_SECTION() #define BEGIN_TYPE_DICT_LOCK(d) \ Py_BEGIN_CRITICAL_SECTION2_MUT(TYPE_LOCK, &_PyObject_CAST(d)->ob_mutex) #define END_TYPE_DICT_LOCK() Py_END_CRITICAL_SECTION2() #define ASSERT_TYPE_LOCK_HELD() \ _Py_CRITICAL_SECTION_ASSERT_MUTEX_LOCKED(TYPE_LOCK) #else #define BEGIN_TYPE_LOCK() #define END_TYPE_LOCK() #define BEGIN_TYPE_DICT_LOCK(d) #define END_TYPE_DICT_LOCK() #define ASSERT_TYPE_LOCK_HELD() #endif typedef struct PySlot_Offset { short subslot_offset; short slot_offset; } PySlot_Offset; static void slot_bf_releasebuffer(PyObject *self, Py_buffer *buffer); static void releasebuffer_call_python(PyObject *self, Py_buffer *buffer); static PyObject * slot_tp_new(PyTypeObject *type, PyObject *args, PyObject *kwds); static PyObject * lookup_maybe_method(PyObject *self, PyObject *attr, int *unbound); static int slot_tp_setattro(PyObject *self, PyObject *name, PyObject *value); static inline PyTypeObject * type_from_ref(PyObject *ref) { PyObject *obj = _PyWeakref_GET_REF(ref); if (obj == NULL) { return NULL; } return _PyType_CAST(obj); } /* helpers for for static builtin types */ #ifndef NDEBUG static inline int managed_static_type_index_is_set(PyTypeObject *self) { return self->tp_subclasses != NULL; } #endif static inline size_t managed_static_type_index_get(PyTypeObject *self) { assert(managed_static_type_index_is_set(self)); /* We store a 1-based index so 0 can mean "not initialized". */ return (size_t)self->tp_subclasses - 1; } static inline void managed_static_type_index_set(PyTypeObject *self, size_t index) { assert(index < _Py_MAX_MANAGED_STATIC_BUILTIN_TYPES); /* We store a 1-based index so 0 can mean "not initialized". */ self->tp_subclasses = (PyObject *)(index + 1); } static inline void managed_static_type_index_clear(PyTypeObject *self) { self->tp_subclasses = NULL; } static PyTypeObject * static_ext_type_lookup(PyInterpreterState *interp, size_t index, int64_t *p_interp_count) { assert(interp->runtime == &_PyRuntime); assert(index < _Py_MAX_MANAGED_STATIC_EXT_TYPES); size_t full_index = index + _Py_MAX_MANAGED_STATIC_BUILTIN_TYPES; int64_t interp_count = _PyRuntime.types.managed_static.types[full_index].interp_count; assert((interp_count == 0) == (_PyRuntime.types.managed_static.types[full_index].type == NULL)); *p_interp_count = interp_count; PyTypeObject *type = interp->types.for_extensions.initialized[index].type; if (type == NULL) { return NULL; } assert(!interp->types.for_extensions.initialized[index].isbuiltin); assert(type == _PyRuntime.types.managed_static.types[full_index].type); assert(managed_static_type_index_is_set(type)); return type; } static managed_static_type_state * managed_static_type_state_get(PyInterpreterState *interp, PyTypeObject *self) { // It's probably a builtin type. size_t index = managed_static_type_index_get(self); managed_static_type_state *state = &(interp->types.builtins.initialized[index]); if (state->type == self) { return state; } if (index > _Py_MAX_MANAGED_STATIC_EXT_TYPES) { return state; } return &(interp->types.for_extensions.initialized[index]); } /* For static types we store some state in an array on each interpreter. */ managed_static_type_state * _PyStaticType_GetState(PyInterpreterState *interp, PyTypeObject *self) { assert(self->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN); return managed_static_type_state_get(interp, self); } /* Set the type's per-interpreter state. */ static void managed_static_type_state_init(PyInterpreterState *interp, PyTypeObject *self, int isbuiltin, int initial) { assert(interp->runtime == &_PyRuntime); size_t index; if (initial) { assert(!managed_static_type_index_is_set(self)); if (isbuiltin) { index = interp->types.builtins.num_initialized; assert(index < _Py_MAX_MANAGED_STATIC_BUILTIN_TYPES); } else { PyMutex_Lock(&interp->types.mutex); index = interp->types.for_extensions.next_index; interp->types.for_extensions.next_index++; PyMutex_Unlock(&interp->types.mutex); assert(index < _Py_MAX_MANAGED_STATIC_EXT_TYPES); } managed_static_type_index_set(self, index); } else { index = managed_static_type_index_get(self); if (isbuiltin) { assert(index == interp->types.builtins.num_initialized); assert(index < _Py_MAX_MANAGED_STATIC_BUILTIN_TYPES); } else { assert(index < _Py_MAX_MANAGED_STATIC_EXT_TYPES); } } size_t full_index = isbuiltin ? index : index + _Py_MAX_MANAGED_STATIC_BUILTIN_TYPES; assert((initial == 1) == (_PyRuntime.types.managed_static.types[full_index].interp_count == 0)); (void)_Py_atomic_add_int64( &_PyRuntime.types.managed_static.types[full_index].interp_count, 1); if (initial) { assert(_PyRuntime.types.managed_static.types[full_index].type == NULL); _PyRuntime.types.managed_static.types[full_index].type = self; } else { assert(_PyRuntime.types.managed_static.types[full_index].type == self); } managed_static_type_state *state = isbuiltin ? &(interp->types.builtins.initialized[index]) : &(interp->types.for_extensions.initialized[index]); /* It should only be called once for each builtin type per interpreter. */ assert(state->type == NULL); state->type = self; state->isbuiltin = isbuiltin; /* state->tp_subclasses is left NULL until init_subclasses() sets it. */ /* state->tp_weaklist is left NULL until insert_head() or insert_after() (in weakrefobject.c) sets it. */ if (isbuiltin) { interp->types.builtins.num_initialized++; } else { interp->types.for_extensions.num_initialized++; } } /* Reset the type's per-interpreter state. This basically undoes what managed_static_type_state_init() did. */ static void managed_static_type_state_clear(PyInterpreterState *interp, PyTypeObject *self, int isbuiltin, int final) { size_t index = managed_static_type_index_get(self); size_t full_index = isbuiltin ? index : index + _Py_MAX_MANAGED_STATIC_BUILTIN_TYPES; managed_static_type_state *state = isbuiltin ? &(interp->types.builtins.initialized[index]) : &(interp->types.for_extensions.initialized[index]); assert(state != NULL); assert(_PyRuntime.types.managed_static.types[full_index].interp_count > 0); assert(_PyRuntime.types.managed_static.types[full_index].type == state->type); assert(state->type != NULL); state->type = NULL; assert(state->tp_weaklist == NULL); // It was already cleared out. (void)_Py_atomic_add_int64( &_PyRuntime.types.managed_static.types[full_index].interp_count, -1); if (final) { assert(!_PyRuntime.types.managed_static.types[full_index].interp_count); _PyRuntime.types.managed_static.types[full_index].type = NULL; managed_static_type_index_clear(self); } if (isbuiltin) { assert(interp->types.builtins.num_initialized > 0); interp->types.builtins.num_initialized--; } else { PyMutex_Lock(&interp->types.mutex); assert(interp->types.for_extensions.num_initialized > 0); interp->types.for_extensions.num_initialized--; if (interp->types.for_extensions.num_initialized == 0) { interp->types.for_extensions.next_index = 0; } PyMutex_Unlock(&interp->types.mutex); } } PyObject * _PyStaticType_GetBuiltins(void) { PyInterpreterState *interp = _PyInterpreterState_GET(); Py_ssize_t count = (Py_ssize_t)interp->types.builtins.num_initialized; assert(count <= _Py_MAX_MANAGED_STATIC_BUILTIN_TYPES); PyObject *results = PyList_New(count); if (results == NULL) { return NULL; } for (Py_ssize_t i = 0; i < count; i++) { PyTypeObject *cls = interp->types.builtins.initialized[i].type; assert(cls != NULL); assert(interp->types.builtins.initialized[i].isbuiltin); PyList_SET_ITEM(results, i, Py_NewRef((PyObject *)cls)); } return results; } // Also see _PyStaticType_InitBuiltin() and _PyStaticType_FiniBuiltin(). /* end static builtin helpers */ static inline void start_readying(PyTypeObject *type) { if (type->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { PyInterpreterState *interp = _PyInterpreterState_GET(); managed_static_type_state *state = managed_static_type_state_get(interp, type); assert(state != NULL); assert(!state->readying); state->readying = 1; return; } assert((type->tp_flags & Py_TPFLAGS_READYING) == 0); type->tp_flags |= Py_TPFLAGS_READYING; } static inline void stop_readying(PyTypeObject *type) { if (type->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { PyInterpreterState *interp = _PyInterpreterState_GET(); managed_static_type_state *state = managed_static_type_state_get(interp, type); assert(state != NULL); assert(state->readying); state->readying = 0; return; } assert(type->tp_flags & Py_TPFLAGS_READYING); type->tp_flags &= ~Py_TPFLAGS_READYING; } static inline int is_readying(PyTypeObject *type) { if (type->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { PyInterpreterState *interp = _PyInterpreterState_GET(); managed_static_type_state *state = managed_static_type_state_get(interp, type); assert(state != NULL); return state->readying; } return (type->tp_flags & Py_TPFLAGS_READYING) != 0; } /* accessors for objects stored on PyTypeObject */ static inline PyObject * lookup_tp_dict(PyTypeObject *self) { if (self->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { PyInterpreterState *interp = _PyInterpreterState_GET(); managed_static_type_state *state = _PyStaticType_GetState(interp, self); assert(state != NULL); return state->tp_dict; } return self->tp_dict; } PyObject * _PyType_GetDict(PyTypeObject *self) { /* It returns a borrowed reference. */ return lookup_tp_dict(self); } PyObject * PyType_GetDict(PyTypeObject *self) { PyObject *dict = lookup_tp_dict(self); return _Py_XNewRef(dict); } static inline void set_tp_dict(PyTypeObject *self, PyObject *dict) { if (self->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { PyInterpreterState *interp = _PyInterpreterState_GET(); managed_static_type_state *state = _PyStaticType_GetState(interp, self); assert(state != NULL); state->tp_dict = dict; return; } self->tp_dict = dict; } static inline void clear_tp_dict(PyTypeObject *self) { if (self->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { PyInterpreterState *interp = _PyInterpreterState_GET(); managed_static_type_state *state = _PyStaticType_GetState(interp, self); assert(state != NULL); Py_CLEAR(state->tp_dict); return; } Py_CLEAR(self->tp_dict); } static inline PyObject * lookup_tp_bases(PyTypeObject *self) { return self->tp_bases; } PyObject * _PyType_GetBases(PyTypeObject *self) { PyObject *res; BEGIN_TYPE_LOCK(); res = lookup_tp_bases(self); Py_INCREF(res); END_TYPE_LOCK(); return res; } static inline void set_tp_bases(PyTypeObject *self, PyObject *bases, int initial) { assert(PyTuple_CheckExact(bases)); if (self->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { // XXX tp_bases can probably be statically allocated for each // static builtin type. assert(initial); assert(self->tp_bases == NULL); if (PyTuple_GET_SIZE(bases) == 0) { assert(self->tp_base == NULL); } else { assert(PyTuple_GET_SIZE(bases) == 1); assert(PyTuple_GET_ITEM(bases, 0) == (PyObject *)self->tp_base); assert(self->tp_base->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN); assert(_Py_IsImmortal(self->tp_base)); } _Py_SetImmortal(bases); } self->tp_bases = bases; } static inline void clear_tp_bases(PyTypeObject *self, int final) { if (self->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { if (final) { if (self->tp_bases != NULL) { if (PyTuple_GET_SIZE(self->tp_bases) == 0) { Py_CLEAR(self->tp_bases); } else { assert(_Py_IsImmortal(self->tp_bases)); _Py_ClearImmortal(self->tp_bases); } } } return; } Py_CLEAR(self->tp_bases); } static inline PyObject * lookup_tp_mro(PyTypeObject *self) { ASSERT_TYPE_LOCK_HELD(); return self->tp_mro; } PyObject * _PyType_GetMRO(PyTypeObject *self) { #ifdef Py_GIL_DISABLED PyObject *mro = _Py_atomic_load_ptr_relaxed(&self->tp_mro); if (mro == NULL) { return NULL; } if (_Py_TryIncrefCompare(&self->tp_mro, mro)) { return mro; } BEGIN_TYPE_LOCK(); mro = lookup_tp_mro(self); Py_XINCREF(mro); END_TYPE_LOCK(); return mro; #else return Py_XNewRef(lookup_tp_mro(self)); #endif } static inline void set_tp_mro(PyTypeObject *self, PyObject *mro, int initial) { assert(PyTuple_CheckExact(mro)); if (self->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { // XXX tp_mro can probably be statically allocated for each // static builtin type. assert(initial); assert(self->tp_mro == NULL); /* Other checks are done via set_tp_bases. */ _Py_SetImmortal(mro); } self->tp_mro = mro; } static inline void clear_tp_mro(PyTypeObject *self, int final) { if (self->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { if (final) { if (self->tp_mro != NULL) { if (PyTuple_GET_SIZE(self->tp_mro) == 0) { Py_CLEAR(self->tp_mro); } else { assert(_Py_IsImmortal(self->tp_mro)); _Py_ClearImmortal(self->tp_mro); } } } return; } Py_CLEAR(self->tp_mro); } static PyObject * init_tp_subclasses(PyTypeObject *self) { PyObject *subclasses = PyDict_New(); if (subclasses == NULL) { return NULL; } if (self->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { PyInterpreterState *interp = _PyInterpreterState_GET(); managed_static_type_state *state = _PyStaticType_GetState(interp, self); state->tp_subclasses = subclasses; return subclasses; } self->tp_subclasses = (void *)subclasses; return subclasses; } static void clear_tp_subclasses(PyTypeObject *self) { /* Delete the dictionary to save memory. _PyStaticType_Dealloc() callers also test if tp_subclasses is NULL to check if a static type has no subclass. */ if (self->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { PyInterpreterState *interp = _PyInterpreterState_GET(); managed_static_type_state *state = _PyStaticType_GetState(interp, self); Py_CLEAR(state->tp_subclasses); return; } Py_CLEAR(self->tp_subclasses); } static inline PyObject * lookup_tp_subclasses(PyTypeObject *self) { if (self->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { PyInterpreterState *interp = _PyInterpreterState_GET(); managed_static_type_state *state = _PyStaticType_GetState(interp, self); assert(state != NULL); return state->tp_subclasses; } return (PyObject *)self->tp_subclasses; } int _PyType_HasSubclasses(PyTypeObject *self) { PyInterpreterState *interp = _PyInterpreterState_GET(); if (self->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN // XXX _PyStaticType_GetState() should never return NULL. && _PyStaticType_GetState(interp, self) == NULL) { return 0; } if (lookup_tp_subclasses(self) == NULL) { return 0; } return 1; } PyObject* _PyType_GetSubclasses(PyTypeObject *self) { PyObject *list = PyList_New(0); if (list == NULL) { return NULL; } PyObject *subclasses = lookup_tp_subclasses(self); // borrowed ref if (subclasses == NULL) { return list; } assert(PyDict_CheckExact(subclasses)); // The loop cannot modify tp_subclasses, there is no need // to hold a strong reference (use a borrowed reference). Py_ssize_t i = 0; PyObject *ref; // borrowed ref while (PyDict_Next(subclasses, &i, NULL, &ref)) { PyTypeObject *subclass = type_from_ref(ref); if (subclass == NULL) { continue; } if (PyList_Append(list, _PyObject_CAST(subclass)) < 0) { Py_DECREF(list); Py_DECREF(subclass); return NULL; } Py_DECREF(subclass); } return list; } /* end accessors for objects stored on PyTypeObject */ /* * finds the beginning of the docstring's introspection signature. * if present, returns a pointer pointing to the first '('. * otherwise returns NULL. * * doesn't guarantee that the signature is valid, only that it * has a valid prefix. (the signature must also pass skip_signature.) */ static const char * find_signature(const char *name, const char *doc) { const char *dot; size_t length; if (!doc) return NULL; assert(name != NULL); /* for dotted names like classes, only use the last component */ dot = strrchr(name, '.'); if (dot) name = dot + 1; length = strlen(name); if (strncmp(doc, name, length)) return NULL; doc += length; if (*doc != '(') return NULL; return doc; } #define SIGNATURE_END_MARKER ")\n--\n\n" #define SIGNATURE_END_MARKER_LENGTH 6 /* * skips past the end of the docstring's introspection signature. * (assumes doc starts with a valid signature prefix.) */ static const char * skip_signature(const char *doc) { while (*doc) { if ((*doc == *SIGNATURE_END_MARKER) && !strncmp(doc, SIGNATURE_END_MARKER, SIGNATURE_END_MARKER_LENGTH)) return doc + SIGNATURE_END_MARKER_LENGTH; if ((*doc == '\n') && (doc[1] == '\n')) return NULL; doc++; } return NULL; } int _PyType_CheckConsistency(PyTypeObject *type) { #define CHECK(expr) \ do { if (!(expr)) { _PyObject_ASSERT_FAILED_MSG((PyObject *)type, Py_STRINGIFY(expr)); } } while (0) CHECK(!_PyObject_IsFreed((PyObject *)type)); if (!(type->tp_flags & Py_TPFLAGS_READY)) { /* don't check static types before PyType_Ready() */ return 1; } CHECK(Py_REFCNT(type) >= 1); CHECK(PyType_Check(type)); CHECK(!is_readying(type)); CHECK(lookup_tp_dict(type) != NULL); if (type->tp_flags & Py_TPFLAGS_HAVE_GC) { // bpo-44263: tp_traverse is required if Py_TPFLAGS_HAVE_GC is set. // Note: tp_clear is optional. CHECK(type->tp_traverse != NULL); } if (type->tp_flags & Py_TPFLAGS_DISALLOW_INSTANTIATION) { CHECK(type->tp_new == NULL); CHECK(PyDict_Contains(lookup_tp_dict(type), &_Py_ID(__new__)) == 0); } return 1; #undef CHECK } static const char * _PyType_DocWithoutSignature(const char *name, const char *internal_doc) { const char *doc = find_signature(name, internal_doc); if (doc) { doc = skip_signature(doc); if (doc) return doc; } return internal_doc; } PyObject * _PyType_GetDocFromInternalDoc(const char *name, const char *internal_doc) { const char *doc = _PyType_DocWithoutSignature(name, internal_doc); if (!doc || *doc == '\0') { Py_RETURN_NONE; } return PyUnicode_FromString(doc); } static const char * signature_from_flags(int flags) { switch (flags & ~METH_COEXIST) { case METH_NOARGS: return "($self, /)"; case METH_NOARGS|METH_CLASS: return "($type, /)"; case METH_NOARGS|METH_STATIC: return "()"; case METH_O: return "($self, object, /)"; case METH_O|METH_CLASS: return "($type, object, /)"; case METH_O|METH_STATIC: return "(object, /)"; default: return NULL; } } PyObject * _PyType_GetTextSignatureFromInternalDoc(const char *name, const char *internal_doc, int flags) { const char *start = find_signature(name, internal_doc); const char *end; if (start) end = skip_signature(start); else end = NULL; if (!end) { start = signature_from_flags(flags); if (start) { return PyUnicode_FromString(start); } Py_RETURN_NONE; } /* back "end" up until it points just past the final ')' */ end -= SIGNATURE_END_MARKER_LENGTH - 1; assert((end - start) >= 2); /* should be "()" at least */ assert(end[-1] == ')'); assert(end[0] == '\n'); return PyUnicode_FromStringAndSize(start, end - start); } static struct type_cache* get_type_cache(void) { PyInterpreterState *interp = _PyInterpreterState_GET(); return &interp->types.type_cache; } static void type_cache_clear(struct type_cache *cache, PyObject *value) { for (Py_ssize_t i = 0; i < (1 << MCACHE_SIZE_EXP); i++) { struct type_cache_entry *entry = &cache->hashtable[i]; #ifdef Py_GIL_DISABLED _PySeqLock_LockWrite(&entry->sequence); #endif entry->version = 0; Py_XSETREF(entry->name, _Py_XNewRef(value)); entry->value = NULL; #ifdef Py_GIL_DISABLED _PySeqLock_UnlockWrite(&entry->sequence); #endif } } void _PyType_InitCache(PyInterpreterState *interp) { struct type_cache *cache = &interp->types.type_cache; for (Py_ssize_t i = 0; i < (1 << MCACHE_SIZE_EXP); i++) { struct type_cache_entry *entry = &cache->hashtable[i]; assert(entry->name == NULL); entry->version = 0; // Set to None so _PyType_LookupRef() can use Py_SETREF(), // rather than using slower Py_XSETREF(). entry->name = Py_None; entry->value = NULL; } } static unsigned int _PyType_ClearCache(PyInterpreterState *interp) { struct type_cache *cache = &interp->types.type_cache; // Set to None, rather than NULL, so _PyType_LookupRef() can // use Py_SETREF() rather than using slower Py_XSETREF(). type_cache_clear(cache, Py_None); return NEXT_VERSION_TAG(interp) - 1; } unsigned int PyType_ClearCache(void) { PyInterpreterState *interp = _PyInterpreterState_GET(); return _PyType_ClearCache(interp); } void _PyTypes_Fini(PyInterpreterState *interp) { struct type_cache *cache = &interp->types.type_cache; type_cache_clear(cache, NULL); // All the managed static types should have been finalized already. assert(interp->types.for_extensions.num_initialized == 0); for (size_t i = 0; i < _Py_MAX_MANAGED_STATIC_EXT_TYPES; i++) { assert(interp->types.for_extensions.initialized[i].type == NULL); } assert(interp->types.builtins.num_initialized == 0); for (size_t i = 0; i < _Py_MAX_MANAGED_STATIC_BUILTIN_TYPES; i++) { assert(interp->types.builtins.initialized[i].type == NULL); } } int PyType_AddWatcher(PyType_WatchCallback callback) { PyInterpreterState *interp = _PyInterpreterState_GET(); // start at 1, 0 is reserved for cpython optimizer for (int i = 1; i < TYPE_MAX_WATCHERS; i++) { if (!interp->type_watchers[i]) { interp->type_watchers[i] = callback; return i; } } PyErr_SetString(PyExc_RuntimeError, "no more type watcher IDs available"); return -1; } static inline int validate_watcher_id(PyInterpreterState *interp, int watcher_id) { if (watcher_id < 0 || watcher_id >= TYPE_MAX_WATCHERS) { PyErr_Format(PyExc_ValueError, "Invalid type watcher ID %d", watcher_id); return -1; } if (!interp->type_watchers[watcher_id]) { PyErr_Format(PyExc_ValueError, "No type watcher set for ID %d", watcher_id); return -1; } return 0; } int PyType_ClearWatcher(int watcher_id) { PyInterpreterState *interp = _PyInterpreterState_GET(); if (validate_watcher_id(interp, watcher_id) < 0) { return -1; } interp->type_watchers[watcher_id] = NULL; return 0; } static int assign_version_tag(PyInterpreterState *interp, PyTypeObject *type); int PyType_Watch(int watcher_id, PyObject* obj) { if (!PyType_Check(obj)) { PyErr_SetString(PyExc_ValueError, "Cannot watch non-type"); return -1; } PyTypeObject *type = (PyTypeObject *)obj; PyInterpreterState *interp = _PyInterpreterState_GET(); if (validate_watcher_id(interp, watcher_id) < 0) { return -1; } // ensure we will get a callback on the next modification BEGIN_TYPE_LOCK(); assign_version_tag(interp, type); type->tp_watched |= (1 << watcher_id); END_TYPE_LOCK(); return 0; } int PyType_Unwatch(int watcher_id, PyObject* obj) { if (!PyType_Check(obj)) { PyErr_SetString(PyExc_ValueError, "Cannot watch non-type"); return -1; } PyTypeObject *type = (PyTypeObject *)obj; PyInterpreterState *interp = _PyInterpreterState_GET(); if (validate_watcher_id(interp, watcher_id)) { return -1; } type->tp_watched &= ~(1 << watcher_id); return 0; } static void set_version_unlocked(PyTypeObject *tp, unsigned int version) { ASSERT_TYPE_LOCK_HELD(); #ifndef Py_GIL_DISABLED PyInterpreterState *interp = _PyInterpreterState_GET(); // lookup the old version and set to null if (tp->tp_version_tag != 0) { PyTypeObject **slot = interp->types.type_version_cache + (tp->tp_version_tag % TYPE_VERSION_CACHE_SIZE); *slot = NULL; } if (version) { tp->tp_versions_used++; } #else if (version) { _Py_atomic_add_uint16(&tp->tp_versions_used, 1); } #endif FT_ATOMIC_STORE_UINT32_RELAXED(tp->tp_version_tag, version); #ifndef Py_GIL_DISABLED if (version != 0) { PyTypeObject **slot = interp->types.type_version_cache + (version % TYPE_VERSION_CACHE_SIZE); *slot = tp; } #endif } static void type_modified_unlocked(PyTypeObject *type) { /* Invalidate any cached data for the specified type and all subclasses. This function is called after the base classes, mro, or attributes of the type are altered. Invariants: - before tp_version_tag can be set on a type, it must first be set on all super types. This function clears the tp_version_tag of a type (so it must first clear it on all subclasses). The tp_version_tag value is meaningless when equal to zero. We don't assign new version tags eagerly, but only as needed. */ if (type->tp_version_tag == 0) { return; } // Cannot modify static builtin types. assert((type->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) == 0); PyObject *subclasses = lookup_tp_subclasses(type); if (subclasses != NULL) { assert(PyDict_CheckExact(subclasses)); Py_ssize_t i = 0; PyObject *ref; while (PyDict_Next(subclasses, &i, NULL, &ref)) { PyTypeObject *subclass = type_from_ref(ref); if (subclass == NULL) { continue; } type_modified_unlocked(subclass); Py_DECREF(subclass); } } // Notify registered type watchers, if any if (type->tp_watched) { PyInterpreterState *interp = _PyInterpreterState_GET(); int bits = type->tp_watched; int i = 0; while (bits) { assert(i < TYPE_MAX_WATCHERS); if (bits & 1) { PyType_WatchCallback cb = interp->type_watchers[i]; if (cb && (cb(type) < 0)) { PyErr_FormatUnraisable( "Exception ignored in type watcher callback #%d for %R", i, type); } } i++; bits >>= 1; } } set_version_unlocked(type, 0); /* 0 is not a valid version tag */ if (PyType_HasFeature(type, Py_TPFLAGS_HEAPTYPE)) { // This field *must* be invalidated if the type is modified (see the // comment on struct _specialization_cache): ((PyHeapTypeObject *)type)->_spec_cache.getitem = NULL; } } void PyType_Modified(PyTypeObject *type) { // Quick check without the lock held if (type->tp_version_tag == 0) { return; } BEGIN_TYPE_LOCK(); type_modified_unlocked(type); END_TYPE_LOCK(); } static int is_subtype_with_mro(PyObject *a_mro, PyTypeObject *a, PyTypeObject *b); static void type_mro_modified(PyTypeObject *type, PyObject *bases) { /* Check that all base classes or elements of the MRO of type are able to be cached. This function is called after the base classes or mro of the type are altered. Unset HAVE_VERSION_TAG and VALID_VERSION_TAG if the type has a custom MRO that includes a type which is not officially super type, or if the type implements its own mro() method. Called from mro_internal, which will subsequently be called on each subclass when their mro is recursively updated. */ Py_ssize_t i, n; int custom = !Py_IS_TYPE(type, &PyType_Type); int unbound; ASSERT_TYPE_LOCK_HELD(); if (custom) { PyObject *mro_meth, *type_mro_meth; mro_meth = lookup_maybe_method( (PyObject *)type, &_Py_ID(mro), &unbound); if (mro_meth == NULL) { goto clear; } type_mro_meth = lookup_maybe_method( (PyObject *)&PyType_Type, &_Py_ID(mro), &unbound); if (type_mro_meth == NULL) { Py_DECREF(mro_meth); goto clear; } int custom_mro = (mro_meth != type_mro_meth); Py_DECREF(mro_meth); Py_DECREF(type_mro_meth); if (custom_mro) { goto clear; } } n = PyTuple_GET_SIZE(bases); for (i = 0; i < n; i++) { PyObject *b = PyTuple_GET_ITEM(bases, i); PyTypeObject *cls = _PyType_CAST(b); if (!is_subtype_with_mro(lookup_tp_mro(type), type, cls)) { goto clear; } } return; clear: assert(!(type->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN)); set_version_unlocked(type, 0); /* 0 is not a valid version tag */ if (PyType_HasFeature(type, Py_TPFLAGS_HEAPTYPE)) { // This field *must* be invalidated if the type is modified (see the // comment on struct _specialization_cache): ((PyHeapTypeObject *)type)->_spec_cache.getitem = NULL; } } /* The Tier 2 interpreter requires looking up the type object by the type version, so it can install watchers to understand when they change. So we add a global cache from type version to borrowed references of type objects. This is similar to func_version_cache. */ void _PyType_SetVersion(PyTypeObject *tp, unsigned int version) { BEGIN_TYPE_LOCK(); set_version_unlocked(tp, version); END_TYPE_LOCK(); } PyTypeObject * _PyType_LookupByVersion(unsigned int version) { #ifdef Py_GIL_DISABLED return NULL; #else PyInterpreterState *interp = _PyInterpreterState_GET(); PyTypeObject **slot = interp->types.type_version_cache + (version % TYPE_VERSION_CACHE_SIZE); if (*slot && (*slot)->tp_version_tag == version) { return *slot; } return NULL; #endif } unsigned int _PyType_GetVersionForCurrentState(PyTypeObject *tp) { return tp->tp_version_tag; } #define MAX_VERSIONS_PER_CLASS 1000 static int assign_version_tag(PyInterpreterState *interp, PyTypeObject *type) { ASSERT_TYPE_LOCK_HELD(); /* Ensure that the tp_version_tag is valid. * To respect the invariant, this must first be done on all super classes. * Return 0 if this cannot be done, 1 if tp_version_tag is set. */ if (type->tp_version_tag != 0) { return 1; } if (!_PyType_HasFeature(type, Py_TPFLAGS_READY)) { return 0; } if (type->tp_versions_used >= MAX_VERSIONS_PER_CLASS) { return 0; } PyObject *bases = lookup_tp_bases(type); Py_ssize_t n = PyTuple_GET_SIZE(bases); for (Py_ssize_t i = 0; i < n; i++) { PyObject *b = PyTuple_GET_ITEM(bases, i); if (!assign_version_tag(interp, _PyType_CAST(b))) { return 0; } } if (type->tp_flags & Py_TPFLAGS_IMMUTABLETYPE) { /* static types */ if (NEXT_GLOBAL_VERSION_TAG > _Py_MAX_GLOBAL_TYPE_VERSION_TAG) { /* We have run out of version numbers */ return 0; } set_version_unlocked(type, NEXT_GLOBAL_VERSION_TAG++); assert (type->tp_version_tag <= _Py_MAX_GLOBAL_TYPE_VERSION_TAG); } else { /* heap types */ if (NEXT_VERSION_TAG(interp) == 0) { /* We have run out of version numbers */ return 0; } set_version_unlocked(type, NEXT_VERSION_TAG(interp)++); assert (type->tp_version_tag != 0); } return 1; } int PyUnstable_Type_AssignVersionTag(PyTypeObject *type) { PyInterpreterState *interp = _PyInterpreterState_GET(); int assigned; BEGIN_TYPE_LOCK(); assigned = assign_version_tag(interp, type); END_TYPE_LOCK(); return assigned; } static PyMemberDef type_members[] = { {"__basicsize__", Py_T_PYSSIZET, offsetof(PyTypeObject,tp_basicsize),Py_READONLY}, {"__itemsize__", Py_T_PYSSIZET, offsetof(PyTypeObject, tp_itemsize), Py_READONLY}, {"__flags__", Py_T_ULONG, offsetof(PyTypeObject, tp_flags), Py_READONLY}, /* Note that this value is misleading for static builtin types, since the memory at this offset will always be NULL. */ {"__weakrefoffset__", Py_T_PYSSIZET, offsetof(PyTypeObject, tp_weaklistoffset), Py_READONLY}, {"__base__", _Py_T_OBJECT, offsetof(PyTypeObject, tp_base), Py_READONLY}, {"__dictoffset__", Py_T_PYSSIZET, offsetof(PyTypeObject, tp_dictoffset), Py_READONLY}, {0} }; static int check_set_special_type_attr(PyTypeObject *type, PyObject *value, const char *name) { if (_PyType_HasFeature(type, Py_TPFLAGS_IMMUTABLETYPE)) { PyErr_Format(PyExc_TypeError, "cannot set '%s' attribute of immutable type '%s'", name, type->tp_name); return 0; } if (!value) { PyErr_Format(PyExc_TypeError, "cannot delete '%s' attribute of immutable type '%s'", name, type->tp_name); return 0; } if (PySys_Audit("object.__setattr__", "OsO", type, name, value) < 0) { return 0; } return 1; } const char * _PyType_Name(PyTypeObject *type) { assert(type->tp_name != NULL); const char *s = strrchr(type->tp_name, '.'); if (s == NULL) { s = type->tp_name; } else { s++; } return s; } static PyObject * type_name(PyTypeObject *type, void *context) { if (type->tp_flags & Py_TPFLAGS_HEAPTYPE) { PyHeapTypeObject* et = (PyHeapTypeObject*)type; return Py_NewRef(et->ht_name); } else { return PyUnicode_FromString(_PyType_Name(type)); } } static PyObject * type_qualname(PyTypeObject *type, void *context) { if (type->tp_flags & Py_TPFLAGS_HEAPTYPE) { PyHeapTypeObject* et = (PyHeapTypeObject*)type; return Py_NewRef(et->ht_qualname); } else { return PyUnicode_FromString(_PyType_Name(type)); } } static int type_set_name(PyTypeObject *type, PyObject *value, void *context) { const char *tp_name; Py_ssize_t name_size; if (!check_set_special_type_attr(type, value, "__name__")) return -1; if (!PyUnicode_Check(value)) { PyErr_Format(PyExc_TypeError, "can only assign string to %s.__name__, not '%s'", type->tp_name, Py_TYPE(value)->tp_name); return -1; } tp_name = PyUnicode_AsUTF8AndSize(value, &name_size); if (tp_name == NULL) return -1; if (strlen(tp_name) != (size_t)name_size) { PyErr_SetString(PyExc_ValueError, "type name must not contain null characters"); return -1; } type->tp_name = tp_name; Py_SETREF(((PyHeapTypeObject*)type)->ht_name, Py_NewRef(value)); return 0; } static int type_set_qualname(PyTypeObject *type, PyObject *value, void *context) { PyHeapTypeObject* et; if (!check_set_special_type_attr(type, value, "__qualname__")) return -1; if (!PyUnicode_Check(value)) { PyErr_Format(PyExc_TypeError, "can only assign string to %s.__qualname__, not '%s'", type->tp_name, Py_TYPE(value)->tp_name); return -1; } et = (PyHeapTypeObject*)type; Py_SETREF(et->ht_qualname, Py_NewRef(value)); return 0; } static PyObject * type_module(PyTypeObject *type) { PyObject *mod; if (type->tp_flags & Py_TPFLAGS_HEAPTYPE) { PyObject *dict = lookup_tp_dict(type); if (PyDict_GetItemRef(dict, &_Py_ID(__module__), &mod) == 0) { PyErr_Format(PyExc_AttributeError, "__module__"); } } else { const char *s = strrchr(type->tp_name, '.'); if (s != NULL) { mod = PyUnicode_FromStringAndSize( type->tp_name, (Py_ssize_t)(s - type->tp_name)); if (mod != NULL) { PyInterpreterState *interp = _PyInterpreterState_GET(); _PyUnicode_InternMortal(interp, &mod); } } else { mod = &_Py_ID(builtins); } } return mod; } static PyObject * type_get_module(PyTypeObject *type, void *context) { return type_module(type); } static int type_set_module(PyTypeObject *type, PyObject *value, void *context) { if (!check_set_special_type_attr(type, value, "__module__")) return -1; PyType_Modified(type); PyObject *dict = lookup_tp_dict(type); if (PyDict_Pop(dict, &_Py_ID(__firstlineno__), NULL) < 0) { return -1; } return PyDict_SetItem(dict, &_Py_ID(__module__), value); } PyObject * _PyType_GetFullyQualifiedName(PyTypeObject *type, char sep) { if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE)) { return PyUnicode_FromString(type->tp_name); } PyObject *qualname = type_qualname(type, NULL); if (qualname == NULL) { return NULL; } PyObject *module = type_module(type); if (module == NULL) { Py_DECREF(qualname); return NULL; } PyObject *result; if (PyUnicode_Check(module) && !_PyUnicode_Equal(module, &_Py_ID(builtins)) && !_PyUnicode_Equal(module, &_Py_ID(__main__))) { result = PyUnicode_FromFormat("%U%c%U", module, sep, qualname); } else { result = Py_NewRef(qualname); } Py_DECREF(module); Py_DECREF(qualname); return result; } PyObject * PyType_GetFullyQualifiedName(PyTypeObject *type) { return _PyType_GetFullyQualifiedName(type, '.'); } static PyObject * type_abstractmethods(PyTypeObject *type, void *context) { PyObject *mod = NULL; /* type itself has an __abstractmethods__ descriptor (this). Don't return that. */ if (type == &PyType_Type) { PyErr_SetObject(PyExc_AttributeError, &_Py_ID(__abstractmethods__)); } else { PyObject *dict = lookup_tp_dict(type); if (PyDict_GetItemRef(dict, &_Py_ID(__abstractmethods__), &mod) == 0) { PyErr_SetObject(PyExc_AttributeError, &_Py_ID(__abstractmethods__)); } } return mod; } static int type_set_abstractmethods(PyTypeObject *type, PyObject *value, void *context) { /* __abstractmethods__ should only be set once on a type, in abc.ABCMeta.__new__, so this function doesn't do anything special to update subclasses. */ int abstract, res; PyObject *dict = lookup_tp_dict(type); if (value != NULL) { abstract = PyObject_IsTrue(value); if (abstract < 0) return -1; res = PyDict_SetItem(dict, &_Py_ID(__abstractmethods__), value); } else { abstract = 0; res = PyDict_Pop(dict, &_Py_ID(__abstractmethods__), NULL); if (res == 0) { PyErr_SetObject(PyExc_AttributeError, &_Py_ID(__abstractmethods__)); return -1; } } if (res < 0) { return -1; } PyType_Modified(type); if (abstract) type->tp_flags |= Py_TPFLAGS_IS_ABSTRACT; else type->tp_flags &= ~Py_TPFLAGS_IS_ABSTRACT; return 0; } static PyObject * type_get_bases(PyTypeObject *type, void *context) { PyObject *bases = _PyType_GetBases(type); if (bases == NULL) { Py_RETURN_NONE; } return bases; } static PyObject * type_get_mro(PyTypeObject *type, void *context) { PyObject *mro; BEGIN_TYPE_LOCK(); mro = lookup_tp_mro(type); if (mro == NULL) { mro = Py_None; } else { Py_INCREF(mro); } END_TYPE_LOCK(); return mro; } static PyTypeObject *best_base(PyObject *); static int mro_internal(PyTypeObject *, PyObject **); static int type_is_subtype_base_chain(PyTypeObject *, PyTypeObject *); static int compatible_for_assignment(PyTypeObject *, PyTypeObject *, const char *); static int add_subclass(PyTypeObject*, PyTypeObject*); static int add_all_subclasses(PyTypeObject *type, PyObject *bases); static void remove_subclass(PyTypeObject *, PyTypeObject *); static void remove_all_subclasses(PyTypeObject *type, PyObject *bases); static void update_all_slots(PyTypeObject *); typedef int (*update_callback)(PyTypeObject *, void *); static int update_subclasses(PyTypeObject *type, PyObject *attr_name, update_callback callback, void *data); static int recurse_down_subclasses(PyTypeObject *type, PyObject *name, update_callback callback, void *data); static int mro_hierarchy(PyTypeObject *type, PyObject *temp) { ASSERT_TYPE_LOCK_HELD(); PyObject *old_mro; int res = mro_internal(type, &old_mro); if (res <= 0) { /* error / reentrance */ return res; } PyObject *new_mro = lookup_tp_mro(type); PyObject *tuple; if (old_mro != NULL) { tuple = PyTuple_Pack(3, type, new_mro, old_mro); } else { tuple = PyTuple_Pack(2, type, new_mro); } if (tuple != NULL) { res = PyList_Append(temp, tuple); } else { res = -1; } Py_XDECREF(tuple); if (res < 0) { set_tp_mro(type, old_mro, 0); Py_DECREF(new_mro); return -1; } Py_XDECREF(old_mro); // Avoid creating an empty list if there is no subclass if (_PyType_HasSubclasses(type)) { /* Obtain a copy of subclasses list to iterate over. Otherwise type->tp_subclasses might be altered in the middle of the loop, for example, through a custom mro(), by invoking type_set_bases on some subclass of the type which in turn calls remove_subclass/add_subclass on this type. Finally, this makes things simple avoiding the need to deal with dictionary iterators and weak references. */ PyObject *subclasses = _PyType_GetSubclasses(type); if (subclasses == NULL) { return -1; } Py_ssize_t n = PyList_GET_SIZE(subclasses); for (Py_ssize_t i = 0; i < n; i++) { PyTypeObject *subclass = _PyType_CAST(PyList_GET_ITEM(subclasses, i)); res = mro_hierarchy(subclass, temp); if (res < 0) { break; } } Py_DECREF(subclasses); } return res; } static int type_set_bases_unlocked(PyTypeObject *type, PyObject *new_bases, void *context) { // Check arguments if (!check_set_special_type_attr(type, new_bases, "__bases__")) { return -1; } assert(new_bases != NULL); if (!PyTuple_Check(new_bases)) { PyErr_Format(PyExc_TypeError, "can only assign tuple to %s.__bases__, not %s", type->tp_name, Py_TYPE(new_bases)->tp_name); return -1; } if (PyTuple_GET_SIZE(new_bases) == 0) { PyErr_Format(PyExc_TypeError, "can only assign non-empty tuple to %s.__bases__, not ()", type->tp_name); return -1; } Py_ssize_t n = PyTuple_GET_SIZE(new_bases); for (Py_ssize_t i = 0; i < n; i++) { PyObject *ob = PyTuple_GET_ITEM(new_bases, i); if (!PyType_Check(ob)) { PyErr_Format(PyExc_TypeError, "%s.__bases__ must be tuple of classes, not '%s'", type->tp_name, Py_TYPE(ob)->tp_name); return -1; } PyTypeObject *base = (PyTypeObject*)ob; if (is_subtype_with_mro(lookup_tp_mro(base), base, type) || /* In case of reentering here again through a custom mro() the above check is not enough since it relies on base->tp_mro which would gonna be updated inside mro_internal only upon returning from the mro(). However, base->tp_base has already been assigned (see below), which in turn may cause an inheritance cycle through tp_base chain. And this is definitely not what you want to ever happen. */ (lookup_tp_mro(base) != NULL && type_is_subtype_base_chain(base, type))) { PyErr_SetString(PyExc_TypeError, "a __bases__ item causes an inheritance cycle"); return -1; } } // Compute the new MRO and the new base class PyTypeObject *new_base = best_base(new_bases); if (new_base == NULL) return -1; if (!compatible_for_assignment(type->tp_base, new_base, "__bases__")) { return -1; } PyObject *old_bases = lookup_tp_bases(type); assert(old_bases != NULL); PyTypeObject *old_base = type->tp_base; set_tp_bases(type, Py_NewRef(new_bases), 0); type->tp_base = (PyTypeObject *)Py_NewRef(new_base); PyObject *temp = PyList_New(0); if (temp == NULL) { goto bail; } if (mro_hierarchy(type, temp) < 0) { goto undo; } Py_DECREF(temp); /* Take no action in case if type->tp_bases has been replaced through reentrance. */ int res; if (lookup_tp_bases(type) == new_bases) { /* any base that was in __bases__ but now isn't, we need to remove |type| from its tp_subclasses. conversely, any class now in __bases__ that wasn't needs to have |type| added to its subclasses. */ /* for now, sod that: just remove from all old_bases, add to all new_bases */ remove_all_subclasses(type, old_bases); res = add_all_subclasses(type, new_bases); update_all_slots(type); } else { res = 0; } RARE_EVENT_INC(set_bases); Py_DECREF(old_bases); Py_DECREF(old_base); assert(_PyType_CheckConsistency(type)); return res; undo: n = PyList_GET_SIZE(temp); for (Py_ssize_t i = n - 1; i >= 0; i--) { PyTypeObject *cls; PyObject *new_mro, *old_mro = NULL; PyArg_UnpackTuple(PyList_GET_ITEM(temp, i), "", 2, 3, &cls, &new_mro, &old_mro); /* Do not rollback if cls has a newer version of MRO. */ if (lookup_tp_mro(cls) == new_mro) { set_tp_mro(cls, Py_XNewRef(old_mro), 0); Py_DECREF(new_mro); } } Py_DECREF(temp); bail: if (lookup_tp_bases(type) == new_bases) { assert(type->tp_base == new_base); set_tp_bases(type, old_bases, 0); type->tp_base = old_base; Py_DECREF(new_bases); Py_DECREF(new_base); } else { Py_DECREF(old_bases); Py_DECREF(old_base); } assert(_PyType_CheckConsistency(type)); return -1; } static int type_set_bases(PyTypeObject *type, PyObject *new_bases, void *context) { int res; BEGIN_TYPE_LOCK(); res = type_set_bases_unlocked(type, new_bases, context); END_TYPE_LOCK(); return res; } static PyObject * type_dict(PyTypeObject *type, void *context) { PyObject *dict = lookup_tp_dict(type); if (dict == NULL) { Py_RETURN_NONE; } return PyDictProxy_New(dict); } static PyObject * type_get_doc(PyTypeObject *type, void *context) { PyObject *result; if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE) && type->tp_doc != NULL) { return _PyType_GetDocFromInternalDoc(type->tp_name, type->tp_doc); } PyObject *dict = lookup_tp_dict(type); if (PyDict_GetItemRef(dict, &_Py_ID(__doc__), &result) == 0) { result = Py_NewRef(Py_None); } else if (result) { descrgetfunc descr_get = Py_TYPE(result)->tp_descr_get; if (descr_get) { Py_SETREF(result, descr_get(result, NULL, (PyObject *)type)); } } return result; } static PyObject * type_get_text_signature(PyTypeObject *type, void *context) { return _PyType_GetTextSignatureFromInternalDoc(type->tp_name, type->tp_doc, 0); } static int type_set_doc(PyTypeObject *type, PyObject *value, void *context) { if (!check_set_special_type_attr(type, value, "__doc__")) return -1; PyType_Modified(type); PyObject *dict = lookup_tp_dict(type); return PyDict_SetItem(dict, &_Py_ID(__doc__), value); } static PyObject * type_get_annotate(PyTypeObject *type, void *Py_UNUSED(ignored)) { if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE)) { PyErr_Format(PyExc_AttributeError, "type object '%s' has no attribute '__annotate__'", type->tp_name); return NULL; } PyObject *annotate; PyObject *dict = PyType_GetDict(type); if (PyDict_GetItemRef(dict, &_Py_ID(__annotate__), &annotate) < 0) { Py_DECREF(dict); return NULL; } if (annotate) { descrgetfunc get = Py_TYPE(annotate)->tp_descr_get; if (get) { Py_SETREF(annotate, get(annotate, NULL, (PyObject *)type)); } } else { annotate = Py_None; int result = PyDict_SetItem(dict, &_Py_ID(__annotate__), annotate); if (result < 0) { Py_DECREF(dict); return NULL; } } Py_DECREF(dict); return annotate; } static int type_set_annotate(PyTypeObject *type, PyObject *value, void *Py_UNUSED(ignored)) { if (value == NULL) { PyErr_SetString(PyExc_TypeError, "cannot delete __annotate__ attribute"); return -1; } if (_PyType_HasFeature(type, Py_TPFLAGS_IMMUTABLETYPE)) { PyErr_Format(PyExc_TypeError, "cannot set '__annotate__' attribute of immutable type '%s'", type->tp_name); return -1; } if (!Py_IsNone(value) && !PyCallable_Check(value)) { PyErr_SetString(PyExc_TypeError, "__annotate__ must be callable or None"); return -1; } PyObject *dict = PyType_GetDict(type); assert(PyDict_Check(dict)); int result = PyDict_SetItem(dict, &_Py_ID(__annotate__), value); if (result < 0) { Py_DECREF(dict); return -1; } if (!Py_IsNone(value)) { if (PyDict_Pop(dict, &_Py_ID(__annotations__), NULL) == -1) { Py_DECREF(dict); PyType_Modified(type); return -1; } } Py_DECREF(dict); PyType_Modified(type); return 0; } static PyObject * type_get_annotations(PyTypeObject *type, void *context) { if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE)) { PyErr_Format(PyExc_AttributeError, "type object '%s' has no attribute '__annotations__'", type->tp_name); return NULL; } PyObject *annotations; PyObject *dict = PyType_GetDict(type); if (PyDict_GetItemRef(dict, &_Py_ID(__annotations__), &annotations) < 0) { Py_DECREF(dict); return NULL; } if (annotations) { descrgetfunc get = Py_TYPE(annotations)->tp_descr_get; if (get) { Py_SETREF(annotations, get(annotations, NULL, (PyObject *)type)); } } else { PyObject *annotate = type_get_annotate(type, NULL); if (annotate == NULL) { Py_DECREF(dict); return NULL; } if (PyCallable_Check(annotate)) { PyObject *one = _PyLong_GetOne(); annotations = _PyObject_CallOneArg(annotate, one); if (annotations == NULL) { Py_DECREF(dict); Py_DECREF(annotate); return NULL; } if (!PyDict_Check(annotations)) { PyErr_Format(PyExc_TypeError, "__annotate__ returned non-dict of type '%.100s'", Py_TYPE(annotations)->tp_name); Py_DECREF(annotations); Py_DECREF(annotate); Py_DECREF(dict); return NULL; } } else { annotations = PyDict_New(); } Py_DECREF(annotate); if (annotations) { int result = PyDict_SetItem( dict, &_Py_ID(__annotations__), annotations); if (result) { Py_CLEAR(annotations); } else { PyType_Modified(type); } } } Py_DECREF(dict); return annotations; } static int type_set_annotations(PyTypeObject *type, PyObject *value, void *context) { if (_PyType_HasFeature(type, Py_TPFLAGS_IMMUTABLETYPE)) { PyErr_Format(PyExc_TypeError, "cannot set '__annotations__' attribute of immutable type '%s'", type->tp_name); return -1; } int result; PyObject *dict = PyType_GetDict(type); if (value != NULL) { /* set */ result = PyDict_SetItem(dict, &_Py_ID(__annotations__), value); } else { /* delete */ result = PyDict_Pop(dict, &_Py_ID(__annotations__), NULL); if (result == 0) { PyErr_SetString(PyExc_AttributeError, "__annotations__"); Py_DECREF(dict); return -1; } } if (result < 0) { Py_DECREF(dict); return -1; } else if (result == 0) { if (PyDict_Pop(dict, &_Py_ID(__annotate__), NULL) < 0) { PyType_Modified(type); Py_DECREF(dict); return -1; } } PyType_Modified(type); Py_DECREF(dict); return 0; } static PyObject * type_get_type_params(PyTypeObject *type, void *context) { if (type == &PyType_Type) { return PyTuple_New(0); } PyObject *params; if (PyDict_GetItemRef(lookup_tp_dict(type), &_Py_ID(__type_params__), ¶ms) == 0) { return PyTuple_New(0); } return params; } static int type_set_type_params(PyTypeObject *type, PyObject *value, void *context) { if (!check_set_special_type_attr(type, value, "__type_params__")) { return -1; } PyObject *dict = lookup_tp_dict(type); int result = PyDict_SetItem(dict, &_Py_ID(__type_params__), value); if (result == 0) { PyType_Modified(type); } return result; } /*[clinic input] type.__instancecheck__ -> bool instance: object / Check if an object is an instance. [clinic start generated code]*/ static int type___instancecheck___impl(PyTypeObject *self, PyObject *instance) /*[clinic end generated code: output=08b6bf5f591c3618 input=cdbfeaee82c01a0f]*/ { return _PyObject_RealIsInstance(instance, (PyObject *)self); } /*[clinic input] type.__subclasscheck__ -> bool subclass: object / Check if a class is a subclass. [clinic start generated code]*/ static int type___subclasscheck___impl(PyTypeObject *self, PyObject *subclass) /*[clinic end generated code: output=97a4e51694500941 input=071b2ca9e03355f4]*/ { return _PyObject_RealIsSubclass(subclass, (PyObject *)self); } static PyGetSetDef type_getsets[] = { {"__name__", (getter)type_name, (setter)type_set_name, NULL}, {"__qualname__", (getter)type_qualname, (setter)type_set_qualname, NULL}, {"__bases__", (getter)type_get_bases, (setter)type_set_bases, NULL}, {"__mro__", (getter)type_get_mro, NULL, NULL}, {"__module__", (getter)type_get_module, (setter)type_set_module, NULL}, {"__abstractmethods__", (getter)type_abstractmethods, (setter)type_set_abstractmethods, NULL}, {"__dict__", (getter)type_dict, NULL, NULL}, {"__doc__", (getter)type_get_doc, (setter)type_set_doc, NULL}, {"__text_signature__", (getter)type_get_text_signature, NULL, NULL}, {"__annotations__", (getter)type_get_annotations, (setter)type_set_annotations, NULL}, {"__annotate__", (getter)type_get_annotate, (setter)type_set_annotate, NULL}, {"__type_params__", (getter)type_get_type_params, (setter)type_set_type_params, NULL}, {0} }; static PyObject * type_repr(PyObject *self) { PyTypeObject *type = (PyTypeObject *)self; if (type->tp_name == NULL) { // type_repr() called before the type is fully initialized // by PyType_Ready(). return PyUnicode_FromFormat("", type); } PyObject *mod = type_module(type); if (mod == NULL) { PyErr_Clear(); } else if (!PyUnicode_Check(mod)) { Py_CLEAR(mod); } PyObject *name = type_qualname(type, NULL); if (name == NULL) { Py_XDECREF(mod); return NULL; } PyObject *result; if (mod != NULL && !_PyUnicode_Equal(mod, &_Py_ID(builtins))) { result = PyUnicode_FromFormat("", mod, name); } else { result = PyUnicode_FromFormat("", type->tp_name); } Py_XDECREF(mod); Py_DECREF(name); return result; } static PyObject * type_call(PyObject *self, PyObject *args, PyObject *kwds) { PyTypeObject *type = (PyTypeObject *)self; PyObject *obj; PyThreadState *tstate = _PyThreadState_GET(); #ifdef Py_DEBUG /* type_call() must not be called with an exception set, because it can clear it (directly or indirectly) and so the caller loses its exception */ assert(!_PyErr_Occurred(tstate)); #endif /* Special case: type(x) should return Py_TYPE(x) */ /* We only want type itself to accept the one-argument form (#27157) */ if (type == &PyType_Type) { assert(args != NULL && PyTuple_Check(args)); assert(kwds == NULL || PyDict_Check(kwds)); Py_ssize_t nargs = PyTuple_GET_SIZE(args); if (nargs == 1 && (kwds == NULL || !PyDict_GET_SIZE(kwds))) { obj = (PyObject *) Py_TYPE(PyTuple_GET_ITEM(args, 0)); return Py_NewRef(obj); } /* SF bug 475327 -- if that didn't trigger, we need 3 arguments. But PyArg_ParseTuple in type_new may give a msg saying type() needs exactly 3. */ if (nargs != 3) { PyErr_SetString(PyExc_TypeError, "type() takes 1 or 3 arguments"); return NULL; } } if (type->tp_new == NULL) { _PyErr_Format(tstate, PyExc_TypeError, "cannot create '%s' instances", type->tp_name); return NULL; } obj = type->tp_new(type, args, kwds); obj = _Py_CheckFunctionResult(tstate, (PyObject*)type, obj, NULL); if (obj == NULL) return NULL; /* If the returned object is not an instance of type, it won't be initialized. */ if (!PyObject_TypeCheck(obj, type)) return obj; type = Py_TYPE(obj); if (type->tp_init != NULL) { int res = type->tp_init(obj, args, kwds); if (res < 0) { assert(_PyErr_Occurred(tstate)); Py_SETREF(obj, NULL); } else { assert(!_PyErr_Occurred(tstate)); } } return obj; } PyObject * _PyType_NewManagedObject(PyTypeObject *type) { assert(type->tp_flags & Py_TPFLAGS_INLINE_VALUES); assert(_PyType_IS_GC(type)); assert(type->tp_new == PyBaseObject_Type.tp_new); assert(type->tp_alloc == PyType_GenericAlloc); assert(type->tp_itemsize == 0); PyObject *obj = PyType_GenericAlloc(type, 0); if (obj == NULL) { return PyErr_NoMemory(); } return obj; } PyObject * _PyType_AllocNoTrack(PyTypeObject *type, Py_ssize_t nitems) { PyObject *obj; /* The +1 on nitems is needed for most types but not all. We could save a * bit of space by allocating one less item in certain cases, depending on * the type. However, given the extra complexity (e.g. an additional type * flag to indicate when that is safe) it does not seem worth the memory * savings. An example type that doesn't need the +1 is a subclass of * tuple. See GH-100659 and GH-81381. */ size_t size = _PyObject_VAR_SIZE(type, nitems+1); const size_t presize = _PyType_PreHeaderSize(type); if (type->tp_flags & Py_TPFLAGS_INLINE_VALUES) { assert(type->tp_itemsize == 0); size += _PyInlineValuesSize(type); } char *alloc = _PyObject_MallocWithType(type, size + presize); if (alloc == NULL) { return PyErr_NoMemory(); } obj = (PyObject *)(alloc + presize); if (presize) { ((PyObject **)alloc)[0] = NULL; ((PyObject **)alloc)[1] = NULL; } if (PyType_IS_GC(type)) { _PyObject_GC_Link(obj); } memset(obj, '\0', size); if (type->tp_itemsize == 0) { _PyObject_Init(obj, type); } else { _PyObject_InitVar((PyVarObject *)obj, type, nitems); } if (type->tp_flags & Py_TPFLAGS_INLINE_VALUES) { _PyObject_InitInlineValues(obj, type); } return obj; } PyObject * PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems) { PyObject *obj = _PyType_AllocNoTrack(type, nitems); if (obj == NULL) { return NULL; } if (_PyType_IS_GC(type)) { _PyObject_GC_TRACK(obj); } return obj; } PyObject * PyType_GenericNew(PyTypeObject *type, PyObject *args, PyObject *kwds) { return type->tp_alloc(type, 0); } /* Helpers for subtyping */ static inline PyMemberDef * _PyHeapType_GET_MEMBERS(PyHeapTypeObject* type) { return PyObject_GetItemData((PyObject *)type); } static int traverse_slots(PyTypeObject *type, PyObject *self, visitproc visit, void *arg) { Py_ssize_t i, n; PyMemberDef *mp; n = Py_SIZE(type); mp = _PyHeapType_GET_MEMBERS((PyHeapTypeObject *)type); for (i = 0; i < n; i++, mp++) { if (mp->type == Py_T_OBJECT_EX) { char *addr = (char *)self + mp->offset; PyObject *obj = *(PyObject **)addr; if (obj != NULL) { int err = visit(obj, arg); if (err) return err; } } } return 0; } static int subtype_traverse(PyObject *self, visitproc visit, void *arg) { PyTypeObject *type, *base; traverseproc basetraverse; /* Find the nearest base with a different tp_traverse, and traverse slots while we're at it */ type = Py_TYPE(self); base = type; while ((basetraverse = base->tp_traverse) == subtype_traverse) { if (Py_SIZE(base)) { int err = traverse_slots(base, self, visit, arg); if (err) return err; } base = base->tp_base; assert(base); } if (type->tp_dictoffset != base->tp_dictoffset) { assert(base->tp_dictoffset == 0); if (type->tp_flags & Py_TPFLAGS_MANAGED_DICT) { assert(type->tp_dictoffset == -1); int err = PyObject_VisitManagedDict(self, visit, arg); if (err) { return err; } } else { PyObject **dictptr = _PyObject_ComputedDictPointer(self); if (dictptr && *dictptr) { Py_VISIT(*dictptr); } } } if (type->tp_flags & Py_TPFLAGS_HEAPTYPE && (!basetraverse || !(base->tp_flags & Py_TPFLAGS_HEAPTYPE))) { /* For a heaptype, the instances count as references to the type. Traverse the type so the collector can find cycles involving this link. Skip this visit if basetraverse belongs to a heap type: in that case, basetraverse will visit the type when we call it later. */ Py_VISIT(type); } if (basetraverse) return basetraverse(self, visit, arg); return 0; } static void clear_slots(PyTypeObject *type, PyObject *self) { Py_ssize_t i, n; PyMemberDef *mp; n = Py_SIZE(type); mp = _PyHeapType_GET_MEMBERS((PyHeapTypeObject *)type); for (i = 0; i < n; i++, mp++) { if (mp->type == Py_T_OBJECT_EX && !(mp->flags & Py_READONLY)) { char *addr = (char *)self + mp->offset; PyObject *obj = *(PyObject **)addr; if (obj != NULL) { *(PyObject **)addr = NULL; Py_DECREF(obj); } } } } static int subtype_clear(PyObject *self) { PyTypeObject *type, *base; inquiry baseclear; /* Find the nearest base with a different tp_clear and clear slots while we're at it */ type = Py_TYPE(self); base = type; while ((baseclear = base->tp_clear) == subtype_clear) { if (Py_SIZE(base)) clear_slots(base, self); base = base->tp_base; assert(base); } /* Clear the instance dict (if any), to break cycles involving only __dict__ slots (as in the case 'self.__dict__ is self'). */ if (type->tp_flags & Py_TPFLAGS_MANAGED_DICT) { if ((base->tp_flags & Py_TPFLAGS_MANAGED_DICT) == 0) { PyObject_ClearManagedDict(self); } else { assert((base->tp_flags & Py_TPFLAGS_INLINE_VALUES) == (type->tp_flags & Py_TPFLAGS_INLINE_VALUES)); } } else if (type->tp_dictoffset != base->tp_dictoffset) { PyObject **dictptr = _PyObject_ComputedDictPointer(self); if (dictptr && *dictptr) Py_CLEAR(*dictptr); } if (baseclear) return baseclear(self); return 0; } static void subtype_dealloc(PyObject *self) { PyTypeObject *type, *base; destructor basedealloc; int has_finalizer; /* Extract the type; we expect it to be a heap type */ type = Py_TYPE(self); _PyObject_ASSERT((PyObject *)type, type->tp_flags & Py_TPFLAGS_HEAPTYPE); /* Test whether the type has GC exactly once */ if (!_PyType_IS_GC(type)) { /* A non GC dynamic type allows certain simplifications: there's no need to call clear_slots(), or DECREF the dict, or clear weakrefs. */ /* Maybe call finalizer; exit early if resurrected */ if (type->tp_finalize) { if (PyObject_CallFinalizerFromDealloc(self) < 0) return; } if (type->tp_del) { type->tp_del(self); if (Py_REFCNT(self) > 0) { return; } } /* Find the nearest base with a different tp_dealloc */ base = type; while ((basedealloc = base->tp_dealloc) == subtype_dealloc) { base = base->tp_base; assert(base); } /* Extract the type again; tp_del may have changed it */ type = Py_TYPE(self); // Don't read type memory after calling basedealloc() since basedealloc() // can deallocate the type and free its memory. int type_needs_decref = (type->tp_flags & Py_TPFLAGS_HEAPTYPE && !(base->tp_flags & Py_TPFLAGS_HEAPTYPE)); assert((type->tp_flags & Py_TPFLAGS_MANAGED_DICT) == 0); /* Call the base tp_dealloc() */ assert(basedealloc); basedealloc(self); /* Can't reference self beyond this point. It's possible tp_del switched our type from a HEAPTYPE to a non-HEAPTYPE, so be careful about reference counting. Only decref if the base type is not already a heap allocated type. Otherwise, basedealloc should have decref'd it already */ if (type_needs_decref) { _Py_DECREF_TYPE(type); } /* Done */ return; } /* We get here only if the type has GC */ /* UnTrack and re-Track around the trashcan macro, alas */ /* See explanation at end of function for full disclosure */ PyObject_GC_UnTrack(self); Py_TRASHCAN_BEGIN(self, subtype_dealloc); /* Find the nearest base with a different tp_dealloc */ base = type; while ((/*basedealloc =*/ base->tp_dealloc) == subtype_dealloc) { base = base->tp_base; assert(base); } has_finalizer = type->tp_finalize || type->tp_del; if (type->tp_finalize) { _PyObject_GC_TRACK(self); if (PyObject_CallFinalizerFromDealloc(self) < 0) { /* Resurrected */ goto endlabel; } _PyObject_GC_UNTRACK(self); } /* If we added a weaklist, we clear it. Do this *before* calling tp_del, clearing slots, or clearing the instance dict. GC tracking must be off at this point. weakref callbacks (if any, and whether directly here or indirectly in something we call) may trigger GC, and if self is tracked at that point, it will look like trash to GC and GC will try to delete self again. */ if (type->tp_weaklistoffset && !base->tp_weaklistoffset) { PyObject_ClearWeakRefs(self); } if (type->tp_del) { _PyObject_GC_TRACK(self); type->tp_del(self); if (Py_REFCNT(self) > 0) { /* Resurrected */ goto endlabel; } _PyObject_GC_UNTRACK(self); } if (has_finalizer) { /* New weakrefs could be created during the finalizer call. If this occurs, clear them out without calling their finalizers since they might rely on part of the object being finalized that has already been destroyed. */ if (type->tp_weaklistoffset && !base->tp_weaklistoffset) { _PyWeakref_ClearWeakRefsNoCallbacks(self); } } /* Clear slots up to the nearest base with a different tp_dealloc */ base = type; while ((basedealloc = base->tp_dealloc) == subtype_dealloc) { if (Py_SIZE(base)) clear_slots(base, self); base = base->tp_base; assert(base); } /* If we added a dict, DECREF it, or free inline values. */ if (type->tp_flags & Py_TPFLAGS_MANAGED_DICT) { PyObject_ClearManagedDict(self); } else if (type->tp_dictoffset && !base->tp_dictoffset) { PyObject **dictptr = _PyObject_ComputedDictPointer(self); if (dictptr != NULL) { PyObject *dict = *dictptr; if (dict != NULL) { Py_DECREF(dict); *dictptr = NULL; } } } /* Extract the type again; tp_del may have changed it */ type = Py_TYPE(self); /* Call the base tp_dealloc(); first retrack self if * basedealloc knows about gc. */ if (_PyType_IS_GC(base)) { _PyObject_GC_TRACK(self); } // Don't read type memory after calling basedealloc() since basedealloc() // can deallocate the type and free its memory. int type_needs_decref = (type->tp_flags & Py_TPFLAGS_HEAPTYPE && !(base->tp_flags & Py_TPFLAGS_HEAPTYPE)); assert(basedealloc); basedealloc(self); /* Can't reference self beyond this point. It's possible tp_del switched our type from a HEAPTYPE to a non-HEAPTYPE, so be careful about reference counting. Only decref if the base type is not already a heap allocated type. Otherwise, basedealloc should have decref'd it already */ if (type_needs_decref) { _Py_DECREF_TYPE(type); } endlabel: Py_TRASHCAN_END /* Explanation of the weirdness around the trashcan macros: Q. What do the trashcan macros do? A. Read the comment titled "Trashcan mechanism" in object.h. For one, this explains why there must be a call to GC-untrack before the trashcan begin macro. Without understanding the trashcan code, the answers to the following questions don't make sense. Q. Why do we GC-untrack before the trashcan and then immediately GC-track again afterward? A. In the case that the base class is GC-aware, the base class probably GC-untracks the object. If it does that using the UNTRACK macro, this will crash when the object is already untracked. Because we don't know what the base class does, the only safe thing is to make sure the object is tracked when we call the base class dealloc. But... The trashcan begin macro requires that the object is *untracked* before it is called. So the dance becomes: GC untrack trashcan begin GC track Q. Why did the last question say "immediately GC-track again"? It's nowhere near immediately. A. Because the code *used* to re-track immediately. Bad Idea. self has a refcount of 0, and if gc ever gets its hands on it (which can happen if any weakref callback gets invoked), it looks like trash to gc too, and gc also tries to delete self then. But we're already deleting self. Double deallocation is a subtle disaster. */ } static PyTypeObject *solid_base(PyTypeObject *type); /* type test with subclassing support */ static int type_is_subtype_base_chain(PyTypeObject *a, PyTypeObject *b) { do { if (a == b) return 1; a = a->tp_base; } while (a != NULL); return (b == &PyBaseObject_Type); } static int is_subtype_with_mro(PyObject *a_mro, PyTypeObject *a, PyTypeObject *b) { int res; if (a_mro != NULL) { /* Deal with multiple inheritance without recursion by walking the MRO tuple */ Py_ssize_t i, n; assert(PyTuple_Check(a_mro)); n = PyTuple_GET_SIZE(a_mro); res = 0; for (i = 0; i < n; i++) { if (PyTuple_GET_ITEM(a_mro, i) == (PyObject *)b) { res = 1; break; } } } else { /* a is not completely initialized yet; follow tp_base */ res = type_is_subtype_base_chain(a, b); } return res; } int PyType_IsSubtype(PyTypeObject *a, PyTypeObject *b) { return is_subtype_with_mro(a->tp_mro, a, b); } /* Routines to do a method lookup in the type without looking in the instance dictionary (so we can't use PyObject_GetAttr) but still binding it to the instance. Variants: - _PyObject_LookupSpecial() returns NULL without raising an exception when the _PyType_LookupRef() call fails; - lookup_maybe_method() and lookup_method() are internal routines similar to _PyObject_LookupSpecial(), but can return unbound PyFunction to avoid temporary method object. Pass self as first argument when unbound == 1. */ PyObject * _PyObject_LookupSpecial(PyObject *self, PyObject *attr) { PyObject *res; res = _PyType_LookupRef(Py_TYPE(self), attr); if (res != NULL) { descrgetfunc f; if ((f = Py_TYPE(res)->tp_descr_get) != NULL) { Py_SETREF(res, f(res, self, (PyObject *)(Py_TYPE(self)))); } } return res; } /* Steals a reference to self */ PyObject * _PyObject_LookupSpecialMethod(PyObject *self, PyObject *attr, PyObject **self_or_null) { PyObject *res; res = _PyType_LookupRef(Py_TYPE(self), attr); if (res == NULL) { Py_DECREF(self); *self_or_null = NULL; return NULL; } if (_PyType_HasFeature(Py_TYPE(res), Py_TPFLAGS_METHOD_DESCRIPTOR)) { /* Avoid temporary PyMethodObject */ *self_or_null = self; } else { descrgetfunc f = Py_TYPE(res)->tp_descr_get; if (f != NULL) { Py_SETREF(res, f(res, self, (PyObject *)(Py_TYPE(self)))); } *self_or_null = NULL; Py_DECREF(self); } return res; } static PyObject * lookup_maybe_method(PyObject *self, PyObject *attr, int *unbound) { PyObject *res = _PyType_LookupRef(Py_TYPE(self), attr); if (res == NULL) { return NULL; } if (_PyType_HasFeature(Py_TYPE(res), Py_TPFLAGS_METHOD_DESCRIPTOR)) { /* Avoid temporary PyMethodObject */ *unbound = 1; } else { *unbound = 0; descrgetfunc f = Py_TYPE(res)->tp_descr_get; if (f != NULL) { Py_SETREF(res, f(res, self, (PyObject *)(Py_TYPE(self)))); } } return res; } static PyObject * lookup_method(PyObject *self, PyObject *attr, int *unbound) { PyObject *res = lookup_maybe_method(self, attr, unbound); if (res == NULL && !PyErr_Occurred()) { PyErr_SetObject(PyExc_AttributeError, attr); } return res; } static inline PyObject* vectorcall_unbound(PyThreadState *tstate, int unbound, PyObject *func, PyObject *const *args, Py_ssize_t nargs) { size_t nargsf = nargs; if (!unbound) { /* Skip self argument, freeing up args[0] to use for * PY_VECTORCALL_ARGUMENTS_OFFSET */ args++; nargsf = nargsf - 1 + PY_VECTORCALL_ARGUMENTS_OFFSET; } EVAL_CALL_STAT_INC_IF_FUNCTION(EVAL_CALL_SLOT, func); return _PyObject_VectorcallTstate(tstate, func, args, nargsf, NULL); } static PyObject* call_unbound_noarg(int unbound, PyObject *func, PyObject *self) { if (unbound) { return PyObject_CallOneArg(func, self); } else { return _PyObject_CallNoArgs(func); } } /* A variation of PyObject_CallMethod* that uses lookup_method() instead of PyObject_GetAttrString(). args is an argument vector of length nargs. The first element in this vector is the special object "self" which is used for the method lookup */ static PyObject * vectorcall_method(PyObject *name, PyObject *const *args, Py_ssize_t nargs) { assert(nargs >= 1); PyThreadState *tstate = _PyThreadState_GET(); int unbound; PyObject *self = args[0]; PyObject *func = lookup_method(self, name, &unbound); if (func == NULL) { return NULL; } PyObject *retval = vectorcall_unbound(tstate, unbound, func, args, nargs); Py_DECREF(func); return retval; } /* Clone of vectorcall_method() that returns NotImplemented * when the lookup fails. */ static PyObject * vectorcall_maybe(PyThreadState *tstate, PyObject *name, PyObject *const *args, Py_ssize_t nargs) { assert(nargs >= 1); int unbound; PyObject *self = args[0]; PyObject *func = lookup_maybe_method(self, name, &unbound); if (func == NULL) { if (!PyErr_Occurred()) Py_RETURN_NOTIMPLEMENTED; return NULL; } PyObject *retval = vectorcall_unbound(tstate, unbound, func, args, nargs); Py_DECREF(func); return retval; } /* Method resolution order algorithm C3 described in "A Monotonic Superclass Linearization for Dylan", by Kim Barrett, Bob Cassel, Paul Haahr, David A. Moon, Keith Playford, and P. Tucker Withington. (OOPSLA 1996) Some notes about the rules implied by C3: No duplicate bases. It isn't legal to repeat a class in a list of base classes. The next three properties are the 3 constraints in "C3". Local precedence order. If A precedes B in C's MRO, then A will precede B in the MRO of all subclasses of C. Monotonicity. The MRO of a class must be an extension without reordering of the MRO of each of its superclasses. Extended Precedence Graph (EPG). Linearization is consistent if there is a path in the EPG from each class to all its successors in the linearization. See the paper for definition of EPG. */ static int tail_contains(PyObject *tuple, int whence, PyObject *o) { Py_ssize_t j, size; size = PyTuple_GET_SIZE(tuple); for (j = whence+1; j < size; j++) { if (PyTuple_GET_ITEM(tuple, j) == o) return 1; } return 0; } static PyObject * class_name(PyObject *cls) { PyObject *name; if (PyObject_GetOptionalAttr(cls, &_Py_ID(__name__), &name) == 0) { name = PyObject_Repr(cls); } return name; } static int check_duplicates(PyObject *tuple) { Py_ssize_t i, j, n; /* Let's use a quadratic time algorithm, assuming that the bases tuples is short. */ n = PyTuple_GET_SIZE(tuple); for (i = 0; i < n; i++) { PyObject *o = PyTuple_GET_ITEM(tuple, i); for (j = i + 1; j < n; j++) { if (PyTuple_GET_ITEM(tuple, j) == o) { o = class_name(o); if (o != NULL) { if (PyUnicode_Check(o)) { PyErr_Format(PyExc_TypeError, "duplicate base class %U", o); } else { PyErr_SetString(PyExc_TypeError, "duplicate base class"); } Py_DECREF(o); } return -1; } } } return 0; } /* Raise a TypeError for an MRO order disagreement. It's hard to produce a good error message. In the absence of better insight into error reporting, report the classes that were candidates to be put next into the MRO. There is some conflict between the order in which they should be put in the MRO, but it's hard to diagnose what constraint can't be satisfied. */ static void set_mro_error(PyObject **to_merge, Py_ssize_t to_merge_size, int *remain) { Py_ssize_t i, n, off; char buf[1000]; PyObject *k, *v; PyObject *set = PyDict_New(); if (!set) return; for (i = 0; i < to_merge_size; i++) { PyObject *L = to_merge[i]; if (remain[i] < PyTuple_GET_SIZE(L)) { PyObject *c = PyTuple_GET_ITEM(L, remain[i]); if (PyDict_SetItem(set, c, Py_None) < 0) { Py_DECREF(set); return; } } } n = PyDict_GET_SIZE(set); off = PyOS_snprintf(buf, sizeof(buf), "Cannot create a \ consistent method resolution order (MRO) for bases"); i = 0; while (PyDict_Next(set, &i, &k, &v) && (size_t)off < sizeof(buf)) { PyObject *name = class_name(k); const char *name_str = NULL; if (name != NULL) { if (PyUnicode_Check(name)) { name_str = PyUnicode_AsUTF8(name); } else { name_str = "?"; } } if (name_str == NULL) { Py_XDECREF(name); Py_DECREF(set); return; } off += PyOS_snprintf(buf + off, sizeof(buf) - off, " %s", name_str); Py_XDECREF(name); if (--n && (size_t)(off+1) < sizeof(buf)) { buf[off++] = ','; buf[off] = '\0'; } } PyErr_SetString(PyExc_TypeError, buf); Py_DECREF(set); } static int pmerge(PyObject *acc, PyObject **to_merge, Py_ssize_t to_merge_size) { int res = 0; Py_ssize_t i, j, empty_cnt; int *remain; /* remain stores an index into each sublist of to_merge. remain[i] is the index of the next base in to_merge[i] that is not included in acc. */ remain = PyMem_New(int, to_merge_size); if (remain == NULL) { PyErr_NoMemory(); return -1; } for (i = 0; i < to_merge_size; i++) remain[i] = 0; again: empty_cnt = 0; for (i = 0; i < to_merge_size; i++) { PyObject *candidate; PyObject *cur_tuple = to_merge[i]; if (remain[i] >= PyTuple_GET_SIZE(cur_tuple)) { empty_cnt++; continue; } /* Choose next candidate for MRO. The input sequences alone can determine the choice. If not, choose the class which appears in the MRO of the earliest direct superclass of the new class. */ candidate = PyTuple_GET_ITEM(cur_tuple, remain[i]); for (j = 0; j < to_merge_size; j++) { PyObject *j_lst = to_merge[j]; if (tail_contains(j_lst, remain[j], candidate)) goto skip; /* continue outer loop */ } res = PyList_Append(acc, candidate); if (res < 0) goto out; for (j = 0; j < to_merge_size; j++) { PyObject *j_lst = to_merge[j]; if (remain[j] < PyTuple_GET_SIZE(j_lst) && PyTuple_GET_ITEM(j_lst, remain[j]) == candidate) { remain[j]++; } } goto again; skip: ; } if (empty_cnt != to_merge_size) { set_mro_error(to_merge, to_merge_size, remain); res = -1; } out: PyMem_Free(remain); return res; } static PyObject * mro_implementation_unlocked(PyTypeObject *type) { ASSERT_TYPE_LOCK_HELD(); if (!_PyType_IsReady(type)) { if (PyType_Ready(type) < 0) return NULL; } PyObject *bases = lookup_tp_bases(type); Py_ssize_t n = PyTuple_GET_SIZE(bases); for (Py_ssize_t i = 0; i < n; i++) { PyTypeObject *base = _PyType_CAST(PyTuple_GET_ITEM(bases, i)); if (lookup_tp_mro(base) == NULL) { PyErr_Format(PyExc_TypeError, "Cannot extend an incomplete type '%.100s'", base->tp_name); return NULL; } assert(PyTuple_Check(lookup_tp_mro(base))); } if (n == 1) { /* Fast path: if there is a single base, constructing the MRO * is trivial. */ PyTypeObject *base = _PyType_CAST(PyTuple_GET_ITEM(bases, 0)); PyObject *base_mro = lookup_tp_mro(base); Py_ssize_t k = PyTuple_GET_SIZE(base_mro); PyObject *result = PyTuple_New(k + 1); if (result == NULL) { return NULL; } ; PyTuple_SET_ITEM(result, 0, Py_NewRef(type)); for (Py_ssize_t i = 0; i < k; i++) { PyObject *cls = PyTuple_GET_ITEM(base_mro, i); PyTuple_SET_ITEM(result, i + 1, Py_NewRef(cls)); } return result; } /* This is just a basic sanity check. */ if (check_duplicates(bases) < 0) { return NULL; } /* Find a superclass linearization that honors the constraints of the explicit tuples of bases and the constraints implied by each base class. to_merge is an array of tuples, where each tuple is a superclass linearization implied by a base class. The last element of to_merge is the declared tuple of bases. */ PyObject **to_merge = PyMem_New(PyObject *, n + 1); if (to_merge == NULL) { PyErr_NoMemory(); return NULL; } for (Py_ssize_t i = 0; i < n; i++) { PyTypeObject *base = _PyType_CAST(PyTuple_GET_ITEM(bases, i)); to_merge[i] = lookup_tp_mro(base); } to_merge[n] = bases; PyObject *result = PyList_New(1); if (result == NULL) { PyMem_Free(to_merge); return NULL; } PyList_SET_ITEM(result, 0, Py_NewRef(type)); if (pmerge(result, to_merge, n + 1) < 0) { Py_CLEAR(result); } PyMem_Free(to_merge); return result; } static PyObject * mro_implementation(PyTypeObject *type) { PyObject *mro; BEGIN_TYPE_LOCK(); mro = mro_implementation_unlocked(type); END_TYPE_LOCK(); return mro; } /*[clinic input] type.mro Return a type's method resolution order. [clinic start generated code]*/ static PyObject * type_mro_impl(PyTypeObject *self) /*[clinic end generated code: output=bffc4a39b5b57027 input=28414f4e156db28d]*/ { PyObject *seq; seq = mro_implementation(self); if (seq != NULL && !PyList_Check(seq)) { Py_SETREF(seq, PySequence_List(seq)); } return seq; } static int mro_check(PyTypeObject *type, PyObject *mro) { PyTypeObject *solid; Py_ssize_t i, n; solid = solid_base(type); n = PyTuple_GET_SIZE(mro); for (i = 0; i < n; i++) { PyObject *obj = PyTuple_GET_ITEM(mro, i); if (!PyType_Check(obj)) { PyErr_Format( PyExc_TypeError, "mro() returned a non-class ('%.500s')", Py_TYPE(obj)->tp_name); return -1; } PyTypeObject *base = (PyTypeObject*)obj; if (!is_subtype_with_mro(lookup_tp_mro(solid), solid, solid_base(base))) { PyErr_Format( PyExc_TypeError, "mro() returned base with unsuitable layout ('%.500s')", base->tp_name); return -1; } } return 0; } /* Lookups an mcls.mro method, invokes it and checks the result (if needed, in case of a custom mro() implementation). Keep in mind that during execution of this function type->tp_mro can be replaced due to possible reentrance (for example, through type_set_bases): - when looking up the mcls.mro attribute (it could be a user-provided descriptor); - from inside a custom mro() itself; - through a finalizer of the return value of mro(). */ static PyObject * mro_invoke(PyTypeObject *type) { PyObject *mro_result; PyObject *new_mro; ASSERT_TYPE_LOCK_HELD(); const int custom = !Py_IS_TYPE(type, &PyType_Type); if (custom) { int unbound; PyObject *mro_meth = lookup_method( (PyObject *)type, &_Py_ID(mro), &unbound); if (mro_meth == NULL) return NULL; mro_result = call_unbound_noarg(unbound, mro_meth, (PyObject *)type); Py_DECREF(mro_meth); } else { mro_result = mro_implementation_unlocked(type); } if (mro_result == NULL) return NULL; new_mro = PySequence_Tuple(mro_result); Py_DECREF(mro_result); if (new_mro == NULL) { return NULL; } if (PyTuple_GET_SIZE(new_mro) == 0) { Py_DECREF(new_mro); PyErr_Format(PyExc_TypeError, "type MRO must not be empty"); return NULL; } if (custom && mro_check(type, new_mro) < 0) { Py_DECREF(new_mro); return NULL; } return new_mro; } /* Calculates and assigns a new MRO to type->tp_mro. Return values and invariants: - Returns 1 if a new MRO value has been set to type->tp_mro due to this call of mro_internal (no tricky reentrancy and no errors). In case if p_old_mro argument is not NULL, a previous value of type->tp_mro is put there, and the ownership of this reference is transferred to a caller. Otherwise, the previous value (if any) is decref'ed. - Returns 0 in case when type->tp_mro gets changed because of reentering here through a custom mro() (see a comment to mro_invoke). In this case, a refcount of an old type->tp_mro is adjusted somewhere deeper in the call stack (by the innermost mro_internal or its caller) and may become zero upon returning from here. This also implies that the whole hierarchy of subclasses of the type has seen the new value and updated their MRO accordingly. - Returns -1 in case of an error. */ static int mro_internal_unlocked(PyTypeObject *type, int initial, PyObject **p_old_mro) { ASSERT_TYPE_LOCK_HELD(); PyObject *new_mro, *old_mro; int reent; /* Keep a reference to be able to do a reentrancy check below. Don't let old_mro be GC'ed and its address be reused for another object, like (suddenly!) a new tp_mro. */ old_mro = Py_XNewRef(lookup_tp_mro(type)); new_mro = mro_invoke(type); /* might cause reentrance */ reent = (lookup_tp_mro(type) != old_mro); Py_XDECREF(old_mro); if (new_mro == NULL) { return -1; } if (reent) { Py_DECREF(new_mro); return 0; } set_tp_mro(type, new_mro, initial); type_mro_modified(type, new_mro); /* corner case: the super class might have been hidden from the custom MRO */ type_mro_modified(type, lookup_tp_bases(type)); // XXX Expand this to Py_TPFLAGS_IMMUTABLETYPE? if (!(type->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN)) { PyType_Modified(type); } else { /* For static builtin types, this is only called during init before the method cache has been populated. */ assert(type->tp_version_tag); } if (p_old_mro != NULL) *p_old_mro = old_mro; /* transfer the ownership */ else Py_XDECREF(old_mro); return 1; } static int mro_internal(PyTypeObject *type, PyObject **p_old_mro) { int res; BEGIN_TYPE_LOCK(); res = mro_internal_unlocked(type, 0, p_old_mro); END_TYPE_LOCK(); return res; } /* Calculate the best base amongst multiple base classes. This is the first one that's on the path to the "solid base". */ static PyTypeObject * best_base(PyObject *bases) { Py_ssize_t i, n; PyTypeObject *base, *winner, *candidate; assert(PyTuple_Check(bases)); n = PyTuple_GET_SIZE(bases); assert(n > 0); base = NULL; winner = NULL; for (i = 0; i < n; i++) { PyObject *base_proto = PyTuple_GET_ITEM(bases, i); if (!PyType_Check(base_proto)) { PyErr_SetString( PyExc_TypeError, "bases must be types"); return NULL; } PyTypeObject *base_i = (PyTypeObject *)base_proto; if (!_PyType_IsReady(base_i)) { if (PyType_Ready(base_i) < 0) return NULL; } if (!_PyType_HasFeature(base_i, Py_TPFLAGS_BASETYPE)) { PyErr_Format(PyExc_TypeError, "type '%.100s' is not an acceptable base type", base_i->tp_name); return NULL; } candidate = solid_base(base_i); if (winner == NULL) { winner = candidate; base = base_i; } else if (PyType_IsSubtype(winner, candidate)) ; else if (PyType_IsSubtype(candidate, winner)) { winner = candidate; base = base_i; } else { PyErr_SetString( PyExc_TypeError, "multiple bases have " "instance lay-out conflict"); return NULL; } } assert (base != NULL); return base; } static int shape_differs(PyTypeObject *t1, PyTypeObject *t2) { return ( t1->tp_basicsize != t2->tp_basicsize || t1->tp_itemsize != t2->tp_itemsize ); } static PyTypeObject * solid_base(PyTypeObject *type) { PyTypeObject *base; if (type->tp_base) { base = solid_base(type->tp_base); } else { base = &PyBaseObject_Type; } if (shape_differs(type, base)) { return type; } else { return base; } } static void object_dealloc(PyObject *); static PyObject *object_new(PyTypeObject *, PyObject *, PyObject *); static int object_init(PyObject *, PyObject *, PyObject *); static int update_slot(PyTypeObject *, PyObject *); static void fixup_slot_dispatchers(PyTypeObject *); static int type_new_set_names(PyTypeObject *); static int type_new_init_subclass(PyTypeObject *, PyObject *); /* * Helpers for __dict__ descriptor. We don't want to expose the dicts * inherited from various builtin types. The builtin base usually provides * its own __dict__ descriptor, so we use that when we can. */ static PyTypeObject * get_builtin_base_with_dict(PyTypeObject *type) { while (type->tp_base != NULL) { if (type->tp_dictoffset != 0 && !(type->tp_flags & Py_TPFLAGS_HEAPTYPE)) return type; type = type->tp_base; } return NULL; } static PyObject * get_dict_descriptor(PyTypeObject *type) { PyObject *descr; descr = _PyType_Lookup(type, &_Py_ID(__dict__)); if (descr == NULL || !PyDescr_IsData(descr)) return NULL; return descr; } static void raise_dict_descr_error(PyObject *obj) { PyErr_Format(PyExc_TypeError, "this __dict__ descriptor does not support " "'%.200s' objects", Py_TYPE(obj)->tp_name); } static PyObject * subtype_dict(PyObject *obj, void *context) { PyTypeObject *base; base = get_builtin_base_with_dict(Py_TYPE(obj)); if (base != NULL) { descrgetfunc func; PyObject *descr = get_dict_descriptor(base); if (descr == NULL) { raise_dict_descr_error(obj); return NULL; } func = Py_TYPE(descr)->tp_descr_get; if (func == NULL) { raise_dict_descr_error(obj); return NULL; } return func(descr, obj, (PyObject *)(Py_TYPE(obj))); } return PyObject_GenericGetDict(obj, context); } static int subtype_setdict(PyObject *obj, PyObject *value, void *context) { PyObject **dictptr; PyTypeObject *base; base = get_builtin_base_with_dict(Py_TYPE(obj)); if (base != NULL) { descrsetfunc func; PyObject *descr = get_dict_descriptor(base); if (descr == NULL) { raise_dict_descr_error(obj); return -1; } func = Py_TYPE(descr)->tp_descr_set; if (func == NULL) { raise_dict_descr_error(obj); return -1; } return func(descr, obj, value); } /* Almost like PyObject_GenericSetDict, but allow __dict__ to be deleted. */ if (value != NULL && !PyDict_Check(value)) { PyErr_Format(PyExc_TypeError, "__dict__ must be set to a dictionary, " "not a '%.200s'", Py_TYPE(value)->tp_name); return -1; } if (Py_TYPE(obj)->tp_flags & Py_TPFLAGS_MANAGED_DICT) { return _PyObject_SetManagedDict(obj, value); } else { dictptr = _PyObject_ComputedDictPointer(obj); if (dictptr == NULL) { PyErr_SetString(PyExc_AttributeError, "This object has no __dict__"); return -1; } Py_CLEAR(*dictptr); *dictptr = Py_XNewRef(value); } return 0; } static PyObject * subtype_getweakref(PyObject *obj, void *context) { PyObject **weaklistptr; PyObject *result; PyTypeObject *type = Py_TYPE(obj); if (type->tp_weaklistoffset == 0) { PyErr_SetString(PyExc_AttributeError, "This object has no __weakref__"); return NULL; } _PyObject_ASSERT((PyObject *)type, type->tp_weaklistoffset > 0 || type->tp_weaklistoffset == MANAGED_WEAKREF_OFFSET); _PyObject_ASSERT((PyObject *)type, ((type->tp_weaklistoffset + (Py_ssize_t)sizeof(PyObject *)) <= type->tp_basicsize)); weaklistptr = (PyObject **)((char *)obj + type->tp_weaklistoffset); if (*weaklistptr == NULL) result = Py_None; else result = *weaklistptr; return Py_NewRef(result); } /* Three variants on the subtype_getsets list. */ static PyGetSetDef subtype_getsets_full[] = { {"__dict__", subtype_dict, subtype_setdict, PyDoc_STR("dictionary for instance variables")}, {"__weakref__", subtype_getweakref, NULL, PyDoc_STR("list of weak references to the object")}, {0} }; static PyGetSetDef subtype_getsets_dict_only[] = { {"__dict__", subtype_dict, subtype_setdict, PyDoc_STR("dictionary for instance variables")}, {0} }; static PyGetSetDef subtype_getsets_weakref_only[] = { {"__weakref__", subtype_getweakref, NULL, PyDoc_STR("list of weak references to the object")}, {0} }; static int valid_identifier(PyObject *s) { if (!PyUnicode_Check(s)) { PyErr_Format(PyExc_TypeError, "__slots__ items must be strings, not '%.200s'", Py_TYPE(s)->tp_name); return 0; } if (!PyUnicode_IsIdentifier(s)) { PyErr_SetString(PyExc_TypeError, "__slots__ must be identifiers"); return 0; } return 1; } static int type_init(PyObject *cls, PyObject *args, PyObject *kwds) { assert(args != NULL && PyTuple_Check(args)); assert(kwds == NULL || PyDict_Check(kwds)); if (kwds != NULL && PyTuple_GET_SIZE(args) == 1 && PyDict_GET_SIZE(kwds) != 0) { PyErr_SetString(PyExc_TypeError, "type.__init__() takes no keyword arguments"); return -1; } if ((PyTuple_GET_SIZE(args) != 1 && PyTuple_GET_SIZE(args) != 3)) { PyErr_SetString(PyExc_TypeError, "type.__init__() takes 1 or 3 arguments"); return -1; } return 0; } unsigned long PyType_GetFlags(PyTypeObject *type) { return FT_ATOMIC_LOAD_ULONG_RELAXED(type->tp_flags); } int PyType_SUPPORTS_WEAKREFS(PyTypeObject *type) { return _PyType_SUPPORTS_WEAKREFS(type); } /* Determine the most derived metatype. */ PyTypeObject * _PyType_CalculateMetaclass(PyTypeObject *metatype, PyObject *bases) { Py_ssize_t i, nbases; PyTypeObject *winner; PyObject *tmp; PyTypeObject *tmptype; /* Determine the proper metatype to deal with this, and check for metatype conflicts while we're at it. Note that if some other metatype wins to contract, it's possible that its instances are not types. */ nbases = PyTuple_GET_SIZE(bases); winner = metatype; for (i = 0; i < nbases; i++) { tmp = PyTuple_GET_ITEM(bases, i); tmptype = Py_TYPE(tmp); if (PyType_IsSubtype(winner, tmptype)) continue; if (PyType_IsSubtype(tmptype, winner)) { winner = tmptype; continue; } /* else: */ PyErr_SetString(PyExc_TypeError, "metaclass conflict: " "the metaclass of a derived class " "must be a (non-strict) subclass " "of the metaclasses of all its bases"); return NULL; } return winner; } // Forward declaration static PyObject * type_new(PyTypeObject *metatype, PyObject *args, PyObject *kwds); typedef struct { PyTypeObject *metatype; PyObject *args; PyObject *kwds; PyObject *orig_dict; PyObject *name; PyObject *bases; PyTypeObject *base; PyObject *slots; Py_ssize_t nslot; int add_dict; int add_weak; int may_add_dict; int may_add_weak; } type_new_ctx; /* Check for valid slot names and two special cases */ static int type_new_visit_slots(type_new_ctx *ctx) { PyObject *slots = ctx->slots; Py_ssize_t nslot = ctx->nslot; for (Py_ssize_t i = 0; i < nslot; i++) { PyObject *name = PyTuple_GET_ITEM(slots, i); if (!valid_identifier(name)) { return -1; } assert(PyUnicode_Check(name)); if (_PyUnicode_Equal(name, &_Py_ID(__dict__))) { if (!ctx->may_add_dict || ctx->add_dict != 0) { PyErr_SetString(PyExc_TypeError, "__dict__ slot disallowed: " "we already got one"); return -1; } ctx->add_dict++; } if (_PyUnicode_Equal(name, &_Py_ID(__weakref__))) { if (!ctx->may_add_weak || ctx->add_weak != 0) { PyErr_SetString(PyExc_TypeError, "__weakref__ slot disallowed: " "we already got one"); return -1; } ctx->add_weak++; } } return 0; } /* Copy slots into a list, mangle names and sort them. Sorted names are needed for __class__ assignment. Convert them back to tuple at the end. */ static PyObject* type_new_copy_slots(type_new_ctx *ctx, PyObject *dict) { PyObject *slots = ctx->slots; Py_ssize_t nslot = ctx->nslot; Py_ssize_t new_nslot = nslot - ctx->add_dict - ctx->add_weak; PyObject *new_slots = PyList_New(new_nslot); if (new_slots == NULL) { return NULL; } Py_ssize_t j = 0; for (Py_ssize_t i = 0; i < nslot; i++) { PyObject *slot = PyTuple_GET_ITEM(slots, i); if ((ctx->add_dict && _PyUnicode_Equal(slot, &_Py_ID(__dict__))) || (ctx->add_weak && _PyUnicode_Equal(slot, &_Py_ID(__weakref__)))) { continue; } slot =_Py_Mangle(ctx->name, slot); if (!slot) { goto error; } PyList_SET_ITEM(new_slots, j, slot); int r = PyDict_Contains(dict, slot); if (r < 0) { goto error; } if (r > 0) { /* CPython inserts these names (when needed) into the namespace when creating a class. They will be deleted below so won't act as class variables. */ if (!_PyUnicode_Equal(slot, &_Py_ID(__qualname__)) && !_PyUnicode_Equal(slot, &_Py_ID(__classcell__)) && !_PyUnicode_Equal(slot, &_Py_ID(__classdictcell__))) { PyErr_Format(PyExc_ValueError, "%R in __slots__ conflicts with class variable", slot); goto error; } } j++; } assert(j == new_nslot); if (PyList_Sort(new_slots) == -1) { goto error; } PyObject *tuple = PyList_AsTuple(new_slots); Py_DECREF(new_slots); if (tuple == NULL) { return NULL; } assert(PyTuple_GET_SIZE(tuple) == new_nslot); return tuple; error: Py_DECREF(new_slots); return NULL; } static void type_new_slots_bases(type_new_ctx *ctx) { Py_ssize_t nbases = PyTuple_GET_SIZE(ctx->bases); if (nbases > 1 && ((ctx->may_add_dict && ctx->add_dict == 0) || (ctx->may_add_weak && ctx->add_weak == 0))) { for (Py_ssize_t i = 0; i < nbases; i++) { PyObject *obj = PyTuple_GET_ITEM(ctx->bases, i); if (obj == (PyObject *)ctx->base) { /* Skip primary base */ continue; } PyTypeObject *base = _PyType_CAST(obj); if (ctx->may_add_dict && ctx->add_dict == 0 && base->tp_dictoffset != 0) { ctx->add_dict++; } if (ctx->may_add_weak && ctx->add_weak == 0 && base->tp_weaklistoffset != 0) { ctx->add_weak++; } if (ctx->may_add_dict && ctx->add_dict == 0) { continue; } if (ctx->may_add_weak && ctx->add_weak == 0) { continue; } /* Nothing more to check */ break; } } } static int type_new_slots_impl(type_new_ctx *ctx, PyObject *dict) { /* Are slots allowed? */ if (ctx->nslot > 0 && ctx->base->tp_itemsize != 0) { PyErr_Format(PyExc_TypeError, "nonempty __slots__ not supported for subtype of '%s'", ctx->base->tp_name); return -1; } if (type_new_visit_slots(ctx) < 0) { return -1; } PyObject *new_slots = type_new_copy_slots(ctx, dict); if (new_slots == NULL) { return -1; } assert(PyTuple_CheckExact(new_slots)); Py_XSETREF(ctx->slots, new_slots); ctx->nslot = PyTuple_GET_SIZE(new_slots); /* Secondary bases may provide weakrefs or dict */ type_new_slots_bases(ctx); return 0; } static Py_ssize_t type_new_slots(type_new_ctx *ctx, PyObject *dict) { // Check for a __slots__ sequence variable in dict, and count it ctx->add_dict = 0; ctx->add_weak = 0; ctx->may_add_dict = (ctx->base->tp_dictoffset == 0); ctx->may_add_weak = (ctx->base->tp_weaklistoffset == 0 && ctx->base->tp_itemsize == 0); if (ctx->slots == NULL) { if (ctx->may_add_dict) { ctx->add_dict++; } if (ctx->may_add_weak) { ctx->add_weak++; } } else { /* Have slots */ if (type_new_slots_impl(ctx, dict) < 0) { return -1; } } return 0; } static PyTypeObject* type_new_alloc(type_new_ctx *ctx) { PyTypeObject *metatype = ctx->metatype; PyTypeObject *type; // Allocate the type object type = (PyTypeObject *)metatype->tp_alloc(metatype, ctx->nslot); if (type == NULL) { return NULL; } PyHeapTypeObject *et = (PyHeapTypeObject *)type; // Initialize tp_flags. // All heap types need GC, since we can create a reference cycle by storing // an instance on one of its parents. type->tp_flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC); // Initialize essential fields type->tp_as_async = &et->as_async; type->tp_as_number = &et->as_number; type->tp_as_sequence = &et->as_sequence; type->tp_as_mapping = &et->as_mapping; type->tp_as_buffer = &et->as_buffer; set_tp_bases(type, Py_NewRef(ctx->bases), 1); type->tp_base = (PyTypeObject *)Py_NewRef(ctx->base); type->tp_dealloc = subtype_dealloc; /* Always override allocation strategy to use regular heap */ type->tp_alloc = PyType_GenericAlloc; type->tp_free = PyObject_GC_Del; type->tp_traverse = subtype_traverse; type->tp_clear = subtype_clear; et->ht_name = Py_NewRef(ctx->name); et->ht_module = NULL; et->_ht_tpname = NULL; et->ht_token = NULL; #ifdef Py_GIL_DISABLED et->unique_id = _PyObject_AssignUniqueId((PyObject *)et); #endif return type; } static int type_new_set_name(const type_new_ctx *ctx, PyTypeObject *type) { Py_ssize_t name_size; type->tp_name = PyUnicode_AsUTF8AndSize(ctx->name, &name_size); if (!type->tp_name) { return -1; } if (strlen(type->tp_name) != (size_t)name_size) { PyErr_SetString(PyExc_ValueError, "type name must not contain null characters"); return -1; } return 0; } /* Set __module__ in the dict */ static int type_new_set_module(PyTypeObject *type) { PyObject *dict = lookup_tp_dict(type); int r = PyDict_Contains(dict, &_Py_ID(__module__)); if (r < 0) { return -1; } if (r > 0) { return 0; } PyObject *globals = PyEval_GetGlobals(); if (globals == NULL) { return 0; } PyObject *module; r = PyDict_GetItemRef(globals, &_Py_ID(__name__), &module); if (module) { r = PyDict_SetItem(dict, &_Py_ID(__module__), module); Py_DECREF(module); } return r; } /* Set ht_qualname to dict['__qualname__'] if available, else to __name__. The __qualname__ accessor will look for ht_qualname. */ static int type_new_set_ht_name(PyTypeObject *type) { PyHeapTypeObject *et = (PyHeapTypeObject *)type; PyObject *dict = lookup_tp_dict(type); PyObject *qualname; if (PyDict_GetItemRef(dict, &_Py_ID(__qualname__), &qualname) < 0) { return -1; } if (qualname != NULL) { if (!PyUnicode_Check(qualname)) { PyErr_Format(PyExc_TypeError, "type __qualname__ must be a str, not %s", Py_TYPE(qualname)->tp_name); Py_DECREF(qualname); return -1; } et->ht_qualname = qualname; if (PyDict_DelItem(dict, &_Py_ID(__qualname__)) < 0) { return -1; } } else { et->ht_qualname = Py_NewRef(et->ht_name); } return 0; } /* Set tp_doc to a copy of dict['__doc__'], if the latter is there and is a string. The __doc__ accessor will first look for tp_doc; if that fails, it will still look into __dict__. */ static int type_new_set_doc(PyTypeObject *type) { PyObject *dict = lookup_tp_dict(type); PyObject *doc = PyDict_GetItemWithError(dict, &_Py_ID(__doc__)); if (doc == NULL) { if (PyErr_Occurred()) { return -1; } // no __doc__ key return 0; } if (!PyUnicode_Check(doc)) { // ignore non-string __doc__ return 0; } const char *doc_str = PyUnicode_AsUTF8(doc); if (doc_str == NULL) { return -1; } // Silently truncate the docstring if it contains a null byte Py_ssize_t size = strlen(doc_str) + 1; char *tp_doc = (char *)PyMem_Malloc(size); if (tp_doc == NULL) { PyErr_NoMemory(); return -1; } memcpy(tp_doc, doc_str, size); type->tp_doc = tp_doc; return 0; } static int type_new_staticmethod(PyTypeObject *type, PyObject *attr) { PyObject *dict = lookup_tp_dict(type); PyObject *func = PyDict_GetItemWithError(dict, attr); if (func == NULL) { if (PyErr_Occurred()) { return -1; } return 0; } if (!PyFunction_Check(func)) { return 0; } PyObject *static_func = PyStaticMethod_New(func); if (static_func == NULL) { return -1; } if (PyDict_SetItem(dict, attr, static_func) < 0) { Py_DECREF(static_func); return -1; } Py_DECREF(static_func); return 0; } static int type_new_classmethod(PyTypeObject *type, PyObject *attr) { PyObject *dict = lookup_tp_dict(type); PyObject *func = PyDict_GetItemWithError(dict, attr); if (func == NULL) { if (PyErr_Occurred()) { return -1; } return 0; } if (!PyFunction_Check(func)) { return 0; } PyObject *method = PyClassMethod_New(func); if (method == NULL) { return -1; } if (PyDict_SetItem(dict, attr, method) < 0) { Py_DECREF(method); return -1; } Py_DECREF(method); return 0; } /* Add descriptors for custom slots from __slots__, or for __dict__ */ static int type_new_descriptors(const type_new_ctx *ctx, PyTypeObject *type) { PyHeapTypeObject *et = (PyHeapTypeObject *)type; Py_ssize_t slotoffset = ctx->base->tp_basicsize; if (et->ht_slots != NULL) { PyMemberDef *mp = _PyHeapType_GET_MEMBERS(et); Py_ssize_t nslot = PyTuple_GET_SIZE(et->ht_slots); for (Py_ssize_t i = 0; i < nslot; i++, mp++) { mp->name = PyUnicode_AsUTF8( PyTuple_GET_ITEM(et->ht_slots, i)); if (mp->name == NULL) { return -1; } mp->type = Py_T_OBJECT_EX; mp->offset = slotoffset; /* __dict__ and __weakref__ are already filtered out */ assert(strcmp(mp->name, "__dict__") != 0); assert(strcmp(mp->name, "__weakref__") != 0); slotoffset += sizeof(PyObject *); } } if (ctx->add_weak) { assert((type->tp_flags & Py_TPFLAGS_MANAGED_WEAKREF) == 0); type->tp_flags |= Py_TPFLAGS_MANAGED_WEAKREF; type->tp_weaklistoffset = MANAGED_WEAKREF_OFFSET; } if (ctx->add_dict) { assert((type->tp_flags & Py_TPFLAGS_MANAGED_DICT) == 0); type->tp_flags |= Py_TPFLAGS_MANAGED_DICT; type->tp_dictoffset = -1; } type->tp_basicsize = slotoffset; type->tp_itemsize = ctx->base->tp_itemsize; type->tp_members = _PyHeapType_GET_MEMBERS(et); return 0; } static void type_new_set_slots(const type_new_ctx *ctx, PyTypeObject *type) { if (type->tp_weaklistoffset && type->tp_dictoffset) { type->tp_getset = subtype_getsets_full; } else if (type->tp_weaklistoffset && !type->tp_dictoffset) { type->tp_getset = subtype_getsets_weakref_only; } else if (!type->tp_weaklistoffset && type->tp_dictoffset) { type->tp_getset = subtype_getsets_dict_only; } else { type->tp_getset = NULL; } /* Special case some slots */ if (type->tp_dictoffset != 0 || ctx->nslot > 0) { PyTypeObject *base = ctx->base; if (base->tp_getattr == NULL && base->tp_getattro == NULL) { type->tp_getattro = PyObject_GenericGetAttr; } if (base->tp_setattr == NULL && base->tp_setattro == NULL) { type->tp_setattro = PyObject_GenericSetAttr; } } } /* store type in class' cell if one is supplied */ static int type_new_set_classcell(PyTypeObject *type) { PyObject *dict = lookup_tp_dict(type); PyObject *cell = PyDict_GetItemWithError(dict, &_Py_ID(__classcell__)); if (cell == NULL) { if (PyErr_Occurred()) { return -1; } return 0; } /* At least one method requires a reference to its defining class */ if (!PyCell_Check(cell)) { PyErr_Format(PyExc_TypeError, "__classcell__ must be a nonlocal cell, not %.200R", Py_TYPE(cell)); return -1; } (void)PyCell_Set(cell, (PyObject *) type); if (PyDict_DelItem(dict, &_Py_ID(__classcell__)) < 0) { return -1; } return 0; } static int type_new_set_classdictcell(PyTypeObject *type) { PyObject *dict = lookup_tp_dict(type); PyObject *cell = PyDict_GetItemWithError(dict, &_Py_ID(__classdictcell__)); if (cell == NULL) { if (PyErr_Occurred()) { return -1; } return 0; } /* At least one method requires a reference to the dict of its defining class */ if (!PyCell_Check(cell)) { PyErr_Format(PyExc_TypeError, "__classdictcell__ must be a nonlocal cell, not %.200R", Py_TYPE(cell)); return -1; } (void)PyCell_Set(cell, (PyObject *)dict); if (PyDict_DelItem(dict, &_Py_ID(__classdictcell__)) < 0) { return -1; } return 0; } static int type_new_set_attrs(const type_new_ctx *ctx, PyTypeObject *type) { if (type_new_set_name(ctx, type) < 0) { return -1; } if (type_new_set_module(type) < 0) { return -1; } if (type_new_set_ht_name(type) < 0) { return -1; } if (type_new_set_doc(type) < 0) { return -1; } /* Special-case __new__: if it's a plain function, make it a static function */ if (type_new_staticmethod(type, &_Py_ID(__new__)) < 0) { return -1; } /* Special-case __init_subclass__ and __class_getitem__: if they are plain functions, make them classmethods */ if (type_new_classmethod(type, &_Py_ID(__init_subclass__)) < 0) { return -1; } if (type_new_classmethod(type, &_Py_ID(__class_getitem__)) < 0) { return -1; } if (type_new_descriptors(ctx, type) < 0) { return -1; } type_new_set_slots(ctx, type); if (type_new_set_classcell(type) < 0) { return -1; } if (type_new_set_classdictcell(type) < 0) { return -1; } return 0; } static int type_new_get_slots(type_new_ctx *ctx, PyObject *dict) { PyObject *slots = PyDict_GetItemWithError(dict, &_Py_ID(__slots__)); if (slots == NULL) { if (PyErr_Occurred()) { return -1; } ctx->slots = NULL; ctx->nslot = 0; return 0; } // Make it into a tuple PyObject *new_slots; if (PyUnicode_Check(slots)) { new_slots = PyTuple_Pack(1, slots); } else { new_slots = PySequence_Tuple(slots); } if (new_slots == NULL) { return -1; } assert(PyTuple_CheckExact(new_slots)); ctx->slots = new_slots; ctx->nslot = PyTuple_GET_SIZE(new_slots); return 0; } static PyTypeObject* type_new_init(type_new_ctx *ctx) { PyObject *dict = PyDict_Copy(ctx->orig_dict); if (dict == NULL) { goto error; } if (type_new_get_slots(ctx, dict) < 0) { goto error; } assert(!PyErr_Occurred()); if (type_new_slots(ctx, dict) < 0) { goto error; } PyTypeObject *type = type_new_alloc(ctx); if (type == NULL) { goto error; } set_tp_dict(type, dict); PyHeapTypeObject *et = (PyHeapTypeObject*)type; et->ht_slots = ctx->slots; ctx->slots = NULL; return type; error: Py_CLEAR(ctx->slots); Py_XDECREF(dict); return NULL; } static PyObject* type_new_impl(type_new_ctx *ctx) { PyTypeObject *type = type_new_init(ctx); if (type == NULL) { return NULL; } if (type_new_set_attrs(ctx, type) < 0) { goto error; } /* Initialize the rest */ if (PyType_Ready(type) < 0) { goto error; } // Put the proper slots in place fixup_slot_dispatchers(type); if (!_PyDict_HasOnlyStringKeys(type->tp_dict)) { if (PyErr_WarnFormat( PyExc_RuntimeWarning, 1, "non-string key in the __dict__ of class %.200s", type->tp_name) == -1) { goto error; } } if (type_new_set_names(type) < 0) { goto error; } if (type_new_init_subclass(type, ctx->kwds) < 0) { goto error; } assert(_PyType_CheckConsistency(type)); return (PyObject *)type; error: Py_DECREF(type); return NULL; } static int type_new_get_bases(type_new_ctx *ctx, PyObject **type) { Py_ssize_t nbases = PyTuple_GET_SIZE(ctx->bases); if (nbases == 0) { // Adjust for empty tuple bases ctx->base = &PyBaseObject_Type; PyObject *new_bases = PyTuple_Pack(1, ctx->base); if (new_bases == NULL) { return -1; } ctx->bases = new_bases; return 0; } for (Py_ssize_t i = 0; i < nbases; i++) { PyObject *base = PyTuple_GET_ITEM(ctx->bases, i); if (PyType_Check(base)) { continue; } int rc = PyObject_HasAttrWithError(base, &_Py_ID(__mro_entries__)); if (rc < 0) { return -1; } if (rc) { PyErr_SetString(PyExc_TypeError, "type() doesn't support MRO entry resolution; " "use types.new_class()"); return -1; } } // Search the bases for the proper metatype to deal with this PyTypeObject *winner; winner = _PyType_CalculateMetaclass(ctx->metatype, ctx->bases); if (winner == NULL) { return -1; } if (winner != ctx->metatype) { if (winner->tp_new != type_new) { /* Pass it to the winner */ *type = winner->tp_new(winner, ctx->args, ctx->kwds); if (*type == NULL) { return -1; } return 1; } ctx->metatype = winner; } /* Calculate best base, and check that all bases are type objects */ PyTypeObject *base = best_base(ctx->bases); if (base == NULL) { return -1; } ctx->base = base; ctx->bases = Py_NewRef(ctx->bases); return 0; } static PyObject * type_new(PyTypeObject *metatype, PyObject *args, PyObject *kwds) { assert(args != NULL && PyTuple_Check(args)); assert(kwds == NULL || PyDict_Check(kwds)); /* Parse arguments: (name, bases, dict) */ PyObject *name, *bases, *orig_dict; if (!PyArg_ParseTuple(args, "UO!O!:type.__new__", &name, &PyTuple_Type, &bases, &PyDict_Type, &orig_dict)) { return NULL; } type_new_ctx ctx = { .metatype = metatype, .args = args, .kwds = kwds, .orig_dict = orig_dict, .name = name, .bases = bases, .base = NULL, .slots = NULL, .nslot = 0, .add_dict = 0, .add_weak = 0, .may_add_dict = 0, .may_add_weak = 0}; PyObject *type = NULL; int res = type_new_get_bases(&ctx, &type); if (res < 0) { assert(PyErr_Occurred()); return NULL; } if (res == 1) { assert(type != NULL); return type; } assert(ctx.base != NULL); assert(ctx.bases != NULL); type = type_new_impl(&ctx); Py_DECREF(ctx.bases); return type; } static PyObject * type_vectorcall(PyObject *metatype, PyObject *const *args, size_t nargsf, PyObject *kwnames) { Py_ssize_t nargs = PyVectorcall_NARGS(nargsf); if (nargs == 1 && metatype == (PyObject *)&PyType_Type){ if (!_PyArg_NoKwnames("type", kwnames)) { return NULL; } return Py_NewRef(Py_TYPE(args[0])); } /* In other (much less common) cases, fall back to more flexible calling conventions. */ PyThreadState *tstate = _PyThreadState_GET(); return _PyObject_MakeTpCall(tstate, metatype, args, nargs, kwnames); } /* An array of type slot offsets corresponding to Py_tp_* constants, * for use in e.g. PyType_Spec and PyType_GetSlot. * Each entry has two offsets: "slot_offset" and "subslot_offset". * If is subslot_offset is -1, slot_offset is an offset within the * PyTypeObject struct. * Otherwise slot_offset is an offset to a pointer to a sub-slots struct * (such as "tp_as_number"), and subslot_offset is the offset within * that struct. * The actual table is generated by a script. */ static const PySlot_Offset pyslot_offsets[] = { {0, 0}, #include "typeslots.inc" }; /* Align up to the nearest multiple of alignof(max_align_t) * (like _Py_ALIGN_UP, but for a size rather than pointer) */ static Py_ssize_t _align_up(Py_ssize_t size) { return (size + ALIGNOF_MAX_ALIGN_T - 1) & ~(ALIGNOF_MAX_ALIGN_T - 1); } /* Given a PyType_FromMetaclass `bases` argument (NULL, type, or tuple of * types), return a tuple of types. */ inline static PyObject * get_bases_tuple(PyObject *bases_in, PyType_Spec *spec) { if (!bases_in) { /* Default: look in the spec, fall back to (type,). */ PyTypeObject *base = &PyBaseObject_Type; // borrowed ref PyObject *bases = NULL; // borrowed ref const PyType_Slot *slot; for (slot = spec->slots; slot->slot; slot++) { switch (slot->slot) { case Py_tp_base: base = slot->pfunc; break; case Py_tp_bases: bases = slot->pfunc; break; } } if (!bases) { return PyTuple_Pack(1, base); } if (PyTuple_Check(bases)) { return Py_NewRef(bases); } PyErr_SetString(PyExc_SystemError, "Py_tp_bases is not a tuple"); return NULL; } if (PyTuple_Check(bases_in)) { return Py_NewRef(bases_in); } // Not a tuple, should be a single type return PyTuple_Pack(1, bases_in); } static inline int check_basicsize_includes_size_and_offsets(PyTypeObject* type) { if (type->tp_alloc != PyType_GenericAlloc) { // Custom allocators can ignore tp_basicsize return 1; } Py_ssize_t max = (Py_ssize_t)type->tp_basicsize; if (type->tp_base && type->tp_base->tp_basicsize > type->tp_basicsize) { PyErr_Format(PyExc_TypeError, "tp_basicsize for type '%s' (%d) is too small for base '%s' (%d)", type->tp_name, type->tp_basicsize, type->tp_base->tp_name, type->tp_base->tp_basicsize); return 0; } if (type->tp_weaklistoffset + (Py_ssize_t)sizeof(PyObject*) > max) { PyErr_Format(PyExc_TypeError, "weaklist offset %d is out of bounds for type '%s' (tp_basicsize = %d)", type->tp_weaklistoffset, type->tp_name, type->tp_basicsize); return 0; } if (type->tp_dictoffset + (Py_ssize_t)sizeof(PyObject*) > max) { PyErr_Format(PyExc_TypeError, "dict offset %d is out of bounds for type '%s' (tp_basicsize = %d)", type->tp_dictoffset, type->tp_name, type->tp_basicsize); return 0; } if (type->tp_vectorcall_offset + (Py_ssize_t)sizeof(vectorcallfunc*) > max) { PyErr_Format(PyExc_TypeError, "vectorcall offset %d is out of bounds for type '%s' (tp_basicsize = %d)", type->tp_vectorcall_offset, type->tp_name, type->tp_basicsize); return 0; } return 1; } static int check_immutable_bases(const char *type_name, PyObject *bases, int skip_first) { Py_ssize_t i = 0; if (skip_first) { // When testing the MRO, skip the type itself i = 1; } for (; itype != Py_T_PYSSIZET) { PyErr_Format( PyExc_SystemError, "type of %s must be Py_T_PYSSIZET", memb->name); return -1; } if (memb->flags == Py_READONLY) { *dest = memb->offset; return 0; } else if (memb->flags == (Py_READONLY | Py_RELATIVE_OFFSET)) { *dest = memb->offset + type_data_offset; return 0; } PyErr_Format( PyExc_SystemError, "flags for %s must be Py_READONLY or (Py_READONLY | Py_RELATIVE_OFFSET)", memb->name); return -1; } PyObject * PyType_FromMetaclass( PyTypeObject *metaclass, PyObject *module, PyType_Spec *spec, PyObject *bases_in) { /* Invariant: A non-NULL value in one of these means this function holds * a strong reference or owns allocated memory. * These get decrefed/freed/returned at the end, on both success and error. */ PyHeapTypeObject *res = NULL; PyTypeObject *type; PyObject *bases = NULL; char *tp_doc = NULL; PyObject *ht_name = NULL; char *_ht_tpname = NULL; int r; /* Prepare slots that need special handling. * Keep in mind that a slot can be given multiple times: * if that would cause trouble (leaks, UB, ...), raise an exception. */ const PyType_Slot *slot; Py_ssize_t nmembers = 0; const PyMemberDef *weaklistoffset_member = NULL; const PyMemberDef *dictoffset_member = NULL; const PyMemberDef *vectorcalloffset_member = NULL; char *res_start; for (slot = spec->slots; slot->slot; slot++) { if (slot->slot < 0 || (size_t)slot->slot >= Py_ARRAY_LENGTH(pyslot_offsets)) { PyErr_SetString(PyExc_RuntimeError, "invalid slot offset"); goto finally; } switch (slot->slot) { case Py_tp_members: if (nmembers != 0) { PyErr_SetString( PyExc_SystemError, "Multiple Py_tp_members slots are not supported."); goto finally; } for (const PyMemberDef *memb = slot->pfunc; memb->name != NULL; memb++) { nmembers++; if (memb->flags & Py_RELATIVE_OFFSET) { if (spec->basicsize > 0) { PyErr_SetString( PyExc_SystemError, "With Py_RELATIVE_OFFSET, basicsize must be negative."); goto finally; } if (memb->offset < 0 || memb->offset >= -spec->basicsize) { PyErr_SetString( PyExc_SystemError, "Member offset out of range (0..-basicsize)"); goto finally; } } if (strcmp(memb->name, "__weaklistoffset__") == 0) { weaklistoffset_member = memb; } if (strcmp(memb->name, "__dictoffset__") == 0) { dictoffset_member = memb; } if (strcmp(memb->name, "__vectorcalloffset__") == 0) { vectorcalloffset_member = memb; } } break; case Py_tp_doc: /* For the docstring slot, which usually points to a static string literal, we need to make a copy */ if (tp_doc != NULL) { PyErr_SetString( PyExc_SystemError, "Multiple Py_tp_doc slots are not supported."); goto finally; } if (slot->pfunc == NULL) { PyMem_Free(tp_doc); tp_doc = NULL; } else { size_t len = strlen(slot->pfunc)+1; tp_doc = PyMem_Malloc(len); if (tp_doc == NULL) { PyErr_NoMemory(); goto finally; } memcpy(tp_doc, slot->pfunc, len); } break; } } /* Prepare the type name and qualname */ if (spec->name == NULL) { PyErr_SetString(PyExc_SystemError, "Type spec does not define the name field."); goto finally; } const char *s = strrchr(spec->name, '.'); if (s == NULL) { s = spec->name; } else { s++; } ht_name = PyUnicode_FromString(s); if (!ht_name) { goto finally; } /* Copy spec->name to a buffer we own. * * Unfortunately, we can't use tp_name directly (with some * flag saying that it should be deallocated with the type), * because tp_name is public API and may be set independently * of any such flag. * So, we use a separate buffer, _ht_tpname, that's always * deallocated with the type (if it's non-NULL). */ Py_ssize_t name_buf_len = strlen(spec->name) + 1; _ht_tpname = PyMem_Malloc(name_buf_len); if (_ht_tpname == NULL) { goto finally; } memcpy(_ht_tpname, spec->name, name_buf_len); /* Get a tuple of bases. * bases is a strong reference (unlike bases_in). */ bases = get_bases_tuple(bases_in, spec); if (!bases) { goto finally; } /* If this is an immutable type, check if all bases are also immutable, * and (for now) fire a deprecation warning if not. * (This isn't necessary for static types: those can't have heap bases, * and only heap types can be mutable.) */ if (spec->flags & Py_TPFLAGS_IMMUTABLETYPE) { if (check_immutable_bases(spec->name, bases, 0) < 0) { goto finally; } } /* Calculate the metaclass */ if (!metaclass) { metaclass = &PyType_Type; } metaclass = _PyType_CalculateMetaclass(metaclass, bases); if (metaclass == NULL) { goto finally; } if (!PyType_Check(metaclass)) { PyErr_Format(PyExc_TypeError, "Metaclass '%R' is not a subclass of 'type'.", metaclass); goto finally; } if (metaclass->tp_new && metaclass->tp_new != PyType_Type.tp_new) { PyErr_SetString( PyExc_TypeError, "Metaclasses with custom tp_new are not supported."); goto finally; } /* Calculate best base, and check that all bases are type objects */ PyTypeObject *base = best_base(bases); // borrowed ref if (base == NULL) { goto finally; } // best_base should check Py_TPFLAGS_BASETYPE & raise a proper exception, // here we just check its work assert(_PyType_HasFeature(base, Py_TPFLAGS_BASETYPE)); /* Calculate sizes */ Py_ssize_t basicsize = spec->basicsize; Py_ssize_t type_data_offset = spec->basicsize; if (basicsize == 0) { /* Inherit */ basicsize = base->tp_basicsize; } else if (basicsize < 0) { /* Extend */ type_data_offset = _align_up(base->tp_basicsize); basicsize = type_data_offset + _align_up(-spec->basicsize); /* Inheriting variable-sized types is limited */ if (base->tp_itemsize && !((base->tp_flags | spec->flags) & Py_TPFLAGS_ITEMS_AT_END)) { PyErr_SetString( PyExc_SystemError, "Cannot extend variable-size class without Py_TPFLAGS_ITEMS_AT_END."); goto finally; } } Py_ssize_t itemsize = spec->itemsize; /* Compute special offsets */ Py_ssize_t weaklistoffset = 0; if (special_offset_from_member(weaklistoffset_member, type_data_offset, &weaklistoffset) < 0) { goto finally; } Py_ssize_t dictoffset = 0; if (special_offset_from_member(dictoffset_member, type_data_offset, &dictoffset) < 0) { goto finally; } Py_ssize_t vectorcalloffset = 0; if (special_offset_from_member(vectorcalloffset_member, type_data_offset, &vectorcalloffset) < 0) { goto finally; } /* Allocate the new type * * Between here and PyType_Ready, we should limit: * - calls to Python code * - raising exceptions * - memory allocations */ res = (PyHeapTypeObject*)metaclass->tp_alloc(metaclass, nmembers); if (res == NULL) { goto finally; } res_start = (char*)res; type = &res->ht_type; /* The flags must be initialized early, before the GC traverses us */ type->tp_flags = spec->flags | Py_TPFLAGS_HEAPTYPE; res->ht_module = Py_XNewRef(module); /* Initialize essential fields */ type->tp_as_async = &res->as_async; type->tp_as_number = &res->as_number; type->tp_as_sequence = &res->as_sequence; type->tp_as_mapping = &res->as_mapping; type->tp_as_buffer = &res->as_buffer; /* Set slots we have prepared */ type->tp_base = (PyTypeObject *)Py_NewRef(base); set_tp_bases(type, bases, 1); bases = NULL; // We give our reference to bases to the type type->tp_doc = tp_doc; tp_doc = NULL; // Give ownership of the allocated memory to the type res->ht_qualname = Py_NewRef(ht_name); res->ht_name = ht_name; ht_name = NULL; // Give our reference to the type type->tp_name = _ht_tpname; res->_ht_tpname = _ht_tpname; _ht_tpname = NULL; // Give ownership to the type /* Copy the sizes */ type->tp_basicsize = basicsize; type->tp_itemsize = itemsize; /* Copy all the ordinary slots */ for (slot = spec->slots; slot->slot; slot++) { switch (slot->slot) { case Py_tp_base: case Py_tp_bases: case Py_tp_doc: /* Processed above */ break; case Py_tp_members: { /* Move the slots to the heap type itself */ size_t len = Py_TYPE(type)->tp_itemsize * nmembers; memcpy(_PyHeapType_GET_MEMBERS(res), slot->pfunc, len); type->tp_members = _PyHeapType_GET_MEMBERS(res); PyMemberDef *memb; Py_ssize_t i; for (memb = _PyHeapType_GET_MEMBERS(res), i = nmembers; i > 0; ++memb, --i) { if (memb->flags & Py_RELATIVE_OFFSET) { memb->flags &= ~Py_RELATIVE_OFFSET; memb->offset += type_data_offset; } } } break; case Py_tp_token: { res->ht_token = slot->pfunc == Py_TP_USE_SPEC ? spec : slot->pfunc; } break; default: { /* Copy other slots directly */ PySlot_Offset slotoffsets = pyslot_offsets[slot->slot]; short slot_offset = slotoffsets.slot_offset; if (slotoffsets.subslot_offset == -1) { /* Set a slot in the main PyTypeObject */ *(void**)((char*)res_start + slot_offset) = slot->pfunc; } else { void *procs = *(void**)((char*)res_start + slot_offset); short subslot_offset = slotoffsets.subslot_offset; *(void**)((char*)procs + subslot_offset) = slot->pfunc; } } break; } } if (type->tp_dealloc == NULL) { /* It's a heap type, so needs the heap types' dealloc. subtype_dealloc will call the base type's tp_dealloc, if necessary. */ type->tp_dealloc = subtype_dealloc; } /* Set up offsets */ type->tp_vectorcall_offset = vectorcalloffset; type->tp_weaklistoffset = weaklistoffset; type->tp_dictoffset = dictoffset; #ifdef Py_GIL_DISABLED // Assign a unique id to enable per-thread refcounting res->unique_id = _PyObject_AssignUniqueId((PyObject *)res); #endif /* Ready the type (which includes inheritance). * * After this call we should generally only touch up what's * accessible to Python code, like __dict__. */ if (PyType_Ready(type) < 0) { goto finally; } if (!check_basicsize_includes_size_and_offsets(type)) { goto finally; } PyObject *dict = lookup_tp_dict(type); if (type->tp_doc) { PyObject *__doc__ = PyUnicode_FromString(_PyType_DocWithoutSignature(type->tp_name, type->tp_doc)); if (!__doc__) { goto finally; } r = PyDict_SetItem(dict, &_Py_ID(__doc__), __doc__); Py_DECREF(__doc__); if (r < 0) { goto finally; } } if (weaklistoffset) { if (PyDict_DelItem(dict, &_Py_ID(__weaklistoffset__)) < 0) { goto finally; } } if (dictoffset) { if (PyDict_DelItem(dict, &_Py_ID(__dictoffset__)) < 0) { goto finally; } } /* Set type.__module__ */ r = PyDict_Contains(dict, &_Py_ID(__module__)); if (r < 0) { goto finally; } if (r == 0) { s = strrchr(spec->name, '.'); if (s != NULL) { PyObject *modname = PyUnicode_FromStringAndSize( spec->name, (Py_ssize_t)(s - spec->name)); if (modname == NULL) { goto finally; } r = PyDict_SetItem(dict, &_Py_ID(__module__), modname); Py_DECREF(modname); if (r != 0) { goto finally; } } else { if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, "builtin type %.200s has no __module__ attribute", spec->name)) goto finally; } } assert(_PyType_CheckConsistency(type)); finally: if (PyErr_Occurred()) { Py_CLEAR(res); } Py_XDECREF(bases); PyMem_Free(tp_doc); Py_XDECREF(ht_name); PyMem_Free(_ht_tpname); return (PyObject*)res; } PyObject * PyType_FromModuleAndSpec(PyObject *module, PyType_Spec *spec, PyObject *bases) { return PyType_FromMetaclass(NULL, module, spec, bases); } PyObject * PyType_FromSpecWithBases(PyType_Spec *spec, PyObject *bases) { return PyType_FromMetaclass(NULL, NULL, spec, bases); } PyObject * PyType_FromSpec(PyType_Spec *spec) { return PyType_FromMetaclass(NULL, NULL, spec, NULL); } PyObject * PyType_GetName(PyTypeObject *type) { return type_name(type, NULL); } PyObject * PyType_GetQualName(PyTypeObject *type) { return type_qualname(type, NULL); } PyObject * PyType_GetModuleName(PyTypeObject *type) { return type_module(type); } void * PyType_GetSlot(PyTypeObject *type, int slot) { void *parent_slot; int slots_len = Py_ARRAY_LENGTH(pyslot_offsets); if (slot <= 0 || slot >= slots_len) { PyErr_BadInternalCall(); return NULL; } int slot_offset = pyslot_offsets[slot].slot_offset; if (slot_offset >= (int)sizeof(PyTypeObject)) { if (!_PyType_HasFeature(type, Py_TPFLAGS_HEAPTYPE)) { return NULL; } } parent_slot = *(void**)((char*)type + slot_offset); if (parent_slot == NULL) { return NULL; } /* Return slot directly if we have no sub slot. */ if (pyslot_offsets[slot].subslot_offset == -1) { return parent_slot; } return *(void**)((char*)parent_slot + pyslot_offsets[slot].subslot_offset); } PyObject * PyType_GetModule(PyTypeObject *type) { assert(PyType_Check(type)); if (!_PyType_HasFeature(type, Py_TPFLAGS_HEAPTYPE)) { PyErr_Format( PyExc_TypeError, "PyType_GetModule: Type '%s' is not a heap type", type->tp_name); return NULL; } PyHeapTypeObject* et = (PyHeapTypeObject*)type; if (!et->ht_module) { PyErr_Format( PyExc_TypeError, "PyType_GetModule: Type '%s' has no associated module", type->tp_name); return NULL; } return et->ht_module; } void * PyType_GetModuleState(PyTypeObject *type) { PyObject *m = PyType_GetModule(type); if (m == NULL) { return NULL; } return _PyModule_GetState(m); } /* Get the module of the first superclass where the module has the * given PyModuleDef. */ PyObject * PyType_GetModuleByDef(PyTypeObject *type, PyModuleDef *def) { assert(PyType_Check(type)); if (!_PyType_HasFeature(type, Py_TPFLAGS_HEAPTYPE)) { // type_ready_mro() ensures that no heap type is // contained in a static type MRO. return NULL; } else { PyHeapTypeObject *ht = (PyHeapTypeObject*)type; PyObject *module = ht->ht_module; if (module && _PyModule_GetDef(module) == def) { return module; } } PyObject *res = NULL; BEGIN_TYPE_LOCK(); PyObject *mro = lookup_tp_mro(type); // The type must be ready assert(mro != NULL); assert(PyTuple_Check(mro)); // mro_invoke() ensures that the type MRO cannot be empty. assert(PyTuple_GET_SIZE(mro) >= 1); // Also, the first item in the MRO is the type itself, which // we already checked above. We skip it in the loop. assert(PyTuple_GET_ITEM(mro, 0) == (PyObject *)type); Py_ssize_t n = PyTuple_GET_SIZE(mro); for (Py_ssize_t i = 1; i < n; i++) { PyObject *super = PyTuple_GET_ITEM(mro, i); if (!_PyType_HasFeature((PyTypeObject *)super, Py_TPFLAGS_HEAPTYPE)) { // Static types in the MRO need to be skipped continue; } PyHeapTypeObject *ht = (PyHeapTypeObject*)super; PyObject *module = ht->ht_module; if (module && _PyModule_GetDef(module) == def) { res = module; break; } } END_TYPE_LOCK(); if (res == NULL) { PyErr_Format( PyExc_TypeError, "PyType_GetModuleByDef: No superclass of '%s' has the given module", type->tp_name); } return res; } static PyTypeObject * get_base_by_token_recursive(PyObject *bases, void *token) { assert(bases != NULL); PyTypeObject *res = NULL; Py_ssize_t n = PyTuple_GET_SIZE(bases); for (Py_ssize_t i = 0; i < n; i++) { PyTypeObject *base = _PyType_CAST(PyTuple_GET_ITEM(bases, i)); if (!_PyType_HasFeature(base, Py_TPFLAGS_HEAPTYPE)) { continue; } if (((PyHeapTypeObject*)base)->ht_token == token) { res = base; break; } base = get_base_by_token_recursive(lookup_tp_bases(base), token); if (base != NULL) { res = base; break; } } return res; // Prefer to return recursively from one place } int PyType_GetBaseByToken(PyTypeObject *type, void *token, PyTypeObject **result) { if (result != NULL) { *result = NULL; } if (token == NULL) { PyErr_Format(PyExc_SystemError, "PyType_GetBaseByToken called with token=NULL"); return -1; } if (!PyType_Check(type)) { PyErr_Format(PyExc_TypeError, "expected a type, got a '%T' object", type); return -1; } if (!_PyType_HasFeature(type, Py_TPFLAGS_HEAPTYPE)) { // No static type has a heaptype superclass, // which is ensured by type_ready_mro(). return 0; } if (((PyHeapTypeObject*)type)->ht_token == token) { found: if (result != NULL) { *result = (PyTypeObject *)Py_NewRef(type); } return 1; } PyObject *mro = type->tp_mro; // No lookup, following PyType_IsSubtype() if (mro == NULL) { PyTypeObject *base; base = get_base_by_token_recursive(lookup_tp_bases(type), token); if (base != NULL) { // Copying the given type can cause a slowdown, // unlike the overwrite below. type = base; goto found; } return 0; } // mro_invoke() ensures that the type MRO cannot be empty. assert(PyTuple_GET_SIZE(mro) >= 1); // Also, the first item in the MRO is the type itself, which // we already checked above. We skip it in the loop. assert(PyTuple_GET_ITEM(mro, 0) == (PyObject *)type); Py_ssize_t n = PyTuple_GET_SIZE(mro); for (Py_ssize_t i = 1; i < n; i++) { PyTypeObject *base = (PyTypeObject *)PyTuple_GET_ITEM(mro, i); if (_PyType_HasFeature(base, Py_TPFLAGS_HEAPTYPE) && ((PyHeapTypeObject*)base)->ht_token == token) { type = base; goto found; } } return 0; } void * PyObject_GetTypeData(PyObject *obj, PyTypeObject *cls) { assert(PyObject_TypeCheck(obj, cls)); return (char *)obj + _align_up(cls->tp_base->tp_basicsize); } Py_ssize_t PyType_GetTypeDataSize(PyTypeObject *cls) { ptrdiff_t result = cls->tp_basicsize - _align_up(cls->tp_base->tp_basicsize); if (result < 0) { return 0; } return result; } void * PyObject_GetItemData(PyObject *obj) { if (!PyType_HasFeature(Py_TYPE(obj), Py_TPFLAGS_ITEMS_AT_END)) { PyErr_Format(PyExc_TypeError, "type '%s' does not have Py_TPFLAGS_ITEMS_AT_END", Py_TYPE(obj)->tp_name); return NULL; } return (char *)obj + Py_TYPE(obj)->tp_basicsize; } /* Internal API to look for a name through the MRO, bypassing the method cache. This returns a borrowed reference, and might set an exception. 'error' is set to: -1: error with exception; 1: error without exception; 0: ok */ static PyObject * find_name_in_mro(PyTypeObject *type, PyObject *name, int *error) { ASSERT_TYPE_LOCK_HELD(); Py_hash_t hash = _PyObject_HashFast(name); if (hash == -1) { *error = -1; return NULL; } /* Look in tp_dict of types in MRO */ PyObject *mro = lookup_tp_mro(type); if (mro == NULL) { if (!is_readying(type)) { if (PyType_Ready(type) < 0) { *error = -1; return NULL; } mro = lookup_tp_mro(type); } if (mro == NULL) { *error = 1; return NULL; } } PyObject *res = NULL; /* Keep a strong reference to mro because type->tp_mro can be replaced during dict lookup, e.g. when comparing to non-string keys. */ Py_INCREF(mro); Py_ssize_t n = PyTuple_GET_SIZE(mro); for (Py_ssize_t i = 0; i < n; i++) { PyObject *base = PyTuple_GET_ITEM(mro, i); PyObject *dict = lookup_tp_dict(_PyType_CAST(base)); assert(dict && PyDict_Check(dict)); if (_PyDict_GetItemRef_KnownHash((PyDictObject *)dict, name, hash, &res) < 0) { *error = -1; goto done; } if (res != NULL) { break; } } *error = 0; done: Py_DECREF(mro); return res; } /* Check if the "readied" PyUnicode name is a double-underscore special name. */ static int is_dunder_name(PyObject *name) { Py_ssize_t length = PyUnicode_GET_LENGTH(name); int kind = PyUnicode_KIND(name); /* Special names contain at least "__x__" and are always ASCII. */ if (length > 4 && kind == PyUnicode_1BYTE_KIND) { const Py_UCS1 *characters = PyUnicode_1BYTE_DATA(name); return ( ((characters[length-2] == '_') && (characters[length-1] == '_')) && ((characters[0] == '_') && (characters[1] == '_')) ); } return 0; } static PyObject * update_cache(struct type_cache_entry *entry, PyObject *name, unsigned int version_tag, PyObject *value) { _Py_atomic_store_uint32_relaxed(&entry->version, version_tag); _Py_atomic_store_ptr_relaxed(&entry->value, value); /* borrowed */ assert(_PyASCIIObject_CAST(name)->hash != -1); OBJECT_STAT_INC_COND(type_cache_collisions, entry->name != Py_None && entry->name != name); // We're releasing this under the lock for simplicity sake because it's always a // exact unicode object or Py_None so it's safe to do so. PyObject *old_name = entry->name; _Py_atomic_store_ptr_relaxed(&entry->name, Py_NewRef(name)); return old_name; } #if Py_GIL_DISABLED static void update_cache_gil_disabled(struct type_cache_entry *entry, PyObject *name, unsigned int version_tag, PyObject *value) { _PySeqLock_LockWrite(&entry->sequence); // update the entry if (entry->name == name && entry->value == value && entry->version == version_tag) { // We raced with another update, bail and restore previous sequence. _PySeqLock_AbandonWrite(&entry->sequence); return; } PyObject *old_value = update_cache(entry, name, version_tag, value); // Then update sequence to the next valid value _PySeqLock_UnlockWrite(&entry->sequence); Py_DECREF(old_value); } #endif void _PyTypes_AfterFork(void) { #ifdef Py_GIL_DISABLED struct type_cache *cache = get_type_cache(); for (Py_ssize_t i = 0; i < (1 << MCACHE_SIZE_EXP); i++) { struct type_cache_entry *entry = &cache->hashtable[i]; if (_PySeqLock_AfterFork(&entry->sequence)) { // Entry was in the process of updating while forking, clear it... entry->value = NULL; Py_SETREF(entry->name, Py_None); entry->version = 0; } } #endif } /* Internal API to look for a name through the MRO. This returns a borrowed reference, and doesn't set an exception! */ PyObject * _PyType_LookupRef(PyTypeObject *type, PyObject *name) { PyObject *res; int error; PyInterpreterState *interp = _PyInterpreterState_GET(); unsigned int h = MCACHE_HASH_METHOD(type, name); struct type_cache *cache = get_type_cache(); struct type_cache_entry *entry = &cache->hashtable[h]; #ifdef Py_GIL_DISABLED // synchronize-with other writing threads by doing an acquire load on the sequence while (1) { uint32_t sequence = _PySeqLock_BeginRead(&entry->sequence); uint32_t entry_version = _Py_atomic_load_uint32_relaxed(&entry->version); uint32_t type_version = _Py_atomic_load_uint32_acquire(&type->tp_version_tag); if (entry_version == type_version && _Py_atomic_load_ptr_relaxed(&entry->name) == name) { OBJECT_STAT_INC_COND(type_cache_hits, !is_dunder_name(name)); OBJECT_STAT_INC_COND(type_cache_dunder_hits, is_dunder_name(name)); PyObject *value = _Py_atomic_load_ptr_relaxed(&entry->value); // If the sequence is still valid then we're done if (value == NULL || _Py_TryIncref(value)) { if (_PySeqLock_EndRead(&entry->sequence, sequence)) { return value; } Py_XDECREF(value); } else { // If we can't incref the object we need to fallback to locking break; } } else { // cache miss break; } } #else if (entry->version == type->tp_version_tag && entry->name == name) { assert(type->tp_version_tag); OBJECT_STAT_INC_COND(type_cache_hits, !is_dunder_name(name)); OBJECT_STAT_INC_COND(type_cache_dunder_hits, is_dunder_name(name)); Py_XINCREF(entry->value); return entry->value; } #endif OBJECT_STAT_INC_COND(type_cache_misses, !is_dunder_name(name)); OBJECT_STAT_INC_COND(type_cache_dunder_misses, is_dunder_name(name)); /* We may end up clearing live exceptions below, so make sure it's ours. */ assert(!PyErr_Occurred()); // We need to atomically do the lookup and capture the version before // anyone else can modify our mro or mutate the type. int has_version = 0; int version = 0; BEGIN_TYPE_LOCK(); res = find_name_in_mro(type, name, &error); if (MCACHE_CACHEABLE_NAME(name)) { has_version = assign_version_tag(interp, type); version = type->tp_version_tag; } END_TYPE_LOCK(); /* Only put NULL results into cache if there was no error. */ if (error) { /* It's not ideal to clear the error condition, but this function is documented as not setting an exception, and I don't want to change that. E.g., when PyType_Ready() can't proceed, it won't set the "ready" flag, so future attempts to ready the same type will call it again -- hopefully in a context that propagates the exception out. */ if (error == -1) { PyErr_Clear(); } return NULL; } if (has_version) { #if Py_GIL_DISABLED update_cache_gil_disabled(entry, name, version, res); #else PyObject *old_value = update_cache(entry, name, version, res); Py_DECREF(old_value); #endif } return res; } PyObject * _PyType_Lookup(PyTypeObject *type, PyObject *name) { PyObject *res = _PyType_LookupRef(type, name); Py_XDECREF(res); return res; } static void set_flags(PyTypeObject *self, unsigned long mask, unsigned long flags) { ASSERT_TYPE_LOCK_HELD(); self->tp_flags = (self->tp_flags & ~mask) | flags; } void _PyType_SetFlags(PyTypeObject *self, unsigned long mask, unsigned long flags) { BEGIN_TYPE_LOCK(); set_flags(self, mask, flags); END_TYPE_LOCK(); } static void set_flags_recursive(PyTypeObject *self, unsigned long mask, unsigned long flags) { if (PyType_HasFeature(self, Py_TPFLAGS_IMMUTABLETYPE) || (self->tp_flags & mask) == flags) { return; } set_flags(self, mask, flags); PyObject *children = _PyType_GetSubclasses(self); if (children == NULL) { return; } for (Py_ssize_t i = 0; i < PyList_GET_SIZE(children); i++) { PyObject *child = PyList_GET_ITEM(children, i); set_flags_recursive((PyTypeObject *)child, mask, flags); } Py_DECREF(children); } void _PyType_SetFlagsRecursive(PyTypeObject *self, unsigned long mask, unsigned long flags) { BEGIN_TYPE_LOCK(); set_flags_recursive(self, mask, flags); END_TYPE_LOCK(); } /* This is similar to PyObject_GenericGetAttr(), but uses _PyType_LookupRef() instead of just looking in type->tp_dict. The argument suppress_missing_attribute is used to provide a fast path for hasattr. The possible values are: * NULL: do not suppress the exception * Non-zero pointer: suppress the PyExc_AttributeError and set *suppress_missing_attribute to 1 to signal we are returning NULL while having suppressed the exception (other exceptions are not suppressed) */ PyObject * _Py_type_getattro_impl(PyTypeObject *type, PyObject *name, int * suppress_missing_attribute) { PyTypeObject *metatype = Py_TYPE(type); PyObject *meta_attribute, *attribute; descrgetfunc meta_get; PyObject* res; if (!PyUnicode_Check(name)) { PyErr_Format(PyExc_TypeError, "attribute name must be string, not '%.200s'", Py_TYPE(name)->tp_name); return NULL; } /* Initialize this type (we'll assume the metatype is initialized) */ if (!_PyType_IsReady(type)) { if (PyType_Ready(type) < 0) return NULL; } /* No readable descriptor found yet */ meta_get = NULL; /* Look for the attribute in the metatype */ meta_attribute = _PyType_LookupRef(metatype, name); if (meta_attribute != NULL) { meta_get = Py_TYPE(meta_attribute)->tp_descr_get; if (meta_get != NULL && PyDescr_IsData(meta_attribute)) { /* Data descriptors implement tp_descr_set to intercept * writes. Assume the attribute is not overridden in * type's tp_dict (and bases): call the descriptor now. */ res = meta_get(meta_attribute, (PyObject *)type, (PyObject *)metatype); Py_DECREF(meta_attribute); return res; } } /* No data descriptor found on metatype. Look in tp_dict of this * type and its bases */ attribute = _PyType_LookupRef(type, name); if (attribute != NULL) { /* Implement descriptor functionality, if any */ descrgetfunc local_get = Py_TYPE(attribute)->tp_descr_get; Py_XDECREF(meta_attribute); if (local_get != NULL) { /* NULL 2nd argument indicates the descriptor was * found on the target object itself (or a base) */ res = local_get(attribute, (PyObject *)NULL, (PyObject *)type); Py_DECREF(attribute); return res; } return attribute; } /* No attribute found in local __dict__ (or bases): use the * descriptor from the metatype, if any */ if (meta_get != NULL) { PyObject *res; res = meta_get(meta_attribute, (PyObject *)type, (PyObject *)metatype); Py_DECREF(meta_attribute); return res; } /* If an ordinary attribute was found on the metatype, return it now */ if (meta_attribute != NULL) { return meta_attribute; } /* Give up */ if (suppress_missing_attribute == NULL) { PyErr_Format(PyExc_AttributeError, "type object '%.100s' has no attribute '%U'", type->tp_name, name); } else { // signal the caller we have not set an PyExc_AttributeError and gave up *suppress_missing_attribute = 1; } return NULL; } /* This is similar to PyObject_GenericGetAttr(), but uses _PyType_LookupRef() instead of just looking in type->tp_dict. */ PyObject * _Py_type_getattro(PyObject *type, PyObject *name) { return _Py_type_getattro_impl((PyTypeObject *)type, name, NULL); } static int type_update_dict(PyTypeObject *type, PyDictObject *dict, PyObject *name, PyObject *value, PyObject **old_value) { // We don't want any re-entrancy between when we update the dict // and call type_modified_unlocked, including running the destructor // of the current value as it can observe the cache in an inconsistent // state. Because we have an exact unicode and our dict has exact // unicodes we know that this will all complete without releasing // the locks. if (_PyDict_GetItemRef_Unicode_LockHeld(dict, name, old_value) < 0) { return -1; } /* Clear the VALID_VERSION flag of 'type' and all its subclasses. This could possibly be unified with the update_subclasses() recursion in update_slot(), but carefully: they each have their own conditions on which to stop recursing into subclasses. */ type_modified_unlocked(type); if (_PyDict_SetItem_LockHeld(dict, name, value) < 0) { PyErr_Format(PyExc_AttributeError, "type object '%.50s' has no attribute '%U'", ((PyTypeObject*)type)->tp_name, name); _PyObject_SetAttributeErrorContext((PyObject *)type, name); return -1; } if (is_dunder_name(name)) { return update_slot(type, name); } return 0; } static int type_setattro(PyObject *self, PyObject *name, PyObject *value) { PyTypeObject *type = (PyTypeObject *)self; int res; if (type->tp_flags & Py_TPFLAGS_IMMUTABLETYPE) { PyErr_Format( PyExc_TypeError, "cannot set %R attribute of immutable type '%s'", name, type->tp_name); return -1; } if (!PyUnicode_Check(name)) { PyErr_Format(PyExc_TypeError, "attribute name must be string, not '%.200s'", Py_TYPE(name)->tp_name); return -1; } if (PyUnicode_CheckExact(name)) { Py_INCREF(name); } else { name = _PyUnicode_Copy(name); if (name == NULL) return -1; } if (!PyUnicode_CHECK_INTERNED(name)) { PyInterpreterState *interp = _PyInterpreterState_GET(); _PyUnicode_InternMortal(interp, &name); if (!PyUnicode_CHECK_INTERNED(name)) { PyErr_SetString(PyExc_MemoryError, "Out of memory interning an attribute name"); Py_DECREF(name); return -1; } } PyTypeObject *metatype = Py_TYPE(type); assert(!_PyType_HasFeature(metatype, Py_TPFLAGS_INLINE_VALUES)); assert(!_PyType_HasFeature(metatype, Py_TPFLAGS_MANAGED_DICT)); PyObject *old_value = NULL; PyObject *descr = _PyType_LookupRef(metatype, name); if (descr != NULL) { descrsetfunc f = Py_TYPE(descr)->tp_descr_set; if (f != NULL) { res = f(descr, (PyObject *)type, value); goto done; } } PyObject *dict = type->tp_dict; if (dict == NULL) { // We don't just do PyType_Ready because we could already be readying BEGIN_TYPE_LOCK(); dict = type->tp_dict; if (dict == NULL) { dict = type->tp_dict = PyDict_New(); } END_TYPE_LOCK(); if (dict == NULL) { res = -1; goto done; } } BEGIN_TYPE_DICT_LOCK(dict); res = type_update_dict(type, (PyDictObject *)dict, name, value, &old_value); assert(_PyType_CheckConsistency(type)); END_TYPE_DICT_LOCK(); done: Py_DECREF(name); Py_XDECREF(descr); Py_XDECREF(old_value); return res; } static void type_dealloc_common(PyTypeObject *type) { PyObject *bases = lookup_tp_bases(type); if (bases != NULL) { PyObject *exc = PyErr_GetRaisedException(); remove_all_subclasses(type, bases); PyErr_SetRaisedException(exc); } } static void clear_static_tp_subclasses(PyTypeObject *type, int isbuiltin) { PyObject *subclasses = lookup_tp_subclasses(type); if (subclasses == NULL) { return; } /* Normally it would be a problem to finalize the type if its tp_subclasses wasn't cleared first. However, this is only ever called at the end of runtime finalization, so we can be more liberal in cleaning up. If the given type still has subtypes at this point then some extension module did not correctly finalize its objects. We can safely obliterate such subtypes since the extension module and its objects won't be used again, except maybe if the runtime were re-initialized. In that case the sticky situation would only happen if the module were re-imported then and only if the subtype were stored in a global and only if that global were not overwritten during import. We'd be fine since the extension is otherwise unsafe and unsupported in that situation, and likely problematic already. In any case, this situation means at least some memory is going to leak. This mostly only affects embedding scenarios. */ #ifndef NDEBUG // For now we just do a sanity check and then clear tp_subclasses. Py_ssize_t i = 0; PyObject *key, *ref; // borrowed ref while (PyDict_Next(subclasses, &i, &key, &ref)) { PyTypeObject *subclass = type_from_ref(ref); if (subclass == NULL) { continue; } // All static builtin subtypes should have been finalized already. assert(!isbuiltin || !(subclass->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN)); Py_DECREF(subclass); } #else (void)isbuiltin; #endif clear_tp_subclasses(type); } static void clear_static_type_objects(PyInterpreterState *interp, PyTypeObject *type, int isbuiltin, int final) { if (final) { Py_CLEAR(type->tp_cache); } clear_tp_dict(type); clear_tp_bases(type, final); clear_tp_mro(type, final); clear_static_tp_subclasses(type, isbuiltin); } static void fini_static_type(PyInterpreterState *interp, PyTypeObject *type, int isbuiltin, int final) { assert(type->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN); assert(_Py_IsImmortal((PyObject *)type)); type_dealloc_common(type); clear_static_type_objects(interp, type, isbuiltin, final); if (final) { type->tp_flags &= ~Py_TPFLAGS_READY; _PyType_SetVersion(type, 0); } _PyStaticType_ClearWeakRefs(interp, type); managed_static_type_state_clear(interp, type, isbuiltin, final); /* We leave _Py_TPFLAGS_STATIC_BUILTIN set on tp_flags. */ } void _PyTypes_FiniExtTypes(PyInterpreterState *interp) { for (size_t i = _Py_MAX_MANAGED_STATIC_EXT_TYPES; i > 0; i--) { if (interp->types.for_extensions.num_initialized == 0) { break; } int64_t count = 0; PyTypeObject *type = static_ext_type_lookup(interp, i-1, &count); if (type == NULL) { continue; } int final = (count == 1); fini_static_type(interp, type, 0, final); } } void _PyStaticType_FiniBuiltin(PyInterpreterState *interp, PyTypeObject *type) { fini_static_type(interp, type, 1, _Py_IsMainInterpreter(interp)); } static void type_dealloc(PyObject *self) { PyTypeObject *type = (PyTypeObject *)self; // Assert this is a heap-allocated type object _PyObject_ASSERT((PyObject *)type, type->tp_flags & Py_TPFLAGS_HEAPTYPE); _PyObject_GC_UNTRACK(type); type_dealloc_common(type); // PyObject_ClearWeakRefs() raises an exception if Py_REFCNT() != 0 assert(Py_REFCNT(type) == 0); PyObject_ClearWeakRefs((PyObject *)type); Py_XDECREF(type->tp_base); Py_XDECREF(type->tp_dict); Py_XDECREF(type->tp_bases); Py_XDECREF(type->tp_mro); Py_XDECREF(type->tp_cache); clear_tp_subclasses(type); /* A type's tp_doc is heap allocated, unlike the tp_doc slots * of most other objects. It's okay to cast it to char *. */ PyMem_Free((char *)type->tp_doc); PyHeapTypeObject *et = (PyHeapTypeObject *)type; Py_XDECREF(et->ht_name); Py_XDECREF(et->ht_qualname); Py_XDECREF(et->ht_slots); if (et->ht_cached_keys) { _PyDictKeys_DecRef(et->ht_cached_keys); } Py_XDECREF(et->ht_module); PyMem_Free(et->_ht_tpname); #ifdef Py_GIL_DISABLED assert(et->unique_id == -1); #endif et->ht_token = NULL; Py_TYPE(type)->tp_free((PyObject *)type); } /*[clinic input] type.__subclasses__ Return a list of immediate subclasses. [clinic start generated code]*/ static PyObject * type___subclasses___impl(PyTypeObject *self) /*[clinic end generated code: output=eb5eb54485942819 input=5af66132436f9a7b]*/ { return _PyType_GetSubclasses(self); } static PyObject * type_prepare(PyObject *self, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames) { return PyDict_New(); } /* Merge the __dict__ of aclass into dict, and recursively also all the __dict__s of aclass's base classes. The order of merging isn't defined, as it's expected that only the final set of dict keys is interesting. Return 0 on success, -1 on error. */ static int merge_class_dict(PyObject *dict, PyObject *aclass) { PyObject *classdict; PyObject *bases; assert(PyDict_Check(dict)); assert(aclass); /* Merge in the type's dict (if any). */ if (PyObject_GetOptionalAttr(aclass, &_Py_ID(__dict__), &classdict) < 0) { return -1; } if (classdict != NULL) { int status = PyDict_Update(dict, classdict); Py_DECREF(classdict); if (status < 0) return -1; } /* Recursively merge in the base types' (if any) dicts. */ if (PyObject_GetOptionalAttr(aclass, &_Py_ID(__bases__), &bases) < 0) { return -1; } if (bases != NULL) { /* We have no guarantee that bases is a real tuple */ Py_ssize_t i, n; n = PySequence_Size(bases); /* This better be right */ if (n < 0) { Py_DECREF(bases); return -1; } else { for (i = 0; i < n; i++) { int status; PyObject *base = PySequence_GetItem(bases, i); if (base == NULL) { Py_DECREF(bases); return -1; } status = merge_class_dict(dict, base); Py_DECREF(base); if (status < 0) { Py_DECREF(bases); return -1; } } } Py_DECREF(bases); } return 0; } /* __dir__ for type objects: returns __dict__ and __bases__. We deliberately don't suck up its __class__, as methods belonging to the metaclass would probably be more confusing than helpful. */ /*[clinic input] type.__dir__ Specialized __dir__ implementation for types. [clinic start generated code]*/ static PyObject * type___dir___impl(PyTypeObject *self) /*[clinic end generated code: output=69d02fe92c0f15fa input=7733befbec645968]*/ { PyObject *result = NULL; PyObject *dict = PyDict_New(); if (dict != NULL && merge_class_dict(dict, (PyObject *)self) == 0) result = PyDict_Keys(dict); Py_XDECREF(dict); return result; } /*[clinic input] type.__sizeof__ Return memory consumption of the type object. [clinic start generated code]*/ static PyObject * type___sizeof___impl(PyTypeObject *self) /*[clinic end generated code: output=766f4f16cd3b1854 input=99398f24b9cf45d6]*/ { size_t size; if (self->tp_flags & Py_TPFLAGS_HEAPTYPE) { PyHeapTypeObject* et = (PyHeapTypeObject*)self; size = sizeof(PyHeapTypeObject); if (et->ht_cached_keys) size += _PyDict_KeysSize(et->ht_cached_keys); } else { size = sizeof(PyTypeObject); } return PyLong_FromSize_t(size); } static PyMethodDef type_methods[] = { TYPE_MRO_METHODDEF TYPE___SUBCLASSES___METHODDEF {"__prepare__", _PyCFunction_CAST(type_prepare), METH_FASTCALL | METH_KEYWORDS | METH_CLASS, PyDoc_STR("__prepare__($cls, name, bases, /, **kwds)\n" "--\n" "\n" "Create the namespace for the class statement")}, TYPE___INSTANCECHECK___METHODDEF TYPE___SUBCLASSCHECK___METHODDEF TYPE___DIR___METHODDEF TYPE___SIZEOF___METHODDEF {0} }; PyDoc_STRVAR(type_doc, "type(object) -> the object's type\n" "type(name, bases, dict, **kwds) -> a new type"); static int type_traverse(PyObject *self, visitproc visit, void *arg) { PyTypeObject *type = (PyTypeObject *)self; /* Because of type_is_gc(), the collector only calls this for heaptypes. */ if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE)) { char msg[200]; sprintf(msg, "type_traverse() called on non-heap type '%.100s'", type->tp_name); _PyObject_ASSERT_FAILED_MSG((PyObject *)type, msg); } Py_VISIT(type->tp_dict); Py_VISIT(type->tp_cache); Py_VISIT(type->tp_mro); Py_VISIT(type->tp_bases); Py_VISIT(type->tp_base); Py_VISIT(((PyHeapTypeObject *)type)->ht_module); /* There's no need to visit others because they can't be involved in cycles: type->tp_subclasses is a list of weak references, ((PyHeapTypeObject *)type)->ht_slots is a tuple of strings, ((PyHeapTypeObject *)type)->ht_*name are strings. */ return 0; } static int type_clear(PyObject *self) { PyTypeObject *type = (PyTypeObject *)self; /* Because of type_is_gc(), the collector only calls this for heaptypes. */ _PyObject_ASSERT((PyObject *)type, type->tp_flags & Py_TPFLAGS_HEAPTYPE); /* We need to invalidate the method cache carefully before clearing the dict, so that other objects caught in a reference cycle don't start calling destroyed methods. Otherwise, we need to clear tp_mro, which is part of a hard cycle (its first element is the class itself) that won't be broken otherwise (it's a tuple and tuples don't have a tp_clear handler). We also need to clear ht_module, if present: the module usually holds a reference to its class. None of the other fields need to be cleared, and here's why: tp_cache: Not used; if it were, it would be a dict. tp_bases, tp_base: If these are involved in a cycle, there must be at least one other, mutable object in the cycle, e.g. a base class's dict; the cycle will be broken that way. tp_subclasses: A dict of weak references can't be part of a cycle; and dicts have their own tp_clear. slots (in PyHeapTypeObject): A tuple of strings can't be part of a cycle. */ PyType_Modified(type); PyObject *dict = lookup_tp_dict(type); if (dict) { PyDict_Clear(dict); } Py_CLEAR(((PyHeapTypeObject *)type)->ht_module); Py_CLEAR(type->tp_mro); return 0; } static int type_is_gc(PyObject *type) { return ((PyTypeObject *)type)->tp_flags & Py_TPFLAGS_HEAPTYPE; } static PyNumberMethods type_as_number = { .nb_or = _Py_union_type_or, // Add __or__ function }; PyTypeObject PyType_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "type", /* tp_name */ sizeof(PyHeapTypeObject), /* tp_basicsize */ sizeof(PyMemberDef), /* tp_itemsize */ type_dealloc, /* tp_dealloc */ offsetof(PyTypeObject, tp_vectorcall), /* tp_vectorcall_offset */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_as_async */ type_repr, /* tp_repr */ &type_as_number, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ type_call, /* tp_call */ 0, /* tp_str */ _Py_type_getattro, /* tp_getattro */ type_setattro, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_TYPE_SUBCLASS | Py_TPFLAGS_HAVE_VECTORCALL | Py_TPFLAGS_ITEMS_AT_END, /* tp_flags */ type_doc, /* tp_doc */ type_traverse, /* tp_traverse */ type_clear, /* tp_clear */ 0, /* tp_richcompare */ offsetof(PyTypeObject, tp_weaklist), /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ type_methods, /* tp_methods */ type_members, /* tp_members */ type_getsets, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ offsetof(PyTypeObject, tp_dict), /* tp_dictoffset */ type_init, /* tp_init */ 0, /* tp_alloc */ type_new, /* tp_new */ PyObject_GC_Del, /* tp_free */ type_is_gc, /* tp_is_gc */ .tp_vectorcall = type_vectorcall, }; /* The base type of all types (eventually)... except itself. */ /* You may wonder why object.__new__() only complains about arguments when object.__init__() is not overridden, and vice versa. Consider the use cases: 1. When neither is overridden, we want to hear complaints about excess (i.e., any) arguments, since their presence could indicate there's a bug. 2. When defining an Immutable type, we are likely to override only __new__(), since __init__() is called too late to initialize an Immutable object. Since __new__() defines the signature for the type, it would be a pain to have to override __init__() just to stop it from complaining about excess arguments. 3. When defining a Mutable type, we are likely to override only __init__(). So here the converse reasoning applies: we don't want to have to override __new__() just to stop it from complaining. 4. When __init__() is overridden, and the subclass __init__() calls object.__init__(), the latter should complain about excess arguments; ditto for __new__(). Use cases 2 and 3 make it unattractive to unconditionally check for excess arguments. The best solution that addresses all four use cases is as follows: __init__() complains about excess arguments unless __new__() is overridden and __init__() is not overridden (IOW, if __init__() is overridden or __new__() is not overridden); symmetrically, __new__() complains about excess arguments unless __init__() is overridden and __new__() is not overridden (IOW, if __new__() is overridden or __init__() is not overridden). However, for backwards compatibility, this breaks too much code. Therefore, in 2.6, we'll *warn* about excess arguments when both methods are overridden; for all other cases we'll use the above rules. */ /* Forward */ static PyObject * object_new(PyTypeObject *type, PyObject *args, PyObject *kwds); static int excess_args(PyObject *args, PyObject *kwds) { return PyTuple_GET_SIZE(args) || (kwds && PyDict_Check(kwds) && PyDict_GET_SIZE(kwds)); } static int object_init(PyObject *self, PyObject *args, PyObject *kwds) { PyTypeObject *type = Py_TYPE(self); if (excess_args(args, kwds)) { if (type->tp_init != object_init) { PyErr_SetString(PyExc_TypeError, "object.__init__() takes exactly one argument (the instance to initialize)"); return -1; } if (type->tp_new == object_new) { PyErr_Format(PyExc_TypeError, "%.200s.__init__() takes exactly one argument (the instance to initialize)", type->tp_name); return -1; } } return 0; } static PyObject * object_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { if (excess_args(args, kwds)) { if (type->tp_new != object_new) { PyErr_SetString(PyExc_TypeError, "object.__new__() takes exactly one argument (the type to instantiate)"); return NULL; } if (type->tp_init == object_init) { PyErr_Format(PyExc_TypeError, "%.200s() takes no arguments", type->tp_name); return NULL; } } if (type->tp_flags & Py_TPFLAGS_IS_ABSTRACT) { PyObject *abstract_methods; PyObject *sorted_methods; PyObject *joined; PyObject* comma_w_quotes_sep; Py_ssize_t method_count; /* Compute "', '".join(sorted(type.__abstractmethods__)) into joined. */ abstract_methods = type_abstractmethods(type, NULL); if (abstract_methods == NULL) return NULL; sorted_methods = PySequence_List(abstract_methods); Py_DECREF(abstract_methods); if (sorted_methods == NULL) return NULL; if (PyList_Sort(sorted_methods)) { Py_DECREF(sorted_methods); return NULL; } comma_w_quotes_sep = PyUnicode_FromString("', '"); if (!comma_w_quotes_sep) { Py_DECREF(sorted_methods); return NULL; } joined = PyUnicode_Join(comma_w_quotes_sep, sorted_methods); Py_DECREF(comma_w_quotes_sep); if (joined == NULL) { Py_DECREF(sorted_methods); return NULL; } method_count = PyObject_Length(sorted_methods); Py_DECREF(sorted_methods); if (method_count == -1) { Py_DECREF(joined); return NULL; } PyErr_Format(PyExc_TypeError, "Can't instantiate abstract class %s " "without an implementation for abstract method%s '%U'", type->tp_name, method_count > 1 ? "s" : "", joined); Py_DECREF(joined); return NULL; } PyObject *obj = type->tp_alloc(type, 0); if (obj == NULL) { return NULL; } return obj; } static void object_dealloc(PyObject *self) { Py_TYPE(self)->tp_free(self); } static PyObject * object_repr(PyObject *self) { PyTypeObject *type; PyObject *mod, *name, *rtn; type = Py_TYPE(self); mod = type_module(type); if (mod == NULL) PyErr_Clear(); else if (!PyUnicode_Check(mod)) { Py_SETREF(mod, NULL); } name = type_qualname(type, NULL); if (name == NULL) { Py_XDECREF(mod); return NULL; } if (mod != NULL && !_PyUnicode_Equal(mod, &_Py_ID(builtins))) rtn = PyUnicode_FromFormat("<%U.%U object at %p>", mod, name, self); else rtn = PyUnicode_FromFormat("<%s object at %p>", type->tp_name, self); Py_XDECREF(mod); Py_DECREF(name); return rtn; } static PyObject * object_str(PyObject *self) { unaryfunc f; f = Py_TYPE(self)->tp_repr; if (f == NULL) f = object_repr; return f(self); } static PyObject * object_richcompare(PyObject *self, PyObject *other, int op) { PyObject *res; switch (op) { case Py_EQ: /* Return NotImplemented instead of False, so if two objects are compared, both get a chance at the comparison. See issue #1393. */ res = Py_NewRef((self == other) ? Py_True : Py_NotImplemented); break; case Py_NE: /* By default, __ne__() delegates to __eq__() and inverts the result, unless the latter returns NotImplemented. */ if (Py_TYPE(self)->tp_richcompare == NULL) { res = Py_NewRef(Py_NotImplemented); break; } res = (*Py_TYPE(self)->tp_richcompare)(self, other, Py_EQ); if (res != NULL && res != Py_NotImplemented) { int ok = PyObject_IsTrue(res); Py_DECREF(res); if (ok < 0) res = NULL; else { if (ok) res = Py_NewRef(Py_False); else res = Py_NewRef(Py_True); } } break; default: res = Py_NewRef(Py_NotImplemented); break; } return res; } PyObject* _Py_BaseObject_RichCompare(PyObject* self, PyObject* other, int op) { return object_richcompare(self, other, op); } static PyObject * object_get_class(PyObject *self, void *closure) { return Py_NewRef(Py_TYPE(self)); } static int compatible_with_tp_base(PyTypeObject *child) { PyTypeObject *parent = child->tp_base; return (parent != NULL && child->tp_basicsize == parent->tp_basicsize && child->tp_itemsize == parent->tp_itemsize && child->tp_dictoffset == parent->tp_dictoffset && child->tp_weaklistoffset == parent->tp_weaklistoffset && ((child->tp_flags & Py_TPFLAGS_HAVE_GC) == (parent->tp_flags & Py_TPFLAGS_HAVE_GC)) && (child->tp_dealloc == subtype_dealloc || child->tp_dealloc == parent->tp_dealloc)); } static int same_slots_added(PyTypeObject *a, PyTypeObject *b) { PyTypeObject *base = a->tp_base; Py_ssize_t size; PyObject *slots_a, *slots_b; assert(base == b->tp_base); size = base->tp_basicsize; if (a->tp_dictoffset == size && b->tp_dictoffset == size) size += sizeof(PyObject *); if (a->tp_weaklistoffset == size && b->tp_weaklistoffset == size) size += sizeof(PyObject *); /* Check slots compliance */ if (!(a->tp_flags & Py_TPFLAGS_HEAPTYPE) || !(b->tp_flags & Py_TPFLAGS_HEAPTYPE)) { return 0; } slots_a = ((PyHeapTypeObject *)a)->ht_slots; slots_b = ((PyHeapTypeObject *)b)->ht_slots; if (slots_a && slots_b) { if (PyObject_RichCompareBool(slots_a, slots_b, Py_EQ) != 1) return 0; size += sizeof(PyObject *) * PyTuple_GET_SIZE(slots_a); } return size == a->tp_basicsize && size == b->tp_basicsize; } static int compatible_for_assignment(PyTypeObject* oldto, PyTypeObject* newto, const char* attr) { PyTypeObject *newbase, *oldbase; if (newto->tp_free != oldto->tp_free) { PyErr_Format(PyExc_TypeError, "%s assignment: " "'%s' deallocator differs from '%s'", attr, newto->tp_name, oldto->tp_name); return 0; } /* It's tricky to tell if two arbitrary types are sufficiently compatible as to be interchangeable; e.g., even if they have the same tp_basicsize, they might have totally different struct fields. It's much easier to tell if a type and its supertype are compatible; e.g., if they have the same tp_basicsize, then that means they have identical fields. So to check whether two arbitrary types are compatible, we first find the highest supertype that each is compatible with, and then if those supertypes are compatible then the original types must also be compatible. */ newbase = newto; oldbase = oldto; while (compatible_with_tp_base(newbase)) newbase = newbase->tp_base; while (compatible_with_tp_base(oldbase)) oldbase = oldbase->tp_base; if (newbase != oldbase && (newbase->tp_base != oldbase->tp_base || !same_slots_added(newbase, oldbase))) { goto differs; } if ((oldto->tp_flags & Py_TPFLAGS_INLINE_VALUES) != ((newto->tp_flags & Py_TPFLAGS_INLINE_VALUES))) { goto differs; } /* The above does not check for the preheader */ if ((oldto->tp_flags & Py_TPFLAGS_PREHEADER) == ((newto->tp_flags & Py_TPFLAGS_PREHEADER))) { return 1; } differs: PyErr_Format(PyExc_TypeError, "%s assignment: " "'%s' object layout differs from '%s'", attr, newto->tp_name, oldto->tp_name); return 0; } static int object_set_class_world_stopped(PyObject *self, PyTypeObject *newto) { PyTypeObject *oldto = Py_TYPE(self); /* In versions of CPython prior to 3.5, the code in compatible_for_assignment was not set up to correctly check for memory layout / slot / etc. compatibility for non-HEAPTYPE classes, so we just disallowed __class__ assignment in any case that wasn't HEAPTYPE -> HEAPTYPE. During the 3.5 development cycle, we fixed the code in compatible_for_assignment to correctly check compatibility between arbitrary types, and started allowing __class__ assignment in all cases where the old and new types did in fact have compatible slots and memory layout (regardless of whether they were implemented as HEAPTYPEs or not). Just before 3.5 was released, though, we discovered that this led to problems with immutable types like int, where the interpreter assumes they are immutable and interns some values. Formerly this wasn't a problem, because they really were immutable -- in particular, all the types where the interpreter applied this interning trick happened to also be statically allocated, so the old HEAPTYPE rules were "accidentally" stopping them from allowing __class__ assignment. But with the changes to __class__ assignment, we started allowing code like class MyInt(int): ... # Modifies the type of *all* instances of 1 in the whole program, # including future instances (!), because the 1 object is interned. (1).__class__ = MyInt (see https://bugs.python.org/issue24912). In theory the proper fix would be to identify which classes rely on this invariant and somehow disallow __class__ assignment only for them, perhaps via some mechanism like a new Py_TPFLAGS_IMMUTABLE flag (a "denylisting" approach). But in practice, since this problem wasn't noticed late in the 3.5 RC cycle, we're taking the conservative approach and reinstating the same HEAPTYPE->HEAPTYPE check that we used to have, plus an "allowlist". For now, the allowlist consists only of ModuleType subtypes, since those are the cases that motivated the patch in the first place -- see https://bugs.python.org/issue22986 -- and since module objects are mutable we can be sure that they are definitely not being interned. So now we allow HEAPTYPE->HEAPTYPE *or* ModuleType subtype -> ModuleType subtype. So far as we know, all the code beyond the following 'if' statement will correctly handle non-HEAPTYPE classes, and the HEAPTYPE check is needed only to protect that subset of non-HEAPTYPE classes for which the interpreter has baked in the assumption that all instances are truly immutable. */ if (!(PyType_IsSubtype(newto, &PyModule_Type) && PyType_IsSubtype(oldto, &PyModule_Type)) && (_PyType_HasFeature(newto, Py_TPFLAGS_IMMUTABLETYPE) || _PyType_HasFeature(oldto, Py_TPFLAGS_IMMUTABLETYPE))) { PyErr_Format(PyExc_TypeError, "__class__ assignment only supported for mutable types " "or ModuleType subclasses"); return -1; } if (compatible_for_assignment(oldto, newto, "__class__")) { /* Changing the class will change the implicit dict keys, * so we must materialize the dictionary first. */ if (oldto->tp_flags & Py_TPFLAGS_INLINE_VALUES) { PyDictObject *dict = _PyObject_GetManagedDict(self); if (dict == NULL) { dict = _PyObject_MaterializeManagedDict_LockHeld(self); if (dict == NULL) { return -1; } } assert(_PyObject_GetManagedDict(self) == dict); if (_PyDict_DetachFromObject(dict, self) < 0) { return -1; } } if (newto->tp_flags & Py_TPFLAGS_HEAPTYPE) { Py_INCREF(newto); } Py_SET_TYPE(self, newto); return 0; } else { return -1; } } static int object_set_class(PyObject *self, PyObject *value, void *closure) { if (value == NULL) { PyErr_SetString(PyExc_TypeError, "can't delete __class__ attribute"); return -1; } if (!PyType_Check(value)) { PyErr_Format(PyExc_TypeError, "__class__ must be set to a class, not '%s' object", Py_TYPE(value)->tp_name); return -1; } PyTypeObject *newto = (PyTypeObject *)value; if (PySys_Audit("object.__setattr__", "OsO", self, "__class__", value) < 0) { return -1; } #ifdef Py_GIL_DISABLED PyInterpreterState *interp = _PyInterpreterState_GET(); _PyEval_StopTheWorld(interp); #endif PyTypeObject *oldto = Py_TYPE(self); int res = object_set_class_world_stopped(self, newto); #ifdef Py_GIL_DISABLED _PyEval_StartTheWorld(interp); #endif if (res == 0) { if (oldto->tp_flags & Py_TPFLAGS_HEAPTYPE) { Py_DECREF(oldto); } RARE_EVENT_INC(set_class); return 0; } return res; } static PyGetSetDef object_getsets[] = { {"__class__", object_get_class, object_set_class, PyDoc_STR("the object's class")}, {0} }; /* Stuff to implement __reduce_ex__ for pickle protocols >= 2. We fall back to helpers in copyreg for: - pickle protocols < 2 - calculating the list of slot names (done only once per class) - the __newobj__ function (which is used as a token but never called) */ static PyObject * import_copyreg(void) { /* Try to fetch cached copy of copyreg from sys.modules first in an attempt to avoid the import overhead. Previously this was implemented by storing a reference to the cached module in a static variable, but this broke when multiple embedded interpreters were in use (see issue #17408 and #19088). */ PyObject *copyreg_module = PyImport_GetModule(&_Py_ID(copyreg)); if (copyreg_module != NULL) { return copyreg_module; } if (PyErr_Occurred()) { return NULL; } return PyImport_Import(&_Py_ID(copyreg)); } static PyObject * _PyType_GetSlotNames(PyTypeObject *cls) { PyObject *copyreg; PyObject *slotnames; assert(PyType_Check(cls)); /* Get the slot names from the cache in the class if possible. */ PyObject *dict = lookup_tp_dict(cls); if (PyDict_GetItemRef(dict, &_Py_ID(__slotnames__), &slotnames) < 0) { return NULL; } if (slotnames != NULL) { if (slotnames != Py_None && !PyList_Check(slotnames)) { PyErr_Format(PyExc_TypeError, "%.200s.__slotnames__ should be a list or None, " "not %.200s", cls->tp_name, Py_TYPE(slotnames)->tp_name); Py_DECREF(slotnames); return NULL; } return slotnames; } /* The class does not have the slot names cached yet. */ copyreg = import_copyreg(); if (copyreg == NULL) return NULL; /* Use _slotnames function from the copyreg module to find the slots by this class and its bases. This function will cache the result in __slotnames__. */ slotnames = PyObject_CallMethodOneArg( copyreg, &_Py_ID(_slotnames), (PyObject *)cls); Py_DECREF(copyreg); if (slotnames == NULL) return NULL; if (slotnames != Py_None && !PyList_Check(slotnames)) { PyErr_SetString(PyExc_TypeError, "copyreg._slotnames didn't return a list or None"); Py_DECREF(slotnames); return NULL; } return slotnames; } static PyObject * object_getstate_default(PyObject *obj, int required) { PyObject *state; PyObject *slotnames; if (required && Py_TYPE(obj)->tp_itemsize) { PyErr_Format(PyExc_TypeError, "cannot pickle %.200s objects", Py_TYPE(obj)->tp_name); return NULL; } if (_PyObject_IsInstanceDictEmpty(obj)) { state = Py_NewRef(Py_None); } else { state = PyObject_GenericGetDict(obj, NULL); if (state == NULL) { return NULL; } } slotnames = _PyType_GetSlotNames(Py_TYPE(obj)); if (slotnames == NULL) { Py_DECREF(state); return NULL; } assert(slotnames == Py_None || PyList_Check(slotnames)); if (required) { Py_ssize_t basicsize = PyBaseObject_Type.tp_basicsize; if (Py_TYPE(obj)->tp_dictoffset && (Py_TYPE(obj)->tp_flags & Py_TPFLAGS_MANAGED_DICT) == 0) { basicsize += sizeof(PyObject *); } if (Py_TYPE(obj)->tp_weaklistoffset > 0) { basicsize += sizeof(PyObject *); } if (slotnames != Py_None) { basicsize += sizeof(PyObject *) * PyList_GET_SIZE(slotnames); } if (Py_TYPE(obj)->tp_basicsize > basicsize) { Py_DECREF(slotnames); Py_DECREF(state); PyErr_Format(PyExc_TypeError, "cannot pickle '%.200s' object", Py_TYPE(obj)->tp_name); return NULL; } } if (slotnames != Py_None && PyList_GET_SIZE(slotnames) > 0) { PyObject *slots; Py_ssize_t slotnames_size, i; slots = PyDict_New(); if (slots == NULL) { Py_DECREF(slotnames); Py_DECREF(state); return NULL; } slotnames_size = PyList_GET_SIZE(slotnames); for (i = 0; i < slotnames_size; i++) { PyObject *name, *value; name = Py_NewRef(PyList_GET_ITEM(slotnames, i)); if (PyObject_GetOptionalAttr(obj, name, &value) < 0) { Py_DECREF(name); goto error; } if (value == NULL) { Py_DECREF(name); /* It is not an error if the attribute is not present. */ } else { int err = PyDict_SetItem(slots, name, value); Py_DECREF(name); Py_DECREF(value); if (err) { goto error; } } /* The list is stored on the class so it may mutate while we iterate over it */ if (slotnames_size != PyList_GET_SIZE(slotnames)) { PyErr_Format(PyExc_RuntimeError, "__slotnames__ changed size during iteration"); goto error; } /* We handle errors within the loop here. */ if (0) { error: Py_DECREF(slotnames); Py_DECREF(slots); Py_DECREF(state); return NULL; } } /* If we found some slot attributes, pack them in a tuple along the original attribute dictionary. */ if (PyDict_GET_SIZE(slots) > 0) { PyObject *state2; state2 = PyTuple_Pack(2, state, slots); Py_DECREF(state); if (state2 == NULL) { Py_DECREF(slotnames); Py_DECREF(slots); return NULL; } state = state2; } Py_DECREF(slots); } Py_DECREF(slotnames); return state; } static PyObject * object_getstate(PyObject *obj, int required) { PyObject *getstate, *state; getstate = PyObject_GetAttr(obj, &_Py_ID(__getstate__)); if (getstate == NULL) { return NULL; } if (PyCFunction_Check(getstate) && PyCFunction_GET_SELF(getstate) == obj && PyCFunction_GET_FUNCTION(getstate) == object___getstate__) { /* If __getstate__ is not overridden pass the required argument. */ state = object_getstate_default(obj, required); } else { state = _PyObject_CallNoArgs(getstate); } Py_DECREF(getstate); return state; } PyObject * _PyObject_GetState(PyObject *obj) { return object_getstate(obj, 0); } /*[clinic input] object.__getstate__ Helper for pickle. [clinic start generated code]*/ static PyObject * object___getstate___impl(PyObject *self) /*[clinic end generated code: output=5a2500dcb6217e9e input=692314d8fbe194ee]*/ { return object_getstate_default(self, 0); } static int _PyObject_GetNewArguments(PyObject *obj, PyObject **args, PyObject **kwargs) { PyObject *getnewargs, *getnewargs_ex; if (args == NULL || kwargs == NULL) { PyErr_BadInternalCall(); return -1; } /* We first attempt to fetch the arguments for __new__ by calling __getnewargs_ex__ on the object. */ getnewargs_ex = _PyObject_LookupSpecial(obj, &_Py_ID(__getnewargs_ex__)); if (getnewargs_ex != NULL) { PyObject *newargs = _PyObject_CallNoArgs(getnewargs_ex); Py_DECREF(getnewargs_ex); if (newargs == NULL) { return -1; } if (!PyTuple_Check(newargs)) { PyErr_Format(PyExc_TypeError, "__getnewargs_ex__ should return a tuple, " "not '%.200s'", Py_TYPE(newargs)->tp_name); Py_DECREF(newargs); return -1; } if (PyTuple_GET_SIZE(newargs) != 2) { PyErr_Format(PyExc_ValueError, "__getnewargs_ex__ should return a tuple of " "length 2, not %zd", PyTuple_GET_SIZE(newargs)); Py_DECREF(newargs); return -1; } *args = Py_NewRef(PyTuple_GET_ITEM(newargs, 0)); *kwargs = Py_NewRef(PyTuple_GET_ITEM(newargs, 1)); Py_DECREF(newargs); /* XXX We should perhaps allow None to be passed here. */ if (!PyTuple_Check(*args)) { PyErr_Format(PyExc_TypeError, "first item of the tuple returned by " "__getnewargs_ex__ must be a tuple, not '%.200s'", Py_TYPE(*args)->tp_name); Py_CLEAR(*args); Py_CLEAR(*kwargs); return -1; } if (!PyDict_Check(*kwargs)) { PyErr_Format(PyExc_TypeError, "second item of the tuple returned by " "__getnewargs_ex__ must be a dict, not '%.200s'", Py_TYPE(*kwargs)->tp_name); Py_CLEAR(*args); Py_CLEAR(*kwargs); return -1; } return 0; } else if (PyErr_Occurred()) { return -1; } /* The object does not have __getnewargs_ex__ so we fallback on using __getnewargs__ instead. */ getnewargs = _PyObject_LookupSpecial(obj, &_Py_ID(__getnewargs__)); if (getnewargs != NULL) { *args = _PyObject_CallNoArgs(getnewargs); Py_DECREF(getnewargs); if (*args == NULL) { return -1; } if (!PyTuple_Check(*args)) { PyErr_Format(PyExc_TypeError, "__getnewargs__ should return a tuple, " "not '%.200s'", Py_TYPE(*args)->tp_name); Py_CLEAR(*args); return -1; } *kwargs = NULL; return 0; } else if (PyErr_Occurred()) { return -1; } /* The object does not have __getnewargs_ex__ and __getnewargs__. This may mean __new__ does not takes any arguments on this object, or that the object does not implement the reduce protocol for pickling or copying. */ *args = NULL; *kwargs = NULL; return 0; } static int _PyObject_GetItemsIter(PyObject *obj, PyObject **listitems, PyObject **dictitems) { if (listitems == NULL || dictitems == NULL) { PyErr_BadInternalCall(); return -1; } if (!PyList_Check(obj)) { *listitems = Py_NewRef(Py_None); } else { *listitems = PyObject_GetIter(obj); if (*listitems == NULL) return -1; } if (!PyDict_Check(obj)) { *dictitems = Py_NewRef(Py_None); } else { PyObject *items = PyObject_CallMethodNoArgs(obj, &_Py_ID(items)); if (items == NULL) { Py_CLEAR(*listitems); return -1; } *dictitems = PyObject_GetIter(items); Py_DECREF(items); if (*dictitems == NULL) { Py_CLEAR(*listitems); return -1; } } assert(*listitems != NULL && *dictitems != NULL); return 0; } static PyObject * reduce_newobj(PyObject *obj) { PyObject *args = NULL, *kwargs = NULL; PyObject *copyreg; PyObject *newobj, *newargs, *state, *listitems, *dictitems; PyObject *result; int hasargs; if (Py_TYPE(obj)->tp_new == NULL) { PyErr_Format(PyExc_TypeError, "cannot pickle '%.200s' object", Py_TYPE(obj)->tp_name); return NULL; } if (_PyObject_GetNewArguments(obj, &args, &kwargs) < 0) return NULL; copyreg = import_copyreg(); if (copyreg == NULL) { Py_XDECREF(args); Py_XDECREF(kwargs); return NULL; } hasargs = (args != NULL); if (kwargs == NULL || PyDict_GET_SIZE(kwargs) == 0) { PyObject *cls; Py_ssize_t i, n; Py_XDECREF(kwargs); newobj = PyObject_GetAttr(copyreg, &_Py_ID(__newobj__)); Py_DECREF(copyreg); if (newobj == NULL) { Py_XDECREF(args); return NULL; } n = args ? PyTuple_GET_SIZE(args) : 0; newargs = PyTuple_New(n+1); if (newargs == NULL) { Py_XDECREF(args); Py_DECREF(newobj); return NULL; } cls = (PyObject *) Py_TYPE(obj); PyTuple_SET_ITEM(newargs, 0, Py_NewRef(cls)); for (i = 0; i < n; i++) { PyObject *v = PyTuple_GET_ITEM(args, i); PyTuple_SET_ITEM(newargs, i+1, Py_NewRef(v)); } Py_XDECREF(args); } else if (args != NULL) { newobj = PyObject_GetAttr(copyreg, &_Py_ID(__newobj_ex__)); Py_DECREF(copyreg); if (newobj == NULL) { Py_DECREF(args); Py_DECREF(kwargs); return NULL; } newargs = PyTuple_Pack(3, Py_TYPE(obj), args, kwargs); Py_DECREF(args); Py_DECREF(kwargs); if (newargs == NULL) { Py_DECREF(newobj); return NULL; } } else { /* args == NULL */ Py_DECREF(copyreg); Py_DECREF(kwargs); PyErr_BadInternalCall(); return NULL; } state = object_getstate(obj, !(hasargs || PyList_Check(obj) || PyDict_Check(obj))); if (state == NULL) { Py_DECREF(newobj); Py_DECREF(newargs); return NULL; } if (_PyObject_GetItemsIter(obj, &listitems, &dictitems) < 0) { Py_DECREF(newobj); Py_DECREF(newargs); Py_DECREF(state); return NULL; } result = PyTuple_Pack(5, newobj, newargs, state, listitems, dictitems); Py_DECREF(newobj); Py_DECREF(newargs); Py_DECREF(state); Py_DECREF(listitems); Py_DECREF(dictitems); return result; } /* * There were two problems when object.__reduce__ and object.__reduce_ex__ * were implemented in the same function: * - trying to pickle an object with a custom __reduce__ method that * fell back to object.__reduce__ in certain circumstances led to * infinite recursion at Python level and eventual RecursionError. * - Pickling objects that lied about their type by overwriting the * __class__ descriptor could lead to infinite recursion at C level * and eventual segfault. * * Because of backwards compatibility, the two methods still have to * behave in the same way, even if this is not required by the pickle * protocol. This common functionality was moved to the _common_reduce * function. */ static PyObject * _common_reduce(PyObject *self, int proto) { PyObject *copyreg, *res; if (proto >= 2) return reduce_newobj(self); copyreg = import_copyreg(); if (!copyreg) return NULL; res = PyObject_CallMethod(copyreg, "_reduce_ex", "Oi", self, proto); Py_DECREF(copyreg); return res; } /*[clinic input] object.__reduce__ Helper for pickle. [clinic start generated code]*/ static PyObject * object___reduce___impl(PyObject *self) /*[clinic end generated code: output=d4ca691f891c6e2f input=11562e663947e18b]*/ { return _common_reduce(self, 0); } /*[clinic input] object.__reduce_ex__ protocol: int / Helper for pickle. [clinic start generated code]*/ static PyObject * object___reduce_ex___impl(PyObject *self, int protocol) /*[clinic end generated code: output=2e157766f6b50094 input=f326b43fb8a4c5ff]*/ { PyObject *reduce; if (PyObject_GetOptionalAttr(self, &_Py_ID(__reduce__), &reduce) < 0) { return NULL; } if (reduce != NULL) { PyObject *cls, *clsreduce; int override; cls = (PyObject *) Py_TYPE(self); clsreduce = PyObject_GetAttr(cls, &_Py_ID(__reduce__)); if (clsreduce == NULL) { Py_DECREF(reduce); return NULL; } PyInterpreterState *interp = _PyInterpreterState_GET(); override = (clsreduce != _Py_INTERP_CACHED_OBJECT(interp, objreduce)); Py_DECREF(clsreduce); if (override) { PyObject *res = _PyObject_CallNoArgs(reduce); Py_DECREF(reduce); return res; } else Py_DECREF(reduce); } return _common_reduce(self, protocol); } static PyObject * object_subclasshook(PyObject *cls, PyObject *args) { Py_RETURN_NOTIMPLEMENTED; } PyDoc_STRVAR(object_subclasshook_doc, "Abstract classes can override this to customize issubclass().\n" "\n" "This is invoked early on by abc.ABCMeta.__subclasscheck__().\n" "It should return True, False or NotImplemented. If it returns\n" "NotImplemented, the normal algorithm is used. Otherwise, it\n" "overrides the normal algorithm (and the outcome is cached).\n"); static PyObject * object_init_subclass(PyObject *cls, PyObject *arg) { Py_RETURN_NONE; } PyDoc_STRVAR(object_init_subclass_doc, "This method is called when a class is subclassed.\n" "\n" "The default implementation does nothing. It may be\n" "overridden to extend subclasses.\n"); /*[clinic input] object.__format__ format_spec: unicode / Default object formatter. Return str(self) if format_spec is empty. Raise TypeError otherwise. [clinic start generated code]*/ static PyObject * object___format___impl(PyObject *self, PyObject *format_spec) /*[clinic end generated code: output=34897efb543a974b input=b94d8feb006689ea]*/ { /* Issue 7994: If we're converting to a string, we should reject format specifications */ if (PyUnicode_GET_LENGTH(format_spec) > 0) { PyErr_Format(PyExc_TypeError, "unsupported format string passed to %.200s.__format__", Py_TYPE(self)->tp_name); return NULL; } return PyObject_Str(self); } /*[clinic input] object.__sizeof__ Size of object in memory, in bytes. [clinic start generated code]*/ static PyObject * object___sizeof___impl(PyObject *self) /*[clinic end generated code: output=73edab332f97d550 input=1200ff3dfe485306]*/ { Py_ssize_t res, isize; res = 0; isize = Py_TYPE(self)->tp_itemsize; if (isize > 0) { /* This assumes that ob_size is valid if tp_itemsize is not 0, which isn't true for PyLongObject. */ res = _PyVarObject_CAST(self)->ob_size * isize; } res += Py_TYPE(self)->tp_basicsize; return PyLong_FromSsize_t(res); } /* __dir__ for generic objects: returns __dict__, __class__, and recursively up the __class__.__bases__ chain. */ /*[clinic input] object.__dir__ Default dir() implementation. [clinic start generated code]*/ static PyObject * object___dir___impl(PyObject *self) /*[clinic end generated code: output=66dd48ea62f26c90 input=0a89305bec669b10]*/ { PyObject *result = NULL; PyObject *dict = NULL; PyObject *itsclass = NULL; /* Get __dict__ (which may or may not be a real dict...) */ if (PyObject_GetOptionalAttr(self, &_Py_ID(__dict__), &dict) < 0) { return NULL; } if (dict == NULL) { dict = PyDict_New(); } else if (!PyDict_Check(dict)) { Py_DECREF(dict); dict = PyDict_New(); } else { /* Copy __dict__ to avoid mutating it. */ PyObject *temp = PyDict_Copy(dict); Py_SETREF(dict, temp); } if (dict == NULL) goto error; /* Merge in attrs reachable from its class. */ if (PyObject_GetOptionalAttr(self, &_Py_ID(__class__), &itsclass) < 0) { goto error; } /* XXX(tomer): Perhaps fall back to Py_TYPE(obj) if no __class__ exists? */ if (itsclass != NULL && merge_class_dict(dict, itsclass) < 0) goto error; result = PyDict_Keys(dict); /* fall through */ error: Py_XDECREF(itsclass); Py_XDECREF(dict); return result; } static PyMethodDef object_methods[] = { OBJECT___REDUCE_EX___METHODDEF OBJECT___REDUCE___METHODDEF OBJECT___GETSTATE___METHODDEF {"__subclasshook__", object_subclasshook, METH_CLASS | METH_O, object_subclasshook_doc}, {"__init_subclass__", object_init_subclass, METH_CLASS | METH_NOARGS, object_init_subclass_doc}, OBJECT___FORMAT___METHODDEF OBJECT___SIZEOF___METHODDEF OBJECT___DIR___METHODDEF {0} }; PyDoc_STRVAR(object_doc, "object()\n--\n\n" "The base class of the class hierarchy.\n\n" "When called, it accepts no arguments and returns a new featureless\n" "instance that has no instance attributes and cannot be given any.\n"); PyTypeObject PyBaseObject_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "object", /* tp_name */ sizeof(PyObject), /* tp_basicsize */ 0, /* tp_itemsize */ object_dealloc, /* tp_dealloc */ 0, /* tp_vectorcall_offset */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_as_async */ object_repr, /* tp_repr */ 0, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ PyObject_GenericHash, /* tp_hash */ 0, /* tp_call */ object_str, /* tp_str */ PyObject_GenericGetAttr, /* tp_getattro */ PyObject_GenericSetAttr, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ object_doc, /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ object_richcompare, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ object_methods, /* tp_methods */ 0, /* tp_members */ object_getsets, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ object_init, /* tp_init */ PyType_GenericAlloc, /* tp_alloc */ object_new, /* tp_new */ PyObject_Free, /* tp_free */ }; static int type_add_method(PyTypeObject *type, PyMethodDef *meth) { PyObject *descr; int isdescr = 1; if (meth->ml_flags & METH_CLASS) { if (meth->ml_flags & METH_STATIC) { PyErr_SetString(PyExc_ValueError, "method cannot be both class and static"); return -1; } descr = PyDescr_NewClassMethod(type, meth); } else if (meth->ml_flags & METH_STATIC) { PyObject *cfunc = PyCFunction_NewEx(meth, (PyObject*)type, NULL); if (cfunc == NULL) { return -1; } descr = PyStaticMethod_New(cfunc); isdescr = 0; // PyStaticMethod is not PyDescrObject Py_DECREF(cfunc); } else { descr = PyDescr_NewMethod(type, meth); } if (descr == NULL) { return -1; } PyObject *name; if (isdescr) { name = PyDescr_NAME(descr); } else { name = PyUnicode_FromString(meth->ml_name); if (name == NULL) { Py_DECREF(descr); return -1; } } int err; PyObject *dict = lookup_tp_dict(type); if (!(meth->ml_flags & METH_COEXIST)) { err = PyDict_SetDefaultRef(dict, name, descr, NULL) < 0; } else { err = PyDict_SetItem(dict, name, descr) < 0; } if (!isdescr) { Py_DECREF(name); } Py_DECREF(descr); if (err) { return -1; } return 0; } int _PyType_AddMethod(PyTypeObject *type, PyMethodDef *meth) { return type_add_method(type, meth); } /* Add the methods from tp_methods to the __dict__ in a type object */ static int type_add_methods(PyTypeObject *type) { PyMethodDef *meth = type->tp_methods; if (meth == NULL) { return 0; } for (; meth->ml_name != NULL; meth++) { if (type_add_method(type, meth) < 0) { return -1; } } return 0; } static int type_add_members(PyTypeObject *type) { PyMemberDef *memb = type->tp_members; if (memb == NULL) { return 0; } PyObject *dict = lookup_tp_dict(type); for (; memb->name != NULL; memb++) { PyObject *descr = PyDescr_NewMember(type, memb); if (descr == NULL) return -1; if (PyDict_SetDefaultRef(dict, PyDescr_NAME(descr), descr, NULL) < 0) { Py_DECREF(descr); return -1; } Py_DECREF(descr); } return 0; } static int type_add_getset(PyTypeObject *type) { PyGetSetDef *gsp = type->tp_getset; if (gsp == NULL) { return 0; } PyObject *dict = lookup_tp_dict(type); for (; gsp->name != NULL; gsp++) { PyObject *descr = PyDescr_NewGetSet(type, gsp); if (descr == NULL) { return -1; } if (PyDict_SetDefaultRef(dict, PyDescr_NAME(descr), descr, NULL) < 0) { Py_DECREF(descr); return -1; } Py_DECREF(descr); } return 0; } static void inherit_special(PyTypeObject *type, PyTypeObject *base) { /* Copying tp_traverse and tp_clear is connected to the GC flags */ if (!(type->tp_flags & Py_TPFLAGS_HAVE_GC) && (base->tp_flags & Py_TPFLAGS_HAVE_GC) && (!type->tp_traverse && !type->tp_clear)) { type->tp_flags |= Py_TPFLAGS_HAVE_GC; if (type->tp_traverse == NULL) type->tp_traverse = base->tp_traverse; if (type->tp_clear == NULL) type->tp_clear = base->tp_clear; } type->tp_flags |= (base->tp_flags & Py_TPFLAGS_PREHEADER); if (type->tp_basicsize == 0) type->tp_basicsize = base->tp_basicsize; /* Copy other non-function slots */ #define COPYVAL(SLOT) \ if (type->SLOT == 0) { type->SLOT = base->SLOT; } COPYVAL(tp_itemsize); COPYVAL(tp_weaklistoffset); COPYVAL(tp_dictoffset); #undef COPYVAL /* Setup fast subclass flags */ PyObject *mro = lookup_tp_mro(base); if (is_subtype_with_mro(mro, base, (PyTypeObject*)PyExc_BaseException)) { type->tp_flags |= Py_TPFLAGS_BASE_EXC_SUBCLASS; } else if (is_subtype_with_mro(mro, base, &PyType_Type)) { type->tp_flags |= Py_TPFLAGS_TYPE_SUBCLASS; } else if (is_subtype_with_mro(mro, base, &PyLong_Type)) { type->tp_flags |= Py_TPFLAGS_LONG_SUBCLASS; } else if (is_subtype_with_mro(mro, base, &PyBytes_Type)) { type->tp_flags |= Py_TPFLAGS_BYTES_SUBCLASS; } else if (is_subtype_with_mro(mro, base, &PyUnicode_Type)) { type->tp_flags |= Py_TPFLAGS_UNICODE_SUBCLASS; } else if (is_subtype_with_mro(mro, base, &PyTuple_Type)) { type->tp_flags |= Py_TPFLAGS_TUPLE_SUBCLASS; } else if (is_subtype_with_mro(mro, base, &PyList_Type)) { type->tp_flags |= Py_TPFLAGS_LIST_SUBCLASS; } else if (is_subtype_with_mro(mro, base, &PyDict_Type)) { type->tp_flags |= Py_TPFLAGS_DICT_SUBCLASS; } /* Setup some inheritable flags */ if (PyType_HasFeature(base, _Py_TPFLAGS_MATCH_SELF)) { type->tp_flags |= _Py_TPFLAGS_MATCH_SELF; } if (PyType_HasFeature(base, Py_TPFLAGS_ITEMS_AT_END)) { type->tp_flags |= Py_TPFLAGS_ITEMS_AT_END; } } static int overrides_hash(PyTypeObject *type) { PyObject *dict = lookup_tp_dict(type); assert(dict != NULL); int r = PyDict_Contains(dict, &_Py_ID(__eq__)); if (r == 0) { r = PyDict_Contains(dict, &_Py_ID(__hash__)); } return r; } static int inherit_slots(PyTypeObject *type, PyTypeObject *base) { PyTypeObject *basebase; #undef SLOTDEFINED #undef COPYSLOT #undef COPYNUM #undef COPYSEQ #undef COPYMAP #undef COPYBUF #define SLOTDEFINED(SLOT) \ (base->SLOT != 0 && \ (basebase == NULL || base->SLOT != basebase->SLOT)) #define COPYSLOT(SLOT) \ if (!type->SLOT && SLOTDEFINED(SLOT)) type->SLOT = base->SLOT #define COPYASYNC(SLOT) COPYSLOT(tp_as_async->SLOT) #define COPYNUM(SLOT) COPYSLOT(tp_as_number->SLOT) #define COPYSEQ(SLOT) COPYSLOT(tp_as_sequence->SLOT) #define COPYMAP(SLOT) COPYSLOT(tp_as_mapping->SLOT) #define COPYBUF(SLOT) COPYSLOT(tp_as_buffer->SLOT) /* This won't inherit indirect slots (from tp_as_number etc.) if type doesn't provide the space. */ if (type->tp_as_number != NULL && base->tp_as_number != NULL) { basebase = base->tp_base; if (basebase->tp_as_number == NULL) basebase = NULL; COPYNUM(nb_add); COPYNUM(nb_subtract); COPYNUM(nb_multiply); COPYNUM(nb_remainder); COPYNUM(nb_divmod); COPYNUM(nb_power); COPYNUM(nb_negative); COPYNUM(nb_positive); COPYNUM(nb_absolute); COPYNUM(nb_bool); COPYNUM(nb_invert); COPYNUM(nb_lshift); COPYNUM(nb_rshift); COPYNUM(nb_and); COPYNUM(nb_xor); COPYNUM(nb_or); COPYNUM(nb_int); COPYNUM(nb_float); COPYNUM(nb_inplace_add); COPYNUM(nb_inplace_subtract); COPYNUM(nb_inplace_multiply); COPYNUM(nb_inplace_remainder); COPYNUM(nb_inplace_power); COPYNUM(nb_inplace_lshift); COPYNUM(nb_inplace_rshift); COPYNUM(nb_inplace_and); COPYNUM(nb_inplace_xor); COPYNUM(nb_inplace_or); COPYNUM(nb_true_divide); COPYNUM(nb_floor_divide); COPYNUM(nb_inplace_true_divide); COPYNUM(nb_inplace_floor_divide); COPYNUM(nb_index); COPYNUM(nb_matrix_multiply); COPYNUM(nb_inplace_matrix_multiply); } if (type->tp_as_async != NULL && base->tp_as_async != NULL) { basebase = base->tp_base; if (basebase->tp_as_async == NULL) basebase = NULL; COPYASYNC(am_await); COPYASYNC(am_aiter); COPYASYNC(am_anext); } if (type->tp_as_sequence != NULL && base->tp_as_sequence != NULL) { basebase = base->tp_base; if (basebase->tp_as_sequence == NULL) basebase = NULL; COPYSEQ(sq_length); COPYSEQ(sq_concat); COPYSEQ(sq_repeat); COPYSEQ(sq_item); COPYSEQ(sq_ass_item); COPYSEQ(sq_contains); COPYSEQ(sq_inplace_concat); COPYSEQ(sq_inplace_repeat); } if (type->tp_as_mapping != NULL && base->tp_as_mapping != NULL) { basebase = base->tp_base; if (basebase->tp_as_mapping == NULL) basebase = NULL; COPYMAP(mp_length); COPYMAP(mp_subscript); COPYMAP(mp_ass_subscript); } if (type->tp_as_buffer != NULL && base->tp_as_buffer != NULL) { basebase = base->tp_base; if (basebase->tp_as_buffer == NULL) basebase = NULL; COPYBUF(bf_getbuffer); COPYBUF(bf_releasebuffer); } basebase = base->tp_base; COPYSLOT(tp_dealloc); if (type->tp_getattr == NULL && type->tp_getattro == NULL) { type->tp_getattr = base->tp_getattr; type->tp_getattro = base->tp_getattro; } if (type->tp_setattr == NULL && type->tp_setattro == NULL) { type->tp_setattr = base->tp_setattr; type->tp_setattro = base->tp_setattro; } COPYSLOT(tp_repr); /* tp_hash see tp_richcompare */ { /* Always inherit tp_vectorcall_offset to support PyVectorcall_Call(). * If Py_TPFLAGS_HAVE_VECTORCALL is not inherited, then vectorcall * won't be used automatically. */ COPYSLOT(tp_vectorcall_offset); /* Inherit Py_TPFLAGS_HAVE_VECTORCALL if tp_call is not overridden */ if (!type->tp_call && _PyType_HasFeature(base, Py_TPFLAGS_HAVE_VECTORCALL)) { type->tp_flags |= Py_TPFLAGS_HAVE_VECTORCALL; } COPYSLOT(tp_call); } COPYSLOT(tp_str); { /* Copy comparison-related slots only when not overriding them anywhere */ if (type->tp_richcompare == NULL && type->tp_hash == NULL) { int r = overrides_hash(type); if (r < 0) { return -1; } if (!r) { type->tp_richcompare = base->tp_richcompare; type->tp_hash = base->tp_hash; } } } { COPYSLOT(tp_iter); COPYSLOT(tp_iternext); } { COPYSLOT(tp_descr_get); /* Inherit Py_TPFLAGS_METHOD_DESCRIPTOR if tp_descr_get was inherited, * but only for extension types */ if (base->tp_descr_get && type->tp_descr_get == base->tp_descr_get && _PyType_HasFeature(type, Py_TPFLAGS_IMMUTABLETYPE) && _PyType_HasFeature(base, Py_TPFLAGS_METHOD_DESCRIPTOR)) { type->tp_flags |= Py_TPFLAGS_METHOD_DESCRIPTOR; } COPYSLOT(tp_descr_set); COPYSLOT(tp_dictoffset); COPYSLOT(tp_init); COPYSLOT(tp_alloc); COPYSLOT(tp_is_gc); COPYSLOT(tp_finalize); if ((type->tp_flags & Py_TPFLAGS_HAVE_GC) == (base->tp_flags & Py_TPFLAGS_HAVE_GC)) { /* They agree about gc. */ COPYSLOT(tp_free); } else if ((type->tp_flags & Py_TPFLAGS_HAVE_GC) && type->tp_free == NULL && base->tp_free == PyObject_Free) { /* A bit of magic to plug in the correct default * tp_free function when a derived class adds gc, * didn't define tp_free, and the base uses the * default non-gc tp_free. */ type->tp_free = PyObject_GC_Del; } /* else they didn't agree about gc, and there isn't something * obvious to be done -- the type is on its own. */ } return 0; } static int add_operators(PyTypeObject *type); static int add_tp_new_wrapper(PyTypeObject *type); #define COLLECTION_FLAGS (Py_TPFLAGS_SEQUENCE | Py_TPFLAGS_MAPPING) static int type_ready_pre_checks(PyTypeObject *type) { /* Consistency checks for PEP 590: * - Py_TPFLAGS_METHOD_DESCRIPTOR requires tp_descr_get * - Py_TPFLAGS_HAVE_VECTORCALL requires tp_call and * tp_vectorcall_offset > 0 * To avoid mistakes, we require this before inheriting. */ if (type->tp_flags & Py_TPFLAGS_METHOD_DESCRIPTOR) { _PyObject_ASSERT((PyObject *)type, type->tp_descr_get != NULL); } if (type->tp_flags & Py_TPFLAGS_HAVE_VECTORCALL) { _PyObject_ASSERT((PyObject *)type, type->tp_vectorcall_offset > 0); _PyObject_ASSERT((PyObject *)type, type->tp_call != NULL); } /* Consistency checks for pattern matching * Py_TPFLAGS_SEQUENCE and Py_TPFLAGS_MAPPING are mutually exclusive */ _PyObject_ASSERT((PyObject *)type, (type->tp_flags & COLLECTION_FLAGS) != COLLECTION_FLAGS); if (type->tp_name == NULL) { PyErr_Format(PyExc_SystemError, "Type does not define the tp_name field."); return -1; } return 0; } static int type_ready_set_base(PyTypeObject *type) { /* Initialize tp_base (defaults to BaseObject unless that's us) */ PyTypeObject *base = type->tp_base; if (base == NULL && type != &PyBaseObject_Type) { base = &PyBaseObject_Type; if (type->tp_flags & Py_TPFLAGS_HEAPTYPE) { type->tp_base = (PyTypeObject*)Py_NewRef((PyObject*)base); } else { type->tp_base = base; } } assert(type->tp_base != NULL || type == &PyBaseObject_Type); /* Now the only way base can still be NULL is if type is * &PyBaseObject_Type. */ /* Initialize the base class */ if (base != NULL && !_PyType_IsReady(base)) { if (PyType_Ready(base) < 0) { return -1; } } return 0; } static int type_ready_set_type(PyTypeObject *type) { /* Initialize ob_type if NULL. This means extensions that want to be compilable separately on Windows can call PyType_Ready() instead of initializing the ob_type field of their type objects. */ /* The test for base != NULL is really unnecessary, since base is only NULL when type is &PyBaseObject_Type, and we know its ob_type is not NULL (it's initialized to &PyType_Type). But coverity doesn't know that. */ PyTypeObject *base = type->tp_base; if (Py_IS_TYPE(type, NULL) && base != NULL) { Py_SET_TYPE(type, Py_TYPE(base)); } return 0; } static int type_ready_set_bases(PyTypeObject *type, int initial) { if (type->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { if (!initial) { assert(lookup_tp_bases(type) != NULL); return 0; } assert(lookup_tp_bases(type) == NULL); } PyObject *bases = lookup_tp_bases(type); if (bases == NULL) { PyTypeObject *base = type->tp_base; if (base == NULL) { bases = PyTuple_New(0); } else { bases = PyTuple_Pack(1, base); } if (bases == NULL) { return -1; } set_tp_bases(type, bases, 1); } return 0; } static int type_ready_set_dict(PyTypeObject *type) { if (lookup_tp_dict(type) != NULL) { return 0; } PyObject *dict = PyDict_New(); if (dict == NULL) { return -1; } set_tp_dict(type, dict); return 0; } /* If the type dictionary doesn't contain a __doc__, set it from the tp_doc slot. */ static int type_dict_set_doc(PyTypeObject *type) { PyObject *dict = lookup_tp_dict(type); int r = PyDict_Contains(dict, &_Py_ID(__doc__)); if (r < 0) { return -1; } if (r > 0) { return 0; } if (type->tp_doc != NULL) { const char *doc_str; doc_str = _PyType_DocWithoutSignature(type->tp_name, type->tp_doc); PyObject *doc = PyUnicode_FromString(doc_str); if (doc == NULL) { return -1; } if (PyDict_SetItem(dict, &_Py_ID(__doc__), doc) < 0) { Py_DECREF(doc); return -1; } Py_DECREF(doc); } else { if (PyDict_SetItem(dict, &_Py_ID(__doc__), Py_None) < 0) { return -1; } } return 0; } static int type_ready_fill_dict(PyTypeObject *type) { /* Add type-specific descriptors to tp_dict */ if (add_operators(type) < 0) { return -1; } if (type_add_methods(type) < 0) { return -1; } if (type_add_members(type) < 0) { return -1; } if (type_add_getset(type) < 0) { return -1; } if (type_dict_set_doc(type) < 0) { return -1; } return 0; } static int type_ready_preheader(PyTypeObject *type) { if (type->tp_flags & Py_TPFLAGS_MANAGED_DICT) { if (type->tp_dictoffset > 0 || type->tp_dictoffset < -1) { PyErr_Format(PyExc_TypeError, "type %s has the Py_TPFLAGS_MANAGED_DICT flag " "but tp_dictoffset is set", type->tp_name); return -1; } type->tp_dictoffset = -1; } if (type->tp_flags & Py_TPFLAGS_MANAGED_WEAKREF) { if (type->tp_weaklistoffset != 0 && type->tp_weaklistoffset != MANAGED_WEAKREF_OFFSET) { PyErr_Format(PyExc_TypeError, "type %s has the Py_TPFLAGS_MANAGED_WEAKREF flag " "but tp_weaklistoffset is set", type->tp_name); return -1; } type->tp_weaklistoffset = MANAGED_WEAKREF_OFFSET; } return 0; } static int type_ready_mro(PyTypeObject *type, int initial) { ASSERT_TYPE_LOCK_HELD(); if (type->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) { if (!initial) { assert(lookup_tp_mro(type) != NULL); return 0; } assert(lookup_tp_mro(type) == NULL); } /* Calculate method resolution order */ if (mro_internal_unlocked(type, initial, NULL) < 0) { return -1; } PyObject *mro = lookup_tp_mro(type); assert(mro != NULL); assert(PyTuple_Check(mro)); /* All bases of statically allocated type should be statically allocated, and static builtin types must have static builtin bases. */ if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE)) { assert(type->tp_flags & Py_TPFLAGS_IMMUTABLETYPE); Py_ssize_t n = PyTuple_GET_SIZE(mro); for (Py_ssize_t i = 0; i < n; i++) { PyTypeObject *base = _PyType_CAST(PyTuple_GET_ITEM(mro, i)); if (base->tp_flags & Py_TPFLAGS_HEAPTYPE) { PyErr_Format(PyExc_TypeError, "type '%.100s' is not dynamically allocated but " "its base type '%.100s' is dynamically allocated", type->tp_name, base->tp_name); return -1; } assert(!(type->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) || (base->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN)); } } return 0; } // For static types, inherit tp_as_xxx structures from the base class // if it's NULL. // // For heap types, tp_as_xxx structures are not NULL: they are set to the // PyHeapTypeObject.as_xxx fields by type_new_alloc(). static void type_ready_inherit_as_structs(PyTypeObject *type, PyTypeObject *base) { if (type->tp_as_async == NULL) { type->tp_as_async = base->tp_as_async; } if (type->tp_as_number == NULL) { type->tp_as_number = base->tp_as_number; } if (type->tp_as_sequence == NULL) { type->tp_as_sequence = base->tp_as_sequence; } if (type->tp_as_mapping == NULL) { type->tp_as_mapping = base->tp_as_mapping; } if (type->tp_as_buffer == NULL) { type->tp_as_buffer = base->tp_as_buffer; } } static void inherit_patma_flags(PyTypeObject *type, PyTypeObject *base) { if ((type->tp_flags & COLLECTION_FLAGS) == 0) { type->tp_flags |= base->tp_flags & COLLECTION_FLAGS; } } static int type_ready_inherit(PyTypeObject *type) { ASSERT_TYPE_LOCK_HELD(); /* Inherit special flags from dominant base */ PyTypeObject *base = type->tp_base; if (base != NULL) { inherit_special(type, base); } // Inherit slots PyObject *mro = lookup_tp_mro(type); Py_ssize_t n = PyTuple_GET_SIZE(mro); for (Py_ssize_t i = 1; i < n; i++) { PyObject *b = PyTuple_GET_ITEM(mro, i); if (PyType_Check(b)) { if (inherit_slots(type, (PyTypeObject *)b) < 0) { return -1; } inherit_patma_flags(type, (PyTypeObject *)b); } } if (base != NULL) { type_ready_inherit_as_structs(type, base); } /* Sanity check for tp_free. */ if (_PyType_IS_GC(type) && (type->tp_flags & Py_TPFLAGS_BASETYPE) && (type->tp_free == NULL || type->tp_free == PyObject_Free)) { /* This base class needs to call tp_free, but doesn't have * one, or its tp_free is for non-gc'ed objects. */ PyErr_Format(PyExc_TypeError, "type '%.100s' participates in " "gc and is a base type but has inappropriate " "tp_free slot", type->tp_name); return -1; } return 0; } /* Hack for tp_hash and __hash__. If after all that, tp_hash is still NULL, and __hash__ is not in tp_dict, set tp_hash to PyObject_HashNotImplemented and tp_dict['__hash__'] equal to None. This signals that __hash__ is not inherited. */ static int type_ready_set_hash(PyTypeObject *type) { if (type->tp_hash != NULL) { return 0; } PyObject *dict = lookup_tp_dict(type); int r = PyDict_Contains(dict, &_Py_ID(__hash__)); if (r < 0) { return -1; } if (r > 0) { return 0; } if (PyDict_SetItem(dict, &_Py_ID(__hash__), Py_None) < 0) { return -1; } type->tp_hash = PyObject_HashNotImplemented; return 0; } /* Link into each base class's list of subclasses */ static int type_ready_add_subclasses(PyTypeObject *type) { PyObject *bases = lookup_tp_bases(type); Py_ssize_t nbase = PyTuple_GET_SIZE(bases); for (Py_ssize_t i = 0; i < nbase; i++) { PyObject *b = PyTuple_GET_ITEM(bases, i); if (PyType_Check(b) && add_subclass((PyTypeObject *)b, type) < 0) { return -1; } } return 0; } // Set tp_new and the "__new__" key in the type dictionary. // Use the Py_TPFLAGS_DISALLOW_INSTANTIATION flag. static int type_ready_set_new(PyTypeObject *type, int initial) { PyTypeObject *base = type->tp_base; /* The condition below could use some explanation. It appears that tp_new is not inherited for static types whose base class is 'object'; this seems to be a precaution so that old extension types don't suddenly become callable (object.__new__ wouldn't insure the invariants that the extension type's own factory function ensures). Heap types, of course, are under our control, so they do inherit tp_new; static extension types that specify some other built-in type as the default also inherit object.__new__. */ if (type->tp_new == NULL && base == &PyBaseObject_Type && !(type->tp_flags & Py_TPFLAGS_HEAPTYPE)) { type->tp_flags |= Py_TPFLAGS_DISALLOW_INSTANTIATION; } if (!(type->tp_flags & Py_TPFLAGS_DISALLOW_INSTANTIATION)) { if (type->tp_new != NULL) { if (initial || base == NULL || type->tp_new != base->tp_new) { // If "__new__" key does not exists in the type dictionary, // set it to tp_new_wrapper(). if (add_tp_new_wrapper(type) < 0) { return -1; } } } else { // tp_new is NULL: inherit tp_new from base type->tp_new = base->tp_new; } } else { // Py_TPFLAGS_DISALLOW_INSTANTIATION sets tp_new to NULL type->tp_new = NULL; } return 0; } static int type_ready_managed_dict(PyTypeObject *type) { if (!(type->tp_flags & Py_TPFLAGS_MANAGED_DICT)) { return 0; } if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE)) { PyErr_Format(PyExc_SystemError, "type %s has the Py_TPFLAGS_MANAGED_DICT flag " "but not Py_TPFLAGS_HEAPTYPE flag", type->tp_name); return -1; } PyHeapTypeObject* et = (PyHeapTypeObject*)type; if (et->ht_cached_keys == NULL) { et->ht_cached_keys = _PyDict_NewKeysForClass(et); if (et->ht_cached_keys == NULL) { PyErr_NoMemory(); return -1; } } if (type->tp_itemsize == 0) { type->tp_flags |= Py_TPFLAGS_INLINE_VALUES; } return 0; } static int type_ready_post_checks(PyTypeObject *type) { // bpo-44263: tp_traverse is required if Py_TPFLAGS_HAVE_GC is set. // Note: tp_clear is optional. if (type->tp_flags & Py_TPFLAGS_HAVE_GC && type->tp_traverse == NULL) { PyErr_Format(PyExc_SystemError, "type %s has the Py_TPFLAGS_HAVE_GC flag " "but has no traverse function", type->tp_name); return -1; } if (type->tp_flags & Py_TPFLAGS_MANAGED_DICT) { if (type->tp_dictoffset != -1) { PyErr_Format(PyExc_SystemError, "type %s has the Py_TPFLAGS_MANAGED_DICT flag " "but tp_dictoffset is set to incompatible value", type->tp_name); return -1; } } else if (type->tp_dictoffset < (Py_ssize_t)sizeof(PyObject)) { if (type->tp_dictoffset + type->tp_basicsize <= 0) { PyErr_Format(PyExc_SystemError, "type %s has a tp_dictoffset that is too small", type->tp_name); } } return 0; } static int type_ready(PyTypeObject *type, int initial) { ASSERT_TYPE_LOCK_HELD(); _PyObject_ASSERT((PyObject *)type, !is_readying(type)); start_readying(type); if (type_ready_pre_checks(type) < 0) { goto error; } #ifdef Py_TRACE_REFS /* PyType_Ready is the closest thing we have to a choke point * for type objects, so is the best place I can think of to try * to get type objects into the doubly-linked list of all objects. * Still, not all type objects go through PyType_Ready. */ _Py_AddToAllObjects((PyObject *)type); #endif /* Initialize tp_dict: _PyType_IsReady() tests if tp_dict != NULL */ if (type_ready_set_dict(type) < 0) { goto error; } if (type_ready_set_base(type) < 0) { goto error; } if (type_ready_set_type(type) < 0) { goto error; } if (type_ready_set_bases(type, initial) < 0) { goto error; } if (type_ready_mro(type, initial) < 0) { goto error; } if (type_ready_set_new(type, initial) < 0) { goto error; } if (type_ready_fill_dict(type) < 0) { goto error; } if (initial) { if (type_ready_inherit(type) < 0) { goto error; } if (type_ready_preheader(type) < 0) { goto error; } } if (type_ready_set_hash(type) < 0) { goto error; } if (type_ready_add_subclasses(type) < 0) { goto error; } if (initial) { if (type_ready_managed_dict(type) < 0) { goto error; } if (type_ready_post_checks(type) < 0) { goto error; } } /* All done -- set the ready flag */ type->tp_flags |= Py_TPFLAGS_READY; stop_readying(type); assert(_PyType_CheckConsistency(type)); return 0; error: stop_readying(type); return -1; } int PyType_Ready(PyTypeObject *type) { if (type->tp_flags & Py_TPFLAGS_READY) { assert(_PyType_CheckConsistency(type)); return 0; } assert(!(type->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN)); /* Historically, all static types were immutable. See bpo-43908 */ if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE)) { type->tp_flags |= Py_TPFLAGS_IMMUTABLETYPE; /* Static types must be immortal */ _Py_SetImmortalUntracked((PyObject *)type); } int res; BEGIN_TYPE_LOCK(); if (!(type->tp_flags & Py_TPFLAGS_READY)) { res = type_ready(type, 1); } else { res = 0; assert(_PyType_CheckConsistency(type)); } END_TYPE_LOCK(); return res; } static int init_static_type(PyInterpreterState *interp, PyTypeObject *self, int isbuiltin, int initial) { assert(_Py_IsImmortal((PyObject *)self)); assert(!(self->tp_flags & Py_TPFLAGS_HEAPTYPE)); assert(!(self->tp_flags & Py_TPFLAGS_MANAGED_DICT)); assert(!(self->tp_flags & Py_TPFLAGS_MANAGED_WEAKREF)); if ((self->tp_flags & Py_TPFLAGS_READY) == 0) { assert(initial); self->tp_flags |= _Py_TPFLAGS_STATIC_BUILTIN; self->tp_flags |= Py_TPFLAGS_IMMUTABLETYPE; assert(NEXT_GLOBAL_VERSION_TAG <= _Py_MAX_GLOBAL_TYPE_VERSION_TAG); _PyType_SetVersion(self, NEXT_GLOBAL_VERSION_TAG++); } else { assert(!initial); assert(self->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN); assert(self->tp_version_tag != 0); } managed_static_type_state_init(interp, self, isbuiltin, initial); int res; BEGIN_TYPE_LOCK(); res = type_ready(self, initial); END_TYPE_LOCK(); if (res < 0) { _PyStaticType_ClearWeakRefs(interp, self); managed_static_type_state_clear(interp, self, isbuiltin, initial); } return res; } int _PyStaticType_InitForExtension(PyInterpreterState *interp, PyTypeObject *self) { return init_static_type(interp, self, 0, ((self->tp_flags & Py_TPFLAGS_READY) == 0)); } int _PyStaticType_InitBuiltin(PyInterpreterState *interp, PyTypeObject *self) { return init_static_type(interp, self, 1, _Py_IsMainInterpreter(interp)); } static int add_subclass(PyTypeObject *base, PyTypeObject *type) { PyObject *key = PyLong_FromVoidPtr((void *) type); if (key == NULL) return -1; PyObject *ref = PyWeakref_NewRef((PyObject *)type, NULL); if (ref == NULL) { Py_DECREF(key); return -1; } // Only get tp_subclasses after creating the key and value. // PyWeakref_NewRef() can trigger a garbage collection which can execute // arbitrary Python code and so modify base->tp_subclasses. PyObject *subclasses = lookup_tp_subclasses(base); if (subclasses == NULL) { subclasses = init_tp_subclasses(base); if (subclasses == NULL) { Py_DECREF(key); Py_DECREF(ref); return -1; } } assert(PyDict_CheckExact(subclasses)); int result = PyDict_SetItem(subclasses, key, ref); Py_DECREF(ref); Py_DECREF(key); return result; } static int add_all_subclasses(PyTypeObject *type, PyObject *bases) { Py_ssize_t n = PyTuple_GET_SIZE(bases); int res = 0; for (Py_ssize_t i = 0; i < n; i++) { PyObject *obj = PyTuple_GET_ITEM(bases, i); // bases tuple must only contain types PyTypeObject *base = _PyType_CAST(obj); if (add_subclass(base, type) < 0) { res = -1; } } return res; } static PyObject * get_subclasses_key(PyTypeObject *type, PyTypeObject *base) { PyObject *key = PyLong_FromVoidPtr((void *) type); if (key != NULL) { return key; } PyErr_Clear(); /* This basically means we're out of memory. We fall back to manually traversing the values. */ Py_ssize_t i = 0; PyObject *ref; // borrowed ref PyObject *subclasses = lookup_tp_subclasses(base); if (subclasses != NULL) { while (PyDict_Next(subclasses, &i, &key, &ref)) { PyTypeObject *subclass = type_from_ref(ref); if (subclass == NULL) { continue; } if (subclass == type) { Py_DECREF(subclass); return Py_NewRef(key); } Py_DECREF(subclass); } } /* It wasn't found. */ return NULL; } static void remove_subclass(PyTypeObject *base, PyTypeObject *type) { PyObject *subclasses = lookup_tp_subclasses(base); // borrowed ref if (subclasses == NULL) { return; } assert(PyDict_CheckExact(subclasses)); PyObject *key = get_subclasses_key(type, base); if (key != NULL && PyDict_DelItem(subclasses, key)) { /* This can happen if the type initialization errored out before the base subclasses were updated (e.g. a non-str __qualname__ was passed in the type dict). */ PyErr_Clear(); } Py_XDECREF(key); if (PyDict_Size(subclasses) == 0) { clear_tp_subclasses(base); } } static void remove_all_subclasses(PyTypeObject *type, PyObject *bases) { assert(bases != NULL); // remove_subclass() can clear the current exception assert(!PyErr_Occurred()); for (Py_ssize_t i = 0; i < PyTuple_GET_SIZE(bases); i++) { PyObject *base = PyTuple_GET_ITEM(bases, i); if (PyType_Check(base)) { remove_subclass((PyTypeObject*) base, type); } } assert(!PyErr_Occurred()); } static int check_num_args(PyObject *ob, int n) { if (!PyTuple_CheckExact(ob)) { PyErr_SetString(PyExc_SystemError, "PyArg_UnpackTuple() argument list is not a tuple"); return 0; } if (n == PyTuple_GET_SIZE(ob)) return 1; PyErr_Format( PyExc_TypeError, "expected %d argument%s, got %zd", n, n == 1 ? "" : "s", PyTuple_GET_SIZE(ob)); return 0; } static Py_ssize_t check_pow_args(PyObject *ob) { // Returns the argument count on success or `-1` on error. int min = 1; int max = 2; if (!PyTuple_CheckExact(ob)) { PyErr_SetString(PyExc_SystemError, "PyArg_UnpackTuple() argument list is not a tuple"); return -1; } Py_ssize_t size = PyTuple_GET_SIZE(ob); if (size >= min && size <= max) { return size; } PyErr_Format( PyExc_TypeError, "expected %d or %d arguments, got %zd", min, max, PyTuple_GET_SIZE(ob)); return -1; } /* Generic wrappers for overloadable 'operators' such as __getitem__ */ /* There's a wrapper *function* for each distinct function typedef used for type object slots (e.g. binaryfunc, ternaryfunc, etc.). There's a wrapper *table* for each distinct operation (e.g. __len__, __add__). Most tables have only one entry; the tables for binary operators have two entries, one regular and one with reversed arguments. */ static PyObject * wrap_lenfunc(PyObject *self, PyObject *args, void *wrapped) { lenfunc func = (lenfunc)wrapped; Py_ssize_t res; if (!check_num_args(args, 0)) return NULL; res = (*func)(self); if (res == -1 && PyErr_Occurred()) return NULL; return PyLong_FromSsize_t(res); } static PyObject * wrap_inquirypred(PyObject *self, PyObject *args, void *wrapped) { inquiry func = (inquiry)wrapped; int res; if (!check_num_args(args, 0)) return NULL; res = (*func)(self); if (res == -1 && PyErr_Occurred()) return NULL; return PyBool_FromLong((long)res); } static PyObject * wrap_binaryfunc(PyObject *self, PyObject *args, void *wrapped) { binaryfunc func = (binaryfunc)wrapped; PyObject *other; if (!check_num_args(args, 1)) return NULL; other = PyTuple_GET_ITEM(args, 0); return (*func)(self, other); } static PyObject * wrap_binaryfunc_l(PyObject *self, PyObject *args, void *wrapped) { binaryfunc func = (binaryfunc)wrapped; PyObject *other; if (!check_num_args(args, 1)) return NULL; other = PyTuple_GET_ITEM(args, 0); return (*func)(self, other); } static PyObject * wrap_binaryfunc_r(PyObject *self, PyObject *args, void *wrapped) { binaryfunc func = (binaryfunc)wrapped; PyObject *other; if (!check_num_args(args, 1)) return NULL; other = PyTuple_GET_ITEM(args, 0); return (*func)(other, self); } static PyObject * wrap_ternaryfunc(PyObject *self, PyObject *args, void *wrapped) { ternaryfunc func = (ternaryfunc)wrapped; PyObject *other; PyObject *third = Py_None; /* Note: This wrapper only works for __pow__() */ Py_ssize_t size = check_pow_args(args); if (size == -1) { return NULL; } other = PyTuple_GET_ITEM(args, 0); if (size == 2) { third = PyTuple_GET_ITEM(args, 1); } return (*func)(self, other, third); } static PyObject * wrap_ternaryfunc_r(PyObject *self, PyObject *args, void *wrapped) { ternaryfunc func = (ternaryfunc)wrapped; PyObject *other; PyObject *third = Py_None; /* Note: This wrapper only works for __rpow__() */ Py_ssize_t size = check_pow_args(args); if (size == -1) { return NULL; } other = PyTuple_GET_ITEM(args, 0); if (size == 2) { third = PyTuple_GET_ITEM(args, 1); } return (*func)(other, self, third); } static PyObject * wrap_unaryfunc(PyObject *self, PyObject *args, void *wrapped) { unaryfunc func = (unaryfunc)wrapped; if (!check_num_args(args, 0)) return NULL; return (*func)(self); } static PyObject * wrap_indexargfunc(PyObject *self, PyObject *args, void *wrapped) { ssizeargfunc func = (ssizeargfunc)wrapped; PyObject* o; Py_ssize_t i; if (!check_num_args(args, 1)) return NULL; o = PyTuple_GET_ITEM(args, 0); i = PyNumber_AsSsize_t(o, PyExc_OverflowError); if (i == -1 && PyErr_Occurred()) return NULL; return (*func)(self, i); } static Py_ssize_t getindex(PyObject *self, PyObject *arg) { Py_ssize_t i; i = PyNumber_AsSsize_t(arg, PyExc_OverflowError); if (i == -1 && PyErr_Occurred()) return -1; if (i < 0) { PySequenceMethods *sq = Py_TYPE(self)->tp_as_sequence; if (sq && sq->sq_length) { Py_ssize_t n = (*sq->sq_length)(self); if (n < 0) { assert(PyErr_Occurred()); return -1; } i += n; } } return i; } static PyObject * wrap_sq_item(PyObject *self, PyObject *args, void *wrapped) { ssizeargfunc func = (ssizeargfunc)wrapped; PyObject *arg; Py_ssize_t i; if (PyTuple_GET_SIZE(args) == 1) { arg = PyTuple_GET_ITEM(args, 0); i = getindex(self, arg); if (i == -1 && PyErr_Occurred()) return NULL; return (*func)(self, i); } check_num_args(args, 1); assert(PyErr_Occurred()); return NULL; } static PyObject * wrap_sq_setitem(PyObject *self, PyObject *args, void *wrapped) { ssizeobjargproc func = (ssizeobjargproc)wrapped; Py_ssize_t i; int res; PyObject *arg, *value; if (!PyArg_UnpackTuple(args, "__setitem__", 2, 2, &arg, &value)) return NULL; i = getindex(self, arg); if (i == -1 && PyErr_Occurred()) return NULL; res = (*func)(self, i, value); if (res == -1 && PyErr_Occurred()) return NULL; Py_RETURN_NONE; } static PyObject * wrap_sq_delitem(PyObject *self, PyObject *args, void *wrapped) { ssizeobjargproc func = (ssizeobjargproc)wrapped; Py_ssize_t i; int res; PyObject *arg; if (!check_num_args(args, 1)) return NULL; arg = PyTuple_GET_ITEM(args, 0); i = getindex(self, arg); if (i == -1 && PyErr_Occurred()) return NULL; res = (*func)(self, i, NULL); if (res == -1 && PyErr_Occurred()) return NULL; Py_RETURN_NONE; } /* XXX objobjproc is a misnomer; should be objargpred */ static PyObject * wrap_objobjproc(PyObject *self, PyObject *args, void *wrapped) { objobjproc func = (objobjproc)wrapped; int res; PyObject *value; if (!check_num_args(args, 1)) return NULL; value = PyTuple_GET_ITEM(args, 0); res = (*func)(self, value); if (res == -1 && PyErr_Occurred()) return NULL; else return PyBool_FromLong(res); } static PyObject * wrap_objobjargproc(PyObject *self, PyObject *args, void *wrapped) { objobjargproc func = (objobjargproc)wrapped; int res; PyObject *key, *value; if (!PyArg_UnpackTuple(args, "__setitem__", 2, 2, &key, &value)) return NULL; res = (*func)(self, key, value); if (res == -1 && PyErr_Occurred()) return NULL; Py_RETURN_NONE; } static PyObject * wrap_delitem(PyObject *self, PyObject *args, void *wrapped) { objobjargproc func = (objobjargproc)wrapped; int res; PyObject *key; if (!check_num_args(args, 1)) return NULL; key = PyTuple_GET_ITEM(args, 0); res = (*func)(self, key, NULL); if (res == -1 && PyErr_Occurred()) return NULL; Py_RETURN_NONE; } /* Helper to check for object.__setattr__ or __delattr__ applied to a type. This is called the Carlo Verre hack after its discoverer. See https://mail.python.org/pipermail/python-dev/2003-April/034535.html */ static int hackcheck_unlocked(PyObject *self, setattrofunc func, const char *what) { PyTypeObject *type = Py_TYPE(self); ASSERT_TYPE_LOCK_HELD(); PyObject *mro = lookup_tp_mro(type); if (!mro) { /* Probably ok not to check the call in this case. */ return 1; } assert(PyTuple_Check(mro)); /* Find the (base) type that defined the type's slot function. */ PyTypeObject *defining_type = type; Py_ssize_t i; for (i = PyTuple_GET_SIZE(mro) - 1; i >= 0; i--) { PyTypeObject *base = _PyType_CAST(PyTuple_GET_ITEM(mro, i)); if (base->tp_setattro == slot_tp_setattro) { /* Ignore Python classes: they never define their own C-level setattro. */ } else if (base->tp_setattro == type->tp_setattro) { defining_type = base; break; } } /* Reject calls that jump over intermediate C-level overrides. */ for (PyTypeObject *base = defining_type; base; base = base->tp_base) { if (base->tp_setattro == func) { /* 'func' is the right slot function to call. */ break; } else if (base->tp_setattro != slot_tp_setattro) { /* 'base' is not a Python class and overrides 'func'. Its tp_setattro should be called instead. */ PyErr_Format(PyExc_TypeError, "can't apply this %s to %s object", what, type->tp_name); return 0; } } return 1; } static int hackcheck(PyObject *self, setattrofunc func, const char *what) { if (!PyType_Check(self)) { return 1; } int res; BEGIN_TYPE_LOCK(); res = hackcheck_unlocked(self, func, what); END_TYPE_LOCK(); return res; } static PyObject * wrap_setattr(PyObject *self, PyObject *args, void *wrapped) { setattrofunc func = (setattrofunc)wrapped; int res; PyObject *name, *value; if (!PyArg_UnpackTuple(args, "__setattr__", 2, 2, &name, &value)) return NULL; if (!hackcheck(self, func, "__setattr__")) return NULL; res = (*func)(self, name, value); if (res < 0) return NULL; Py_RETURN_NONE; } static PyObject * wrap_delattr(PyObject *self, PyObject *args, void *wrapped) { setattrofunc func = (setattrofunc)wrapped; int res; PyObject *name; if (!check_num_args(args, 1)) return NULL; name = PyTuple_GET_ITEM(args, 0); if (!hackcheck(self, func, "__delattr__")) return NULL; res = (*func)(self, name, NULL); if (res < 0) return NULL; Py_RETURN_NONE; } static PyObject * wrap_hashfunc(PyObject *self, PyObject *args, void *wrapped) { hashfunc func = (hashfunc)wrapped; Py_hash_t res; if (!check_num_args(args, 0)) return NULL; res = (*func)(self); if (res == -1 && PyErr_Occurred()) return NULL; return PyLong_FromSsize_t(res); } static PyObject * wrap_call(PyObject *self, PyObject *args, void *wrapped, PyObject *kwds) { ternaryfunc func = (ternaryfunc)wrapped; return (*func)(self, args, kwds); } static PyObject * wrap_del(PyObject *self, PyObject *args, void *wrapped) { destructor func = (destructor)wrapped; if (!check_num_args(args, 0)) return NULL; (*func)(self); Py_RETURN_NONE; } static PyObject * wrap_richcmpfunc(PyObject *self, PyObject *args, void *wrapped, int op) { richcmpfunc func = (richcmpfunc)wrapped; PyObject *other; if (!check_num_args(args, 1)) return NULL; other = PyTuple_GET_ITEM(args, 0); return (*func)(self, other, op); } #undef RICHCMP_WRAPPER #define RICHCMP_WRAPPER(NAME, OP) \ static PyObject * \ richcmp_##NAME(PyObject *self, PyObject *args, void *wrapped) \ { \ return wrap_richcmpfunc(self, args, wrapped, OP); \ } RICHCMP_WRAPPER(lt, Py_LT) RICHCMP_WRAPPER(le, Py_LE) RICHCMP_WRAPPER(eq, Py_EQ) RICHCMP_WRAPPER(ne, Py_NE) RICHCMP_WRAPPER(gt, Py_GT) RICHCMP_WRAPPER(ge, Py_GE) static PyObject * wrap_next(PyObject *self, PyObject *args, void *wrapped) { unaryfunc func = (unaryfunc)wrapped; PyObject *res; if (!check_num_args(args, 0)) return NULL; res = (*func)(self); if (res == NULL && !PyErr_Occurred()) PyErr_SetNone(PyExc_StopIteration); return res; } static PyObject * wrap_descr_get(PyObject *self, PyObject *args, void *wrapped) { descrgetfunc func = (descrgetfunc)wrapped; PyObject *obj; PyObject *type = NULL; if (!PyArg_UnpackTuple(args, "__get__", 1, 2, &obj, &type)) return NULL; if (obj == Py_None) obj = NULL; if (type == Py_None) type = NULL; if (type == NULL && obj == NULL) { PyErr_SetString(PyExc_TypeError, "__get__(None, None) is invalid"); return NULL; } return (*func)(self, obj, type); } static PyObject * wrap_descr_set(PyObject *self, PyObject *args, void *wrapped) { descrsetfunc func = (descrsetfunc)wrapped; PyObject *obj, *value; int ret; if (!PyArg_UnpackTuple(args, "__set__", 2, 2, &obj, &value)) return NULL; ret = (*func)(self, obj, value); if (ret < 0) return NULL; Py_RETURN_NONE; } static PyObject * wrap_descr_delete(PyObject *self, PyObject *args, void *wrapped) { descrsetfunc func = (descrsetfunc)wrapped; PyObject *obj; int ret; if (!check_num_args(args, 1)) return NULL; obj = PyTuple_GET_ITEM(args, 0); ret = (*func)(self, obj, NULL); if (ret < 0) return NULL; Py_RETURN_NONE; } static PyObject * wrap_buffer(PyObject *self, PyObject *args, void *wrapped) { PyObject *arg = NULL; if (!PyArg_UnpackTuple(args, "__buffer__", 1, 1, &arg)) { return NULL; } Py_ssize_t flags = PyNumber_AsSsize_t(arg, PyExc_OverflowError); if (flags == -1 && PyErr_Occurred()) { return NULL; } if (flags > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "buffer flags too large"); return NULL; } return _PyMemoryView_FromBufferProc(self, Py_SAFE_DOWNCAST(flags, Py_ssize_t, int), (getbufferproc)wrapped); } static PyObject * wrap_releasebuffer(PyObject *self, PyObject *args, void *wrapped) { PyObject *arg = NULL; if (!PyArg_UnpackTuple(args, "__release_buffer__", 1, 1, &arg)) { return NULL; } if (!PyMemoryView_Check(arg)) { PyErr_SetString(PyExc_TypeError, "expected a memoryview object"); return NULL; } PyMemoryViewObject *mview = (PyMemoryViewObject *)arg; if (mview->view.obj == NULL) { // Already released, ignore Py_RETURN_NONE; } if (mview->view.obj != self) { PyErr_SetString(PyExc_ValueError, "memoryview's buffer is not this object"); return NULL; } if (mview->flags & _Py_MEMORYVIEW_RELEASED) { PyErr_SetString(PyExc_ValueError, "memoryview's buffer has already been released"); return NULL; } PyObject *res = PyObject_CallMethodNoArgs((PyObject *)mview, &_Py_ID(release)); if (res == NULL) { return NULL; } Py_DECREF(res); Py_RETURN_NONE; } static PyObject * wrap_init(PyObject *self, PyObject *args, void *wrapped, PyObject *kwds) { initproc func = (initproc)wrapped; if (func(self, args, kwds) < 0) return NULL; Py_RETURN_NONE; } static PyObject * tp_new_wrapper(PyObject *self, PyObject *args, PyObject *kwds) { PyTypeObject *staticbase; PyObject *arg0, *res; if (self == NULL || !PyType_Check(self)) { PyErr_Format(PyExc_SystemError, "__new__() called with non-type 'self'"); return NULL; } PyTypeObject *type = (PyTypeObject *)self; if (!PyTuple_Check(args) || PyTuple_GET_SIZE(args) < 1) { PyErr_Format(PyExc_TypeError, "%s.__new__(): not enough arguments", type->tp_name); return NULL; } arg0 = PyTuple_GET_ITEM(args, 0); if (!PyType_Check(arg0)) { PyErr_Format(PyExc_TypeError, "%s.__new__(X): X is not a type object (%s)", type->tp_name, Py_TYPE(arg0)->tp_name); return NULL; } PyTypeObject *subtype = (PyTypeObject *)arg0; if (!PyType_IsSubtype(subtype, type)) { PyErr_Format(PyExc_TypeError, "%s.__new__(%s): %s is not a subtype of %s", type->tp_name, subtype->tp_name, subtype->tp_name, type->tp_name); return NULL; } /* Check that the use doesn't do something silly and unsafe like object.__new__(dict). To do this, we check that the most derived base that's not a heap type is this type. */ staticbase = subtype; while (staticbase && (staticbase->tp_new == slot_tp_new)) staticbase = staticbase->tp_base; /* If staticbase is NULL now, it is a really weird type. In the spirit of backwards compatibility (?), just shut up. */ if (staticbase && staticbase->tp_new != type->tp_new) { PyErr_Format(PyExc_TypeError, "%s.__new__(%s) is not safe, use %s.__new__()", type->tp_name, subtype->tp_name, staticbase->tp_name); return NULL; } args = PyTuple_GetSlice(args, 1, PyTuple_GET_SIZE(args)); if (args == NULL) return NULL; res = type->tp_new(subtype, args, kwds); Py_DECREF(args); return res; } static struct PyMethodDef tp_new_methoddef[] = { {"__new__", _PyCFunction_CAST(tp_new_wrapper), METH_VARARGS|METH_KEYWORDS, PyDoc_STR("__new__($type, *args, **kwargs)\n--\n\n" "Create and return a new object. " "See help(type) for accurate signature.")}, {0} }; static int add_tp_new_wrapper(PyTypeObject *type) { PyObject *dict = lookup_tp_dict(type); int r = PyDict_Contains(dict, &_Py_ID(__new__)); if (r > 0) { return 0; } if (r < 0) { return -1; } PyObject *func = PyCFunction_NewEx(tp_new_methoddef, (PyObject *)type, NULL); if (func == NULL) { return -1; } r = PyDict_SetItem(dict, &_Py_ID(__new__), func); Py_DECREF(func); return r; } /* Slot wrappers that call the corresponding __foo__ slot. See comments below at override_slots() for more explanation. */ #define SLOT0(FUNCNAME, DUNDER) \ static PyObject * \ FUNCNAME(PyObject *self) \ { \ PyObject* stack[1] = {self}; \ return vectorcall_method(&_Py_ID(DUNDER), stack, 1); \ } #define SLOT1(FUNCNAME, DUNDER, ARG1TYPE) \ static PyObject * \ FUNCNAME(PyObject *self, ARG1TYPE arg1) \ { \ PyObject* stack[2] = {self, arg1}; \ return vectorcall_method(&_Py_ID(DUNDER), stack, 2); \ } /* Boolean helper for SLOT1BINFULL(). right.__class__ is a nontrivial subclass of left.__class__. */ static int method_is_overloaded(PyObject *left, PyObject *right, PyObject *name) { PyObject *a, *b; int ok; if (PyObject_GetOptionalAttr((PyObject *)(Py_TYPE(right)), name, &b) < 0) { return -1; } if (b == NULL) { /* If right doesn't have it, it's not overloaded */ return 0; } if (PyObject_GetOptionalAttr((PyObject *)(Py_TYPE(left)), name, &a) < 0) { Py_DECREF(b); return -1; } if (a == NULL) { Py_DECREF(b); /* If right has it but left doesn't, it's overloaded */ return 1; } ok = PyObject_RichCompareBool(a, b, Py_NE); Py_DECREF(a); Py_DECREF(b); return ok; } #define SLOT1BINFULL(FUNCNAME, TESTFUNC, SLOTNAME, DUNDER, RDUNDER) \ static PyObject * \ FUNCNAME(PyObject *self, PyObject *other) \ { \ PyObject* stack[2]; \ PyThreadState *tstate = _PyThreadState_GET(); \ int do_other = !Py_IS_TYPE(self, Py_TYPE(other)) && \ Py_TYPE(other)->tp_as_number != NULL && \ Py_TYPE(other)->tp_as_number->SLOTNAME == TESTFUNC; \ if (Py_TYPE(self)->tp_as_number != NULL && \ Py_TYPE(self)->tp_as_number->SLOTNAME == TESTFUNC) { \ PyObject *r; \ if (do_other && PyType_IsSubtype(Py_TYPE(other), Py_TYPE(self))) { \ int ok = method_is_overloaded(self, other, &_Py_ID(RDUNDER)); \ if (ok < 0) { \ return NULL; \ } \ if (ok) { \ stack[0] = other; \ stack[1] = self; \ r = vectorcall_maybe(tstate, &_Py_ID(RDUNDER), stack, 2); \ if (r != Py_NotImplemented) \ return r; \ Py_DECREF(r); \ do_other = 0; \ } \ } \ stack[0] = self; \ stack[1] = other; \ r = vectorcall_maybe(tstate, &_Py_ID(DUNDER), stack, 2); \ if (r != Py_NotImplemented || \ Py_IS_TYPE(other, Py_TYPE(self))) \ return r; \ Py_DECREF(r); \ } \ if (do_other) { \ stack[0] = other; \ stack[1] = self; \ return vectorcall_maybe(tstate, &_Py_ID(RDUNDER), stack, 2); \ } \ Py_RETURN_NOTIMPLEMENTED; \ } #define SLOT1BIN(FUNCNAME, SLOTNAME, DUNDER, RDUNDER) \ SLOT1BINFULL(FUNCNAME, FUNCNAME, SLOTNAME, DUNDER, RDUNDER) static Py_ssize_t slot_sq_length(PyObject *self) { PyObject* stack[1] = {self}; PyObject *res = vectorcall_method(&_Py_ID(__len__), stack, 1); Py_ssize_t len; if (res == NULL) return -1; Py_SETREF(res, _PyNumber_Index(res)); if (res == NULL) return -1; assert(PyLong_Check(res)); if (_PyLong_IsNegative((PyLongObject *)res)) { Py_DECREF(res); PyErr_SetString(PyExc_ValueError, "__len__() should return >= 0"); return -1; } len = PyNumber_AsSsize_t(res, PyExc_OverflowError); assert(len >= 0 || PyErr_ExceptionMatches(PyExc_OverflowError)); Py_DECREF(res); return len; } static PyObject * slot_sq_item(PyObject *self, Py_ssize_t i) { PyObject *ival = PyLong_FromSsize_t(i); if (ival == NULL) { return NULL; } PyObject *stack[2] = {self, ival}; PyObject *retval = vectorcall_method(&_Py_ID(__getitem__), stack, 2); Py_DECREF(ival); return retval; } static int slot_sq_ass_item(PyObject *self, Py_ssize_t index, PyObject *value) { PyObject *stack[3]; PyObject *res; PyObject *index_obj; index_obj = PyLong_FromSsize_t(index); if (index_obj == NULL) { return -1; } stack[0] = self; stack[1] = index_obj; if (value == NULL) { res = vectorcall_method(&_Py_ID(__delitem__), stack, 2); } else { stack[2] = value; res = vectorcall_method(&_Py_ID(__setitem__), stack, 3); } Py_DECREF(index_obj); if (res == NULL) { return -1; } Py_DECREF(res); return 0; } static int slot_sq_contains(PyObject *self, PyObject *value) { PyThreadState *tstate = _PyThreadState_GET(); PyObject *func, *res; int result = -1, unbound; func = lookup_maybe_method(self, &_Py_ID(__contains__), &unbound); if (func == Py_None) { Py_DECREF(func); PyErr_Format(PyExc_TypeError, "'%.200s' object is not a container", Py_TYPE(self)->tp_name); return -1; } if (func != NULL) { PyObject *args[2] = {self, value}; res = vectorcall_unbound(tstate, unbound, func, args, 2); Py_DECREF(func); if (res != NULL) { result = PyObject_IsTrue(res); Py_DECREF(res); } } else if (! PyErr_Occurred()) { /* Possible results: -1 and 1 */ result = (int)_PySequence_IterSearch(self, value, PY_ITERSEARCH_CONTAINS); } return result; } #define slot_mp_length slot_sq_length SLOT1(slot_mp_subscript, __getitem__, PyObject *) static int slot_mp_ass_subscript(PyObject *self, PyObject *key, PyObject *value) { PyObject *stack[3]; PyObject *res; stack[0] = self; stack[1] = key; if (value == NULL) { res = vectorcall_method(&_Py_ID(__delitem__), stack, 2); } else { stack[2] = value; res = vectorcall_method(&_Py_ID(__setitem__), stack, 3); } if (res == NULL) return -1; Py_DECREF(res); return 0; } SLOT1BIN(slot_nb_add, nb_add, __add__, __radd__) SLOT1BIN(slot_nb_subtract, nb_subtract, __sub__, __rsub__) SLOT1BIN(slot_nb_multiply, nb_multiply, __mul__, __rmul__) SLOT1BIN(slot_nb_matrix_multiply, nb_matrix_multiply, __matmul__, __rmatmul__) SLOT1BIN(slot_nb_remainder, nb_remainder, __mod__, __rmod__) SLOT1BIN(slot_nb_divmod, nb_divmod, __divmod__, __rdivmod__) static PyObject *slot_nb_power(PyObject *, PyObject *, PyObject *); SLOT1BINFULL(slot_nb_power_binary, slot_nb_power, nb_power, __pow__, __rpow__) static PyObject * slot_nb_power(PyObject *self, PyObject *other, PyObject *modulus) { if (modulus == Py_None) return slot_nb_power_binary(self, other); /* Three-arg power doesn't use __rpow__. But ternary_op can call this when the second argument's type uses slot_nb_power, so check before calling self.__pow__. */ if (Py_TYPE(self)->tp_as_number != NULL && Py_TYPE(self)->tp_as_number->nb_power == slot_nb_power) { PyObject* stack[3] = {self, other, modulus}; return vectorcall_method(&_Py_ID(__pow__), stack, 3); } Py_RETURN_NOTIMPLEMENTED; } SLOT0(slot_nb_negative, __neg__) SLOT0(slot_nb_positive, __pos__) SLOT0(slot_nb_absolute, __abs__) static int slot_nb_bool(PyObject *self) { PyObject *func, *value; int result, unbound; int using_len = 0; func = lookup_maybe_method(self, &_Py_ID(__bool__), &unbound); if (func == NULL) { if (PyErr_Occurred()) { return -1; } func = lookup_maybe_method(self, &_Py_ID(__len__), &unbound); if (func == NULL) { if (PyErr_Occurred()) { return -1; } return 1; } using_len = 1; } value = call_unbound_noarg(unbound, func, self); if (value == NULL) { goto error; } if (using_len) { /* bool type enforced by slot_nb_len */ result = PyObject_IsTrue(value); } else if (PyBool_Check(value)) { result = PyObject_IsTrue(value); } else { PyErr_Format(PyExc_TypeError, "__bool__ should return " "bool, returned %s", Py_TYPE(value)->tp_name); result = -1; } Py_DECREF(value); Py_DECREF(func); return result; error: Py_DECREF(func); return -1; } static PyObject * slot_nb_index(PyObject *self) { PyObject *stack[1] = {self}; return vectorcall_method(&_Py_ID(__index__), stack, 1); } SLOT0(slot_nb_invert, __invert__) SLOT1BIN(slot_nb_lshift, nb_lshift, __lshift__, __rlshift__) SLOT1BIN(slot_nb_rshift, nb_rshift, __rshift__, __rrshift__) SLOT1BIN(slot_nb_and, nb_and, __and__, __rand__) SLOT1BIN(slot_nb_xor, nb_xor, __xor__, __rxor__) SLOT1BIN(slot_nb_or, nb_or, __or__, __ror__) SLOT0(slot_nb_int, __int__) SLOT0(slot_nb_float, __float__) SLOT1(slot_nb_inplace_add, __iadd__, PyObject *) SLOT1(slot_nb_inplace_subtract, __isub__, PyObject *) SLOT1(slot_nb_inplace_multiply, __imul__, PyObject *) SLOT1(slot_nb_inplace_matrix_multiply, __imatmul__, PyObject *) SLOT1(slot_nb_inplace_remainder, __imod__, PyObject *) /* Can't use SLOT1 here, because nb_inplace_power is ternary */ static PyObject * slot_nb_inplace_power(PyObject *self, PyObject * arg1, PyObject *arg2) { PyObject *stack[2] = {self, arg1}; return vectorcall_method(&_Py_ID(__ipow__), stack, 2); } SLOT1(slot_nb_inplace_lshift, __ilshift__, PyObject *) SLOT1(slot_nb_inplace_rshift, __irshift__, PyObject *) SLOT1(slot_nb_inplace_and, __iand__, PyObject *) SLOT1(slot_nb_inplace_xor, __ixor__, PyObject *) SLOT1(slot_nb_inplace_or, __ior__, PyObject *) SLOT1BIN(slot_nb_floor_divide, nb_floor_divide, __floordiv__, __rfloordiv__) SLOT1BIN(slot_nb_true_divide, nb_true_divide, __truediv__, __rtruediv__) SLOT1(slot_nb_inplace_floor_divide, __ifloordiv__, PyObject *) SLOT1(slot_nb_inplace_true_divide, __itruediv__, PyObject *) static PyObject * slot_tp_repr(PyObject *self) { PyObject *func, *res; int unbound; func = lookup_maybe_method(self, &_Py_ID(__repr__), &unbound); if (func != NULL) { res = call_unbound_noarg(unbound, func, self); Py_DECREF(func); return res; } PyErr_Clear(); return PyUnicode_FromFormat("<%s object at %p>", Py_TYPE(self)->tp_name, self); } SLOT0(slot_tp_str, __str__) static Py_hash_t slot_tp_hash(PyObject *self) { PyObject *func, *res; Py_ssize_t h; int unbound; func = lookup_maybe_method(self, &_Py_ID(__hash__), &unbound); if (func == Py_None) { Py_SETREF(func, NULL); } if (func == NULL) { return PyObject_HashNotImplemented(self); } res = call_unbound_noarg(unbound, func, self); Py_DECREF(func); if (res == NULL) return -1; if (!PyLong_Check(res)) { PyErr_SetString(PyExc_TypeError, "__hash__ method should return an integer"); return -1; } /* Transform the PyLong `res` to a Py_hash_t `h`. For an existing hashable Python object x, hash(x) will always lie within the range of Py_hash_t. Therefore our transformation must preserve values that already lie within this range, to ensure that if x.__hash__() returns hash(y) then hash(x) == hash(y). */ h = PyLong_AsSsize_t(res); if (h == -1 && PyErr_Occurred()) { /* res was not within the range of a Py_hash_t, so we're free to use any sufficiently bit-mixing transformation; long.__hash__ will do nicely. */ PyErr_Clear(); h = PyLong_Type.tp_hash(res); } /* -1 is reserved for errors. */ if (h == -1) h = -2; Py_DECREF(res); return h; } static PyObject * slot_tp_call(PyObject *self, PyObject *args, PyObject *kwds) { PyThreadState *tstate = _PyThreadState_GET(); int unbound; PyObject *meth = lookup_method(self, &_Py_ID(__call__), &unbound); if (meth == NULL) { return NULL; } PyObject *res; if (unbound) { res = _PyObject_Call_Prepend(tstate, meth, self, args, kwds); } else { res = _PyObject_Call(tstate, meth, args, kwds); } Py_DECREF(meth); return res; } /* There are two slot dispatch functions for tp_getattro. - _Py_slot_tp_getattro() is used when __getattribute__ is overridden but no __getattr__ hook is present; - _Py_slot_tp_getattr_hook() is used when a __getattr__ hook is present. The code in update_one_slot() always installs _Py_slot_tp_getattr_hook(); this detects the absence of __getattr__ and then installs the simpler slot if necessary. */ PyObject * _Py_slot_tp_getattro(PyObject *self, PyObject *name) { PyObject *stack[2] = {self, name}; return vectorcall_method(&_Py_ID(__getattribute__), stack, 2); } static inline PyObject * call_attribute(PyObject *self, PyObject *attr, PyObject *name) { PyObject *res, *descr = NULL; if (_PyType_HasFeature(Py_TYPE(attr), Py_TPFLAGS_METHOD_DESCRIPTOR)) { PyObject *args[] = { self, name }; res = PyObject_Vectorcall(attr, args, 2, NULL); return res; } descrgetfunc f = Py_TYPE(attr)->tp_descr_get; if (f != NULL) { descr = f(attr, self, (PyObject *)(Py_TYPE(self))); if (descr == NULL) return NULL; else attr = descr; } res = PyObject_CallOneArg(attr, name); Py_XDECREF(descr); return res; } PyObject * _Py_slot_tp_getattr_hook(PyObject *self, PyObject *name) { PyTypeObject *tp = Py_TYPE(self); PyObject *getattr, *getattribute, *res; /* speed hack: we could use lookup_maybe, but that would resolve the method fully for each attribute lookup for classes with __getattr__, even when the attribute is present. So we use _PyType_LookupRef and create the method only when needed, with call_attribute. */ getattr = _PyType_LookupRef(tp, &_Py_ID(__getattr__)); if (getattr == NULL) { /* No __getattr__ hook: use a simpler dispatcher */ tp->tp_getattro = _Py_slot_tp_getattro; return _Py_slot_tp_getattro(self, name); } /* speed hack: we could use lookup_maybe, but that would resolve the method fully for each attribute lookup for classes with __getattr__, even when self has the default __getattribute__ method. So we use _PyType_LookupRef and create the method only when needed, with call_attribute. */ getattribute = _PyType_LookupRef(tp, &_Py_ID(__getattribute__)); if (getattribute == NULL || (Py_IS_TYPE(getattribute, &PyWrapperDescr_Type) && ((PyWrapperDescrObject *)getattribute)->d_wrapped == (void *)PyObject_GenericGetAttr)) { Py_XDECREF(getattribute); res = _PyObject_GenericGetAttrWithDict(self, name, NULL, 1); /* if res == NULL with no exception set, then it must be an AttributeError suppressed by us. */ if (res == NULL && !PyErr_Occurred()) { res = call_attribute(self, getattr, name); } } else { res = call_attribute(self, getattribute, name); Py_DECREF(getattribute); if (res == NULL && PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Clear(); res = call_attribute(self, getattr, name); } } Py_DECREF(getattr); return res; } static int slot_tp_setattro(PyObject *self, PyObject *name, PyObject *value) { PyObject *stack[3]; PyObject *res; stack[0] = self; stack[1] = name; if (value == NULL) { res = vectorcall_method(&_Py_ID(__delattr__), stack, 2); } else { stack[2] = value; res = vectorcall_method(&_Py_ID(__setattr__), stack, 3); } if (res == NULL) return -1; Py_DECREF(res); return 0; } static PyObject *name_op[] = { &_Py_ID(__lt__), &_Py_ID(__le__), &_Py_ID(__eq__), &_Py_ID(__ne__), &_Py_ID(__gt__), &_Py_ID(__ge__), }; static PyObject * slot_tp_richcompare(PyObject *self, PyObject *other, int op) { PyThreadState *tstate = _PyThreadState_GET(); int unbound; PyObject *func = lookup_maybe_method(self, name_op[op], &unbound); if (func == NULL) { PyErr_Clear(); Py_RETURN_NOTIMPLEMENTED; } PyObject *stack[2] = {self, other}; PyObject *res = vectorcall_unbound(tstate, unbound, func, stack, 2); Py_DECREF(func); return res; } static PyObject * slot_tp_iter(PyObject *self) { int unbound; PyObject *func, *res; func = lookup_maybe_method(self, &_Py_ID(__iter__), &unbound); if (func == Py_None) { Py_DECREF(func); PyErr_Format(PyExc_TypeError, "'%.200s' object is not iterable", Py_TYPE(self)->tp_name); return NULL; } if (func != NULL) { res = call_unbound_noarg(unbound, func, self); Py_DECREF(func); return res; } PyErr_Clear(); func = lookup_maybe_method(self, &_Py_ID(__getitem__), &unbound); if (func == NULL) { PyErr_Format(PyExc_TypeError, "'%.200s' object is not iterable", Py_TYPE(self)->tp_name); return NULL; } Py_DECREF(func); return PySeqIter_New(self); } static PyObject * slot_tp_iternext(PyObject *self) { PyObject *stack[1] = {self}; return vectorcall_method(&_Py_ID(__next__), stack, 1); } static PyObject * slot_tp_descr_get(PyObject *self, PyObject *obj, PyObject *type) { PyTypeObject *tp = Py_TYPE(self); PyObject *get; get = _PyType_LookupRef(tp, &_Py_ID(__get__)); if (get == NULL) { /* Avoid further slowdowns */ if (tp->tp_descr_get == slot_tp_descr_get) tp->tp_descr_get = NULL; return Py_NewRef(self); } if (obj == NULL) obj = Py_None; if (type == NULL) type = Py_None; PyObject *stack[3] = {self, obj, type}; PyObject *res = PyObject_Vectorcall(get, stack, 3, NULL); Py_DECREF(get); return res; } static int slot_tp_descr_set(PyObject *self, PyObject *target, PyObject *value) { PyObject* stack[3]; PyObject *res; stack[0] = self; stack[1] = target; if (value == NULL) { res = vectorcall_method(&_Py_ID(__delete__), stack, 2); } else { stack[2] = value; res = vectorcall_method(&_Py_ID(__set__), stack, 3); } if (res == NULL) return -1; Py_DECREF(res); return 0; } static int slot_tp_init(PyObject *self, PyObject *args, PyObject *kwds) { PyThreadState *tstate = _PyThreadState_GET(); int unbound; PyObject *meth = lookup_method(self, &_Py_ID(__init__), &unbound); if (meth == NULL) { return -1; } PyObject *res; if (unbound) { res = _PyObject_Call_Prepend(tstate, meth, self, args, kwds); } else { res = _PyObject_Call(tstate, meth, args, kwds); } Py_DECREF(meth); if (res == NULL) return -1; if (res != Py_None) { PyErr_Format(PyExc_TypeError, "__init__() should return None, not '%.200s'", Py_TYPE(res)->tp_name); Py_DECREF(res); return -1; } Py_DECREF(res); return 0; } static PyObject * slot_tp_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyThreadState *tstate = _PyThreadState_GET(); PyObject *func, *result; func = PyObject_GetAttr((PyObject *)type, &_Py_ID(__new__)); if (func == NULL) { return NULL; } result = _PyObject_Call_Prepend(tstate, func, (PyObject *)type, args, kwds); Py_DECREF(func); return result; } static void slot_tp_finalize(PyObject *self) { int unbound; PyObject *del, *res; /* Save the current exception, if any. */ PyObject *exc = PyErr_GetRaisedException(); /* Execute __del__ method, if any. */ del = lookup_maybe_method(self, &_Py_ID(__del__), &unbound); if (del != NULL) { res = call_unbound_noarg(unbound, del, self); if (res == NULL) PyErr_WriteUnraisable(del); else Py_DECREF(res); Py_DECREF(del); } /* Restore the saved exception. */ PyErr_SetRaisedException(exc); } typedef struct _PyBufferWrapper { PyObject_HEAD PyObject *mv; PyObject *obj; } PyBufferWrapper; static int bufferwrapper_traverse(PyBufferWrapper *self, visitproc visit, void *arg) { Py_VISIT(self->mv); Py_VISIT(self->obj); return 0; } static void bufferwrapper_dealloc(PyObject *self) { PyBufferWrapper *bw = (PyBufferWrapper *)self; _PyObject_GC_UNTRACK(self); Py_XDECREF(bw->mv); Py_XDECREF(bw->obj); Py_TYPE(self)->tp_free(self); } static void bufferwrapper_releasebuf(PyObject *self, Py_buffer *view) { PyBufferWrapper *bw = (PyBufferWrapper *)self; if (bw->mv == NULL || bw->obj == NULL) { // Already released return; } PyObject *mv = bw->mv; PyObject *obj = bw->obj; assert(PyMemoryView_Check(mv)); Py_TYPE(mv)->tp_as_buffer->bf_releasebuffer(mv, view); // We only need to call bf_releasebuffer if it's a Python function. If it's a C // bf_releasebuf, it will be called when the memoryview is released. if (((PyMemoryViewObject *)mv)->view.obj != obj && Py_TYPE(obj)->tp_as_buffer != NULL && Py_TYPE(obj)->tp_as_buffer->bf_releasebuffer == slot_bf_releasebuffer) { releasebuffer_call_python(obj, view); } Py_CLEAR(bw->mv); Py_CLEAR(bw->obj); } static PyBufferProcs bufferwrapper_as_buffer = { .bf_releasebuffer = bufferwrapper_releasebuf, }; PyTypeObject _PyBufferWrapper_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) .tp_name = "_buffer_wrapper", .tp_basicsize = sizeof(PyBufferWrapper), .tp_alloc = PyType_GenericAlloc, .tp_free = PyObject_GC_Del, .tp_traverse = (traverseproc)bufferwrapper_traverse, .tp_dealloc = bufferwrapper_dealloc, .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, .tp_as_buffer = &bufferwrapper_as_buffer, }; static int slot_bf_getbuffer(PyObject *self, Py_buffer *buffer, int flags) { PyObject *flags_obj = PyLong_FromLong(flags); if (flags_obj == NULL) { return -1; } PyBufferWrapper *wrapper = NULL; PyObject *stack[2] = {self, flags_obj}; PyObject *ret = vectorcall_method(&_Py_ID(__buffer__), stack, 2); if (ret == NULL) { goto fail; } if (!PyMemoryView_Check(ret)) { PyErr_Format(PyExc_TypeError, "__buffer__ returned non-memoryview object"); goto fail; } if (PyObject_GetBuffer(ret, buffer, flags) < 0) { goto fail; } assert(buffer->obj == ret); wrapper = PyObject_GC_New(PyBufferWrapper, &_PyBufferWrapper_Type); if (wrapper == NULL) { goto fail; } wrapper->mv = ret; wrapper->obj = Py_NewRef(self); _PyObject_GC_TRACK(wrapper); buffer->obj = (PyObject *)wrapper; Py_DECREF(ret); Py_DECREF(flags_obj); return 0; fail: Py_XDECREF(wrapper); Py_XDECREF(ret); Py_DECREF(flags_obj); return -1; } static releasebufferproc releasebuffer_maybe_call_super_unlocked(PyObject *self, Py_buffer *buffer) { PyTypeObject *self_type = Py_TYPE(self); PyObject *mro = lookup_tp_mro(self_type); if (mro == NULL) { return NULL; } assert(PyTuple_Check(mro)); Py_ssize_t n = PyTuple_GET_SIZE(mro); Py_ssize_t i; /* No need to check the last one: it's gonna be skipped anyway. */ for (i = 0; i < n -1; i++) { if ((PyObject *)(self_type) == PyTuple_GET_ITEM(mro, i)) break; } i++; /* skip self_type */ if (i >= n) return NULL; for (; i < n; i++) { PyObject *obj = PyTuple_GET_ITEM(mro, i); if (!PyType_Check(obj)) { continue; } PyTypeObject *base_type = (PyTypeObject *)obj; if (base_type->tp_as_buffer != NULL && base_type->tp_as_buffer->bf_releasebuffer != NULL && base_type->tp_as_buffer->bf_releasebuffer != slot_bf_releasebuffer) { return base_type->tp_as_buffer->bf_releasebuffer; } } return NULL; } static void releasebuffer_maybe_call_super(PyObject *self, Py_buffer *buffer) { releasebufferproc base_releasebuffer; BEGIN_TYPE_LOCK(); base_releasebuffer = releasebuffer_maybe_call_super_unlocked(self, buffer); END_TYPE_LOCK(); if (base_releasebuffer != NULL) { base_releasebuffer(self, buffer); } } static void releasebuffer_call_python(PyObject *self, Py_buffer *buffer) { // bf_releasebuffer may be called while an exception is already active. // We have no way to report additional errors up the stack, because // this slot returns void, so we simply stash away the active exception // and restore it after the call to Python returns. PyObject *exc = PyErr_GetRaisedException(); PyObject *mv; bool is_buffer_wrapper = Py_TYPE(buffer->obj) == &_PyBufferWrapper_Type; if (is_buffer_wrapper) { // Make sure we pass the same memoryview to // __release_buffer__() that __buffer__() returned. PyBufferWrapper *bw = (PyBufferWrapper *)buffer->obj; if (bw->mv == NULL) { goto end; } mv = Py_NewRef(bw->mv); } else { // This means we are not dealing with a memoryview returned // from a Python __buffer__ function. mv = PyMemoryView_FromBuffer(buffer); if (mv == NULL) { PyErr_FormatUnraisable("Exception ignored in bf_releasebuffer of %s", Py_TYPE(self)->tp_name); goto end; } // Set the memoryview to restricted mode, which forbids // users from saving any reference to the underlying buffer // (e.g., by doing .cast()). This is necessary to ensure // no Python code retains a reference to the to-be-released // buffer. ((PyMemoryViewObject *)mv)->flags |= _Py_MEMORYVIEW_RESTRICTED; } PyObject *stack[2] = {self, mv}; PyObject *ret = vectorcall_method(&_Py_ID(__release_buffer__), stack, 2); if (ret == NULL) { PyErr_FormatUnraisable("Exception ignored in __release_buffer__ of %s", Py_TYPE(self)->tp_name); } else { Py_DECREF(ret); } if (!is_buffer_wrapper) { PyObject *res = PyObject_CallMethodNoArgs(mv, &_Py_ID(release)); if (res == NULL) { PyErr_FormatUnraisable("Exception ignored in bf_releasebuffer of %s", Py_TYPE(self)->tp_name); } else { Py_DECREF(res); } } Py_DECREF(mv); end: assert(!PyErr_Occurred()); PyErr_SetRaisedException(exc); } /* * bf_releasebuffer is very delicate, because we need to ensure that * C bf_releasebuffer slots are called correctly (or we'll leak memory), * but we cannot trust any __release_buffer__ implemented in Python to * do so correctly. Therefore, if a base class has a C bf_releasebuffer * slot, we call it directly here. That is safe because this function * only gets called from C callers of the bf_releasebuffer slot. Python * code that calls __release_buffer__ directly instead goes through * wrap_releasebuffer(), which doesn't call the bf_releasebuffer slot * directly but instead simply releases the associated memoryview. */ static void slot_bf_releasebuffer(PyObject *self, Py_buffer *buffer) { releasebuffer_call_python(self, buffer); releasebuffer_maybe_call_super(self, buffer); } static PyObject * slot_am_await(PyObject *self) { int unbound; PyObject *func, *res; func = lookup_maybe_method(self, &_Py_ID(__await__), &unbound); if (func != NULL) { res = call_unbound_noarg(unbound, func, self); Py_DECREF(func); return res; } PyErr_Format(PyExc_AttributeError, "object %.50s does not have __await__ method", Py_TYPE(self)->tp_name); return NULL; } static PyObject * slot_am_aiter(PyObject *self) { int unbound; PyObject *func, *res; func = lookup_maybe_method(self, &_Py_ID(__aiter__), &unbound); if (func != NULL) { res = call_unbound_noarg(unbound, func, self); Py_DECREF(func); return res; } PyErr_Format(PyExc_AttributeError, "object %.50s does not have __aiter__ method", Py_TYPE(self)->tp_name); return NULL; } static PyObject * slot_am_anext(PyObject *self) { int unbound; PyObject *func, *res; func = lookup_maybe_method(self, &_Py_ID(__anext__), &unbound); if (func != NULL) { res = call_unbound_noarg(unbound, func, self); Py_DECREF(func); return res; } PyErr_Format(PyExc_AttributeError, "object %.50s does not have __anext__ method", Py_TYPE(self)->tp_name); return NULL; } /* Table mapping __foo__ names to tp_foo offsets and slot_tp_foo wrapper functions. The table is ordered by offsets relative to the 'PyHeapTypeObject' structure, which incorporates the additional structures used for numbers, sequences and mappings. Note that multiple names may map to the same slot (e.g. __eq__, __ne__ etc. all map to tp_richcompare) and one name may map to multiple slots (e.g. __str__ affects tp_str as well as tp_repr). The table is terminated with an all-zero entry. */ #undef TPSLOT #undef FLSLOT #undef BUFSLOT #undef AMSLOT #undef ETSLOT #undef SQSLOT #undef MPSLOT #undef NBSLOT #undef UNSLOT #undef IBSLOT #undef BINSLOT #undef RBINSLOT #define TPSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ {#NAME, offsetof(PyTypeObject, SLOT), (void *)(FUNCTION), WRAPPER, \ PyDoc_STR(DOC), .name_strobj = &_Py_ID(NAME)} #define FLSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC, FLAGS) \ {#NAME, offsetof(PyTypeObject, SLOT), (void *)(FUNCTION), WRAPPER, \ PyDoc_STR(DOC), FLAGS, .name_strobj = &_Py_ID(NAME) } #define ETSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ {#NAME, offsetof(PyHeapTypeObject, SLOT), (void *)(FUNCTION), WRAPPER, \ PyDoc_STR(DOC), .name_strobj = &_Py_ID(NAME) } #define BUFSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ ETSLOT(NAME, as_buffer.SLOT, FUNCTION, WRAPPER, DOC) #define AMSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ ETSLOT(NAME, as_async.SLOT, FUNCTION, WRAPPER, DOC) #define SQSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ ETSLOT(NAME, as_sequence.SLOT, FUNCTION, WRAPPER, DOC) #define MPSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ ETSLOT(NAME, as_mapping.SLOT, FUNCTION, WRAPPER, DOC) #define NBSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ ETSLOT(NAME, as_number.SLOT, FUNCTION, WRAPPER, DOC) #define UNSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ ETSLOT(NAME, as_number.SLOT, FUNCTION, WRAPPER, \ #NAME "($self, /)\n--\n\n" DOC) #define IBSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ ETSLOT(NAME, as_number.SLOT, FUNCTION, WRAPPER, \ #NAME "($self, value, /)\n--\n\nReturn self" DOC "value.") #define BINSLOT(NAME, SLOT, FUNCTION, DOC) \ ETSLOT(NAME, as_number.SLOT, FUNCTION, wrap_binaryfunc_l, \ #NAME "($self, value, /)\n--\n\nReturn self" DOC "value.") #define RBINSLOT(NAME, SLOT, FUNCTION, DOC) \ ETSLOT(NAME, as_number.SLOT, FUNCTION, wrap_binaryfunc_r, \ #NAME "($self, value, /)\n--\n\nReturn value" DOC "self.") #define BINSLOTNOTINFIX(NAME, SLOT, FUNCTION, DOC) \ ETSLOT(NAME, as_number.SLOT, FUNCTION, wrap_binaryfunc_l, \ #NAME "($self, value, /)\n--\n\n" DOC) #define RBINSLOTNOTINFIX(NAME, SLOT, FUNCTION, DOC) \ ETSLOT(NAME, as_number.SLOT, FUNCTION, wrap_binaryfunc_r, \ #NAME "($self, value, /)\n--\n\n" DOC) static pytype_slotdef slotdefs[] = { TPSLOT(__getattribute__, tp_getattr, NULL, NULL, ""), TPSLOT(__getattr__, tp_getattr, NULL, NULL, ""), TPSLOT(__setattr__, tp_setattr, NULL, NULL, ""), TPSLOT(__delattr__, tp_setattr, NULL, NULL, ""), TPSLOT(__repr__, tp_repr, slot_tp_repr, wrap_unaryfunc, "__repr__($self, /)\n--\n\nReturn repr(self)."), TPSLOT(__hash__, tp_hash, slot_tp_hash, wrap_hashfunc, "__hash__($self, /)\n--\n\nReturn hash(self)."), FLSLOT(__call__, tp_call, slot_tp_call, (wrapperfunc)(void(*)(void))wrap_call, "__call__($self, /, *args, **kwargs)\n--\n\nCall self as a function.", PyWrapperFlag_KEYWORDS), TPSLOT(__str__, tp_str, slot_tp_str, wrap_unaryfunc, "__str__($self, /)\n--\n\nReturn str(self)."), TPSLOT(__getattribute__, tp_getattro, _Py_slot_tp_getattr_hook, wrap_binaryfunc, "__getattribute__($self, name, /)\n--\n\nReturn getattr(self, name)."), TPSLOT(__getattr__, tp_getattro, _Py_slot_tp_getattr_hook, NULL, "__getattr__($self, name, /)\n--\n\nImplement getattr(self, name)."), TPSLOT(__setattr__, tp_setattro, slot_tp_setattro, wrap_setattr, "__setattr__($self, name, value, /)\n--\n\nImplement setattr(self, name, value)."), TPSLOT(__delattr__, tp_setattro, slot_tp_setattro, wrap_delattr, "__delattr__($self, name, /)\n--\n\nImplement delattr(self, name)."), TPSLOT(__lt__, tp_richcompare, slot_tp_richcompare, richcmp_lt, "__lt__($self, value, /)\n--\n\nReturn selfvalue."), TPSLOT(__ge__, tp_richcompare, slot_tp_richcompare, richcmp_ge, "__ge__($self, value, /)\n--\n\nReturn self>=value."), TPSLOT(__iter__, tp_iter, slot_tp_iter, wrap_unaryfunc, "__iter__($self, /)\n--\n\nImplement iter(self)."), TPSLOT(__next__, tp_iternext, slot_tp_iternext, wrap_next, "__next__($self, /)\n--\n\nImplement next(self)."), TPSLOT(__get__, tp_descr_get, slot_tp_descr_get, wrap_descr_get, "__get__($self, instance, owner=None, /)\n--\n\nReturn an attribute of instance, which is of type owner."), TPSLOT(__set__, tp_descr_set, slot_tp_descr_set, wrap_descr_set, "__set__($self, instance, value, /)\n--\n\nSet an attribute of instance to value."), TPSLOT(__delete__, tp_descr_set, slot_tp_descr_set, wrap_descr_delete, "__delete__($self, instance, /)\n--\n\nDelete an attribute of instance."), FLSLOT(__init__, tp_init, slot_tp_init, (wrapperfunc)(void(*)(void))wrap_init, "__init__($self, /, *args, **kwargs)\n--\n\n" "Initialize self. See help(type(self)) for accurate signature.", PyWrapperFlag_KEYWORDS), TPSLOT(__new__, tp_new, slot_tp_new, NULL, "__new__(type, /, *args, **kwargs)\n--\n\n" "Create and return new object. See help(type) for accurate signature."), TPSLOT(__del__, tp_finalize, slot_tp_finalize, (wrapperfunc)wrap_del, "__del__($self, /)\n--\n\n" "Called when the instance is about to be destroyed."), BUFSLOT(__buffer__, bf_getbuffer, slot_bf_getbuffer, wrap_buffer, "__buffer__($self, flags, /)\n--\n\n" "Return a buffer object that exposes the underlying memory of the object."), BUFSLOT(__release_buffer__, bf_releasebuffer, slot_bf_releasebuffer, wrap_releasebuffer, "__release_buffer__($self, buffer, /)\n--\n\n" "Release the buffer object that exposes the underlying memory of the object."), AMSLOT(__await__, am_await, slot_am_await, wrap_unaryfunc, "__await__($self, /)\n--\n\nReturn an iterator to be used in await expression."), AMSLOT(__aiter__, am_aiter, slot_am_aiter, wrap_unaryfunc, "__aiter__($self, /)\n--\n\nReturn an awaitable, that resolves in asynchronous iterator."), AMSLOT(__anext__, am_anext, slot_am_anext, wrap_unaryfunc, "__anext__($self, /)\n--\n\nReturn a value or raise StopAsyncIteration."), BINSLOT(__add__, nb_add, slot_nb_add, "+"), RBINSLOT(__radd__, nb_add, slot_nb_add, "+"), BINSLOT(__sub__, nb_subtract, slot_nb_subtract, "-"), RBINSLOT(__rsub__, nb_subtract, slot_nb_subtract, "-"), BINSLOT(__mul__, nb_multiply, slot_nb_multiply, "*"), RBINSLOT(__rmul__, nb_multiply, slot_nb_multiply, "*"), BINSLOT(__mod__, nb_remainder, slot_nb_remainder, "%"), RBINSLOT(__rmod__, nb_remainder, slot_nb_remainder, "%"), BINSLOTNOTINFIX(__divmod__, nb_divmod, slot_nb_divmod, "Return divmod(self, value)."), RBINSLOTNOTINFIX(__rdivmod__, nb_divmod, slot_nb_divmod, "Return divmod(value, self)."), NBSLOT(__pow__, nb_power, slot_nb_power, wrap_ternaryfunc, "__pow__($self, value, mod=None, /)\n--\n\nReturn pow(self, value, mod)."), NBSLOT(__rpow__, nb_power, slot_nb_power, wrap_ternaryfunc_r, "__rpow__($self, value, mod=None, /)\n--\n\nReturn pow(value, self, mod)."), UNSLOT(__neg__, nb_negative, slot_nb_negative, wrap_unaryfunc, "-self"), UNSLOT(__pos__, nb_positive, slot_nb_positive, wrap_unaryfunc, "+self"), UNSLOT(__abs__, nb_absolute, slot_nb_absolute, wrap_unaryfunc, "abs(self)"), UNSLOT(__bool__, nb_bool, slot_nb_bool, wrap_inquirypred, "True if self else False"), UNSLOT(__invert__, nb_invert, slot_nb_invert, wrap_unaryfunc, "~self"), BINSLOT(__lshift__, nb_lshift, slot_nb_lshift, "<<"), RBINSLOT(__rlshift__, nb_lshift, slot_nb_lshift, "<<"), BINSLOT(__rshift__, nb_rshift, slot_nb_rshift, ">>"), RBINSLOT(__rrshift__, nb_rshift, slot_nb_rshift, ">>"), BINSLOT(__and__, nb_and, slot_nb_and, "&"), RBINSLOT(__rand__, nb_and, slot_nb_and, "&"), BINSLOT(__xor__, nb_xor, slot_nb_xor, "^"), RBINSLOT(__rxor__, nb_xor, slot_nb_xor, "^"), BINSLOT(__or__, nb_or, slot_nb_or, "|"), RBINSLOT(__ror__, nb_or, slot_nb_or, "|"), UNSLOT(__int__, nb_int, slot_nb_int, wrap_unaryfunc, "int(self)"), UNSLOT(__float__, nb_float, slot_nb_float, wrap_unaryfunc, "float(self)"), IBSLOT(__iadd__, nb_inplace_add, slot_nb_inplace_add, wrap_binaryfunc, "+="), IBSLOT(__isub__, nb_inplace_subtract, slot_nb_inplace_subtract, wrap_binaryfunc, "-="), IBSLOT(__imul__, nb_inplace_multiply, slot_nb_inplace_multiply, wrap_binaryfunc, "*="), IBSLOT(__imod__, nb_inplace_remainder, slot_nb_inplace_remainder, wrap_binaryfunc, "%="), IBSLOT(__ipow__, nb_inplace_power, slot_nb_inplace_power, wrap_ternaryfunc, "**="), IBSLOT(__ilshift__, nb_inplace_lshift, slot_nb_inplace_lshift, wrap_binaryfunc, "<<="), IBSLOT(__irshift__, nb_inplace_rshift, slot_nb_inplace_rshift, wrap_binaryfunc, ">>="), IBSLOT(__iand__, nb_inplace_and, slot_nb_inplace_and, wrap_binaryfunc, "&="), IBSLOT(__ixor__, nb_inplace_xor, slot_nb_inplace_xor, wrap_binaryfunc, "^="), IBSLOT(__ior__, nb_inplace_or, slot_nb_inplace_or, wrap_binaryfunc, "|="), BINSLOT(__floordiv__, nb_floor_divide, slot_nb_floor_divide, "//"), RBINSLOT(__rfloordiv__, nb_floor_divide, slot_nb_floor_divide, "//"), BINSLOT(__truediv__, nb_true_divide, slot_nb_true_divide, "/"), RBINSLOT(__rtruediv__, nb_true_divide, slot_nb_true_divide, "/"), IBSLOT(__ifloordiv__, nb_inplace_floor_divide, slot_nb_inplace_floor_divide, wrap_binaryfunc, "//="), IBSLOT(__itruediv__, nb_inplace_true_divide, slot_nb_inplace_true_divide, wrap_binaryfunc, "/="), NBSLOT(__index__, nb_index, slot_nb_index, wrap_unaryfunc, "__index__($self, /)\n--\n\n" "Return self converted to an integer, if self is suitable " "for use as an index into a list."), BINSLOT(__matmul__, nb_matrix_multiply, slot_nb_matrix_multiply, "@"), RBINSLOT(__rmatmul__, nb_matrix_multiply, slot_nb_matrix_multiply, "@"), IBSLOT(__imatmul__, nb_inplace_matrix_multiply, slot_nb_inplace_matrix_multiply, wrap_binaryfunc, "@="), MPSLOT(__len__, mp_length, slot_mp_length, wrap_lenfunc, "__len__($self, /)\n--\n\nReturn len(self)."), MPSLOT(__getitem__, mp_subscript, slot_mp_subscript, wrap_binaryfunc, "__getitem__($self, key, /)\n--\n\nReturn self[key]."), MPSLOT(__setitem__, mp_ass_subscript, slot_mp_ass_subscript, wrap_objobjargproc, "__setitem__($self, key, value, /)\n--\n\nSet self[key] to value."), MPSLOT(__delitem__, mp_ass_subscript, slot_mp_ass_subscript, wrap_delitem, "__delitem__($self, key, /)\n--\n\nDelete self[key]."), SQSLOT(__len__, sq_length, slot_sq_length, wrap_lenfunc, "__len__($self, /)\n--\n\nReturn len(self)."), /* Heap types defining __add__/__mul__ have sq_concat/sq_repeat == NULL. The logic in abstract.c always falls back to nb_add/nb_multiply in this case. Defining both the nb_* and the sq_* slots to call the user-defined methods has unexpected side-effects, as shown by test_descr.notimplemented() */ SQSLOT(__add__, sq_concat, NULL, wrap_binaryfunc, "__add__($self, value, /)\n--\n\nReturn self+value."), SQSLOT(__mul__, sq_repeat, NULL, wrap_indexargfunc, "__mul__($self, value, /)\n--\n\nReturn self*value."), SQSLOT(__rmul__, sq_repeat, NULL, wrap_indexargfunc, "__rmul__($self, value, /)\n--\n\nReturn value*self."), SQSLOT(__getitem__, sq_item, slot_sq_item, wrap_sq_item, "__getitem__($self, key, /)\n--\n\nReturn self[key]."), SQSLOT(__setitem__, sq_ass_item, slot_sq_ass_item, wrap_sq_setitem, "__setitem__($self, key, value, /)\n--\n\nSet self[key] to value."), SQSLOT(__delitem__, sq_ass_item, slot_sq_ass_item, wrap_sq_delitem, "__delitem__($self, key, /)\n--\n\nDelete self[key]."), SQSLOT(__contains__, sq_contains, slot_sq_contains, wrap_objobjproc, "__contains__($self, key, /)\n--\n\nReturn bool(key in self)."), SQSLOT(__iadd__, sq_inplace_concat, NULL, wrap_binaryfunc, "__iadd__($self, value, /)\n--\n\nImplement self+=value."), SQSLOT(__imul__, sq_inplace_repeat, NULL, wrap_indexargfunc, "__imul__($self, value, /)\n--\n\nImplement self*=value."), {NULL} }; /* Given a type pointer and an offset gotten from a slotdef entry, return a pointer to the actual slot. This is not quite the same as simply adding the offset to the type pointer, since it takes care to indirect through the proper indirection pointer (as_buffer, etc.); it returns NULL if the indirection pointer is NULL. */ static void ** slotptr(PyTypeObject *type, int ioffset) { char *ptr; long offset = ioffset; /* Note: this depends on the order of the members of PyHeapTypeObject! */ assert(offset >= 0); assert((size_t)offset < offsetof(PyHeapTypeObject, ht_name)); if ((size_t)offset >= offsetof(PyHeapTypeObject, as_buffer)) { ptr = (char *)type->tp_as_buffer; offset -= offsetof(PyHeapTypeObject, as_buffer); } else if ((size_t)offset >= offsetof(PyHeapTypeObject, as_sequence)) { ptr = (char *)type->tp_as_sequence; offset -= offsetof(PyHeapTypeObject, as_sequence); } else if ((size_t)offset >= offsetof(PyHeapTypeObject, as_mapping)) { ptr = (char *)type->tp_as_mapping; offset -= offsetof(PyHeapTypeObject, as_mapping); } else if ((size_t)offset >= offsetof(PyHeapTypeObject, as_number)) { ptr = (char *)type->tp_as_number; offset -= offsetof(PyHeapTypeObject, as_number); } else if ((size_t)offset >= offsetof(PyHeapTypeObject, as_async)) { ptr = (char *)type->tp_as_async; offset -= offsetof(PyHeapTypeObject, as_async); } else { ptr = (char *)type; } if (ptr != NULL) ptr += offset; return (void **)ptr; } /* Return a slot pointer for a given name, but ONLY if the attribute has exactly one slot function. The name must be an interned string. */ static void ** resolve_slotdups(PyTypeObject *type, PyObject *name) { /* XXX Maybe this could be optimized more -- but is it worth it? */ /* pname and ptrs act as a little cache */ PyInterpreterState *interp = _PyInterpreterState_GET(); #define pname _Py_INTERP_CACHED_OBJECT(interp, type_slots_pname) #define ptrs _Py_INTERP_CACHED_OBJECT(interp, type_slots_ptrs) pytype_slotdef *p, **pp; void **res, **ptr; if (pname != name) { /* Collect all slotdefs that match name into ptrs. */ pname = name; pp = ptrs; for (p = slotdefs; p->name_strobj; p++) { if (p->name_strobj == name) *pp++ = p; } *pp = NULL; } /* Look in all slots of the type matching the name. If exactly one of these has a filled-in slot, return a pointer to that slot. Otherwise, return NULL. */ res = NULL; for (pp = ptrs; *pp; pp++) { ptr = slotptr(type, (*pp)->offset); if (ptr == NULL || *ptr == NULL) continue; if (res != NULL) return NULL; res = ptr; } return res; #undef pname #undef ptrs } /* Common code for update_slots_callback() and fixup_slot_dispatchers(). * * This is meant to set a "slot" like type->tp_repr or * type->tp_as_sequence->sq_concat by looking up special methods like * __repr__ or __add__. The opposite (adding special methods from slots) is * done by add_operators(), called from PyType_Ready(). Since update_one_slot() * calls PyType_Ready() if needed, the special methods are already in place. * * The special methods corresponding to each slot are defined in the "slotdef" * array. Note that one slot may correspond to multiple special methods and vice * versa. For example, tp_richcompare uses 6 methods __lt__, ..., __ge__ and * tp_as_number->nb_add uses __add__ and __radd__. In the other direction, * __add__ is used by the number and sequence protocols and __getitem__ by the * sequence and mapping protocols. This causes a lot of complications. * * In detail, update_one_slot() does the following: * * First of all, if the slot in question does not exist, return immediately. * This can happen for example if it's tp_as_number->nb_add but tp_as_number * is NULL. * * For the given slot, we loop over all the special methods with a name * corresponding to that slot (for example, for tp_descr_set, this would be * __set__ and __delete__) and we look up these names in the MRO of the type. * If we don't find any special method, the slot is set to NULL (regardless of * what was in the slot before). * * Suppose that we find exactly one special method. If it's a wrapper_descriptor * (i.e. a special method calling a slot, for example str.__repr__ which calls * the tp_repr for the 'str' class) with the correct name ("__repr__" for * tp_repr), for the right class, calling the right wrapper C function (like * wrap_unaryfunc for tp_repr), then the slot is set to the slot that the * wrapper_descriptor originally wrapped. For example, a class inheriting * from 'str' and not redefining __repr__ will have tp_repr set to the tp_repr * of 'str'. * In all other cases where the special method exists, the slot is set to a * wrapper calling the special method. There is one exception: if the special * method is a wrapper_descriptor with the correct name but the type has * precisely one slot set for that name and that slot is not the one that we * are updating, then NULL is put in the slot (this exception is the only place * in update_one_slot() where the *existing* slots matter). * * When there are multiple special methods for the same slot, the above is * applied for each special method. As long as the results agree, the common * resulting slot is applied. If the results disagree, then a wrapper for * the special methods is installed. This is always safe, but less efficient * because it uses method lookup instead of direct C calls. * * There are some further special cases for specific slots, like supporting * __hash__ = None for tp_hash and special code for tp_new. * * When done, return a pointer to the next slotdef with a different offset, * because that's convenient for fixup_slot_dispatchers(). This function never * sets an exception: if an internal error happens (unlikely), it's ignored. */ static pytype_slotdef * update_one_slot(PyTypeObject *type, pytype_slotdef *p) { ASSERT_TYPE_LOCK_HELD(); PyObject *descr; PyWrapperDescrObject *d; // The correct specialized C function, like "tp_repr of str" in the // example above void *specific = NULL; // A generic wrapper that uses method lookup (safe but slow) void *generic = NULL; // Set to 1 if the generic wrapper is necessary int use_generic = 0; int offset = p->offset; int error; void **ptr = slotptr(type, offset); if (ptr == NULL) { do { ++p; } while (p->offset == offset); return p; } /* We may end up clearing live exceptions below, so make sure it's ours. */ assert(!PyErr_Occurred()); do { /* Use faster uncached lookup as we won't get any cache hits during type setup. */ descr = find_name_in_mro(type, p->name_strobj, &error); if (descr == NULL) { if (error == -1) { /* It is unlikely but not impossible that there has been an exception during lookup. Since this function originally expected no errors, we ignore them here in order to keep up the interface. */ PyErr_Clear(); } if (ptr == (void**)&type->tp_iternext) { specific = (void *)_PyObject_NextNotImplemented; } continue; } if (Py_IS_TYPE(descr, &PyWrapperDescr_Type) && ((PyWrapperDescrObject *)descr)->d_base->name_strobj == p->name_strobj) { void **tptr = resolve_slotdups(type, p->name_strobj); if (tptr == NULL || tptr == ptr) generic = p->function; d = (PyWrapperDescrObject *)descr; if ((specific == NULL || specific == d->d_wrapped) && d->d_base->wrapper == p->wrapper && is_subtype_with_mro(lookup_tp_mro(type), type, PyDescr_TYPE(d))) { specific = d->d_wrapped; } else { /* We cannot use the specific slot function because either - it is not unique: there are multiple methods for this slot and they conflict - the signature is wrong (as checked by the ->wrapper comparison above) - it's wrapping the wrong class */ use_generic = 1; } } else if (Py_IS_TYPE(descr, &PyCFunction_Type) && PyCFunction_GET_FUNCTION(descr) == _PyCFunction_CAST(tp_new_wrapper) && ptr == (void**)&type->tp_new) { /* The __new__ wrapper is not a wrapper descriptor, so must be special-cased differently. If we don't do this, creating an instance will always use slot_tp_new which will look up __new__ in the MRO which will call tp_new_wrapper which will look through the base classes looking for a static base and call its tp_new (usually PyType_GenericNew), after performing various sanity checks and constructing a new argument list. Cut all that nonsense short -- this speeds up instance creation tremendously. */ specific = (void *)type->tp_new; /* XXX I'm not 100% sure that there isn't a hole in this reasoning that requires additional sanity checks. I'll buy the first person to point out a bug in this reasoning a beer. */ } else if (descr == Py_None && ptr == (void**)&type->tp_hash) { /* We specifically allow __hash__ to be set to None to prevent inheritance of the default implementation from object.__hash__ */ specific = (void *)PyObject_HashNotImplemented; } else { use_generic = 1; generic = p->function; if (p->function == slot_tp_call) { /* A generic __call__ is incompatible with vectorcall */ type->tp_flags &= ~Py_TPFLAGS_HAVE_VECTORCALL; } } Py_DECREF(descr); } while ((++p)->offset == offset); if (specific && !use_generic) *ptr = specific; else *ptr = generic; return p; } /* In the type, update the slots whose slotdefs are gathered in the pp array. This is a callback for update_subclasses(). */ static int update_slots_callback(PyTypeObject *type, void *data) { ASSERT_TYPE_LOCK_HELD(); pytype_slotdef **pp = (pytype_slotdef **)data; for (; *pp; pp++) { update_one_slot(type, *pp); } return 0; } /* Update the slots after assignment to a class (type) attribute. */ static int update_slot(PyTypeObject *type, PyObject *name) { pytype_slotdef *ptrs[MAX_EQUIV]; pytype_slotdef *p; pytype_slotdef **pp; int offset; ASSERT_TYPE_LOCK_HELD(); assert(PyUnicode_CheckExact(name)); assert(PyUnicode_CHECK_INTERNED(name)); pp = ptrs; for (p = slotdefs; p->name; p++) { assert(PyUnicode_CheckExact(p->name_strobj)); assert(PyUnicode_CHECK_INTERNED(p->name_strobj)); assert(PyUnicode_CheckExact(name)); /* bpo-40521: Using interned strings. */ if (p->name_strobj == name) { *pp++ = p; } } *pp = NULL; for (pp = ptrs; *pp; pp++) { p = *pp; offset = p->offset; while (p > slotdefs && (p-1)->offset == offset) --p; *pp = p; } if (ptrs[0] == NULL) return 0; /* Not an attribute that affects any slots */ return update_subclasses(type, name, update_slots_callback, (void *)ptrs); } /* Store the proper functions in the slot dispatches at class (type) definition time, based upon which operations the class overrides in its dict. */ static void fixup_slot_dispatchers(PyTypeObject *type) { // This lock isn't strictly necessary because the type has not been // exposed to anyone else yet, but update_ont_slot calls find_name_in_mro // where we'd like to assert that the type is locked. BEGIN_TYPE_LOCK(); assert(!PyErr_Occurred()); for (pytype_slotdef *p = slotdefs; p->name; ) { p = update_one_slot(type, p); } END_TYPE_LOCK(); } static void update_all_slots(PyTypeObject* type) { pytype_slotdef *p; ASSERT_TYPE_LOCK_HELD(); /* Clear the VALID_VERSION flag of 'type' and all its subclasses. */ PyType_Modified(type); for (p = slotdefs; p->name; p++) { /* update_slot returns int but can't actually fail */ update_slot(type, p->name_strobj); } } PyObject * _PyType_GetSlotWrapperNames(void) { size_t len = Py_ARRAY_LENGTH(slotdefs) - 1; PyObject *names = PyList_New(len); if (names == NULL) { return NULL; } assert(slotdefs[len].name == NULL); for (size_t i = 0; i < len; i++) { pytype_slotdef *slotdef = &slotdefs[i]; assert(slotdef->name != NULL); PyList_SET_ITEM(names, i, Py_NewRef(slotdef->name_strobj)); } return names; } /* Call __set_name__ on all attributes (including descriptors) in a newly generated type */ static int type_new_set_names(PyTypeObject *type) { PyObject *dict = lookup_tp_dict(type); PyObject *names_to_set = PyDict_Copy(dict); if (names_to_set == NULL) { return -1; } Py_ssize_t i = 0; PyObject *key, *value; while (PyDict_Next(names_to_set, &i, &key, &value)) { PyObject *set_name = _PyObject_LookupSpecial(value, &_Py_ID(__set_name__)); if (set_name == NULL) { if (PyErr_Occurred()) { goto error; } continue; } PyObject *res = PyObject_CallFunctionObjArgs(set_name, type, key, NULL); Py_DECREF(set_name); if (res == NULL) { _PyErr_FormatNote( "Error calling __set_name__ on '%.100s' instance %R " "in '%.100s'", Py_TYPE(value)->tp_name, key, type->tp_name); goto error; } else { Py_DECREF(res); } } Py_DECREF(names_to_set); return 0; error: Py_DECREF(names_to_set); return -1; } /* Call __init_subclass__ on the parent of a newly generated type */ static int type_new_init_subclass(PyTypeObject *type, PyObject *kwds) { PyObject *args[2] = {(PyObject *)type, (PyObject *)type}; PyObject *super = PyObject_Vectorcall((PyObject *)&PySuper_Type, args, 2, NULL); if (super == NULL) { return -1; } PyObject *func = PyObject_GetAttr(super, &_Py_ID(__init_subclass__)); Py_DECREF(super); if (func == NULL) { return -1; } PyObject *result = PyObject_VectorcallDict(func, NULL, 0, kwds); Py_DECREF(func); if (result == NULL) { return -1; } Py_DECREF(result); return 0; } /* recurse_down_subclasses() and update_subclasses() are mutually recursive functions to call a callback for all subclasses, but refraining from recursing into subclasses that define 'attr_name'. */ static int update_subclasses(PyTypeObject *type, PyObject *attr_name, update_callback callback, void *data) { if (callback(type, data) < 0) { return -1; } return recurse_down_subclasses(type, attr_name, callback, data); } static int recurse_down_subclasses(PyTypeObject *type, PyObject *attr_name, update_callback callback, void *data) { // It is safe to use a borrowed reference because update_subclasses() is // only used with update_slots_callback() which doesn't modify // tp_subclasses. PyObject *subclasses = lookup_tp_subclasses(type); // borrowed ref if (subclasses == NULL) { return 0; } assert(PyDict_CheckExact(subclasses)); Py_ssize_t i = 0; PyObject *ref; while (PyDict_Next(subclasses, &i, NULL, &ref)) { PyTypeObject *subclass = type_from_ref(ref); if (subclass == NULL) { continue; } /* Avoid recursing down into unaffected classes */ PyObject *dict = lookup_tp_dict(subclass); if (dict != NULL && PyDict_Check(dict)) { int r = PyDict_Contains(dict, attr_name); if (r < 0) { Py_DECREF(subclass); return -1; } if (r > 0) { Py_DECREF(subclass); continue; } } if (update_subclasses(subclass, attr_name, callback, data) < 0) { Py_DECREF(subclass); return -1; } Py_DECREF(subclass); } return 0; } static int slot_inherited(PyTypeObject *type, pytype_slotdef *slotdef, void **slot) { void **slot_base = slotptr(type->tp_base, slotdef->offset); if (slot_base == NULL || *slot != *slot_base) { return 0; } /* Some slots are inherited in pairs. */ if (slot == (void *)&type->tp_hash) { return (type->tp_richcompare == type->tp_base->tp_richcompare); } else if (slot == (void *)&type->tp_richcompare) { return (type->tp_hash == type->tp_base->tp_hash); } /* It must be inherited (see type_ready_inherit()). */ return 1; } /* This function is called by PyType_Ready() to populate the type's dictionary with method descriptors for function slots. For each function slot (like tp_repr) that's defined in the type, one or more corresponding descriptors are added in the type's tp_dict dictionary under the appropriate name (like __repr__). Some function slots cause more than one descriptor to be added (for example, the nb_add slot adds both __add__ and __radd__ descriptors) and some function slots compete for the same descriptor (for example both sq_item and mp_subscript generate a __getitem__ descriptor). In the latter case, the first slotdef entry encountered wins. Since slotdef entries are sorted by the offset of the slot in the PyHeapTypeObject, this gives us some control over disambiguating between competing slots: the members of PyHeapTypeObject are listed from most general to least general, so the most general slot is preferred. In particular, because as_mapping comes before as_sequence, for a type that defines both mp_subscript and sq_item, mp_subscript wins. This only adds new descriptors and doesn't overwrite entries in tp_dict that were previously defined. The descriptors contain a reference to the C function they must call, so that it's safe if they are copied into a subtype's __dict__ and the subtype has a different C function in its slot -- calling the method defined by the descriptor will call the C function that was used to create it, rather than the C function present in the slot when it is called. (This is important because a subtype may have a C function in the slot that calls the method from the dictionary, and we want to avoid infinite recursion here.) */ static int add_operators(PyTypeObject *type) { PyObject *dict = lookup_tp_dict(type); pytype_slotdef *p; PyObject *descr; void **ptr; for (p = slotdefs; p->name; p++) { if (p->wrapper == NULL) continue; ptr = slotptr(type, p->offset); if (!ptr || !*ptr) continue; /* Also ignore when the type slot has been inherited. */ if (type->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN && type->tp_base != NULL && slot_inherited(type, p, ptr)) { continue; } int r = PyDict_Contains(dict, p->name_strobj); if (r > 0) continue; if (r < 0) { return -1; } if (*ptr == (void *)PyObject_HashNotImplemented) { /* Classes may prevent the inheritance of the tp_hash slot by storing PyObject_HashNotImplemented in it. Make it visible as a None value for the __hash__ attribute. */ if (PyDict_SetItem(dict, p->name_strobj, Py_None) < 0) return -1; } else { descr = PyDescr_NewWrapper(type, p, *ptr); if (descr == NULL) return -1; if (PyDict_SetItem(dict, p->name_strobj, descr) < 0) { Py_DECREF(descr); return -1; } Py_DECREF(descr); } } return 0; } int PyType_Freeze(PyTypeObject *type) { // gh-121654: Check the __mro__ instead of __bases__ PyObject *mro = type_get_mro(type, NULL); if (!PyTuple_Check(mro)) { Py_DECREF(mro); PyErr_SetString(PyExc_TypeError, "unable to get the type MRO"); return -1; } int check = check_immutable_bases(type->tp_name, mro, 1); Py_DECREF(mro); if (check < 0) { return -1; } type->tp_flags |= Py_TPFLAGS_IMMUTABLETYPE; PyType_Modified(type); return 0; } /* Cooperative 'super' */ typedef struct { PyObject_HEAD PyTypeObject *type; PyObject *obj; PyTypeObject *obj_type; } superobject; static PyMemberDef super_members[] = { {"__thisclass__", _Py_T_OBJECT, offsetof(superobject, type), Py_READONLY, "the class invoking super()"}, {"__self__", _Py_T_OBJECT, offsetof(superobject, obj), Py_READONLY, "the instance invoking super(); may be None"}, {"__self_class__", _Py_T_OBJECT, offsetof(superobject, obj_type), Py_READONLY, "the type of the instance invoking super(); may be None"}, {0} }; static void super_dealloc(PyObject *self) { superobject *su = (superobject *)self; _PyObject_GC_UNTRACK(self); Py_XDECREF(su->obj); Py_XDECREF(su->type); Py_XDECREF(su->obj_type); Py_TYPE(self)->tp_free(self); } static PyObject * super_repr(PyObject *self) { superobject *su = (superobject *)self; if (su->obj_type) return PyUnicode_FromFormat( ", <%s object>>", su->type ? su->type->tp_name : "NULL", su->obj_type->tp_name); else return PyUnicode_FromFormat( ", NULL>", su->type ? su->type->tp_name : "NULL"); } /* Do a super lookup without executing descriptors or falling back to getattr on the super object itself. May return NULL with or without an exception set, like PyDict_GetItemWithError. */ static PyObject * _super_lookup_descr(PyTypeObject *su_type, PyTypeObject *su_obj_type, PyObject *name) { PyObject *mro, *res; Py_ssize_t i, n; BEGIN_TYPE_LOCK(); mro = lookup_tp_mro(su_obj_type); /* keep a strong reference to mro because su_obj_type->tp_mro can be replaced during PyDict_GetItemRef(dict, name, &res) and because another thread can modify it after we end the critical section below */ Py_XINCREF(mro); END_TYPE_LOCK(); if (mro == NULL) return NULL; assert(PyTuple_Check(mro)); n = PyTuple_GET_SIZE(mro); /* No need to check the last one: it's gonna be skipped anyway. */ for (i = 0; i+1 < n; i++) { if ((PyObject *)(su_type) == PyTuple_GET_ITEM(mro, i)) break; } i++; /* skip su->type (if any) */ if (i >= n) { Py_DECREF(mro); return NULL; } do { PyObject *obj = PyTuple_GET_ITEM(mro, i); PyObject *dict = lookup_tp_dict(_PyType_CAST(obj)); assert(dict != NULL && PyDict_Check(dict)); if (PyDict_GetItemRef(dict, name, &res) != 0) { // found or error Py_DECREF(mro); return res; } i++; } while (i < n); Py_DECREF(mro); return NULL; } // if `method` is non-NULL, we are looking for a method descriptor, // and setting `*method = 1` means we found one. static PyObject * do_super_lookup(superobject *su, PyTypeObject *su_type, PyObject *su_obj, PyTypeObject *su_obj_type, PyObject *name, int *method) { PyObject *res; int temp_su = 0; if (su_obj_type == NULL) { goto skip; } res = _super_lookup_descr(su_type, su_obj_type, name); if (res != NULL) { if (method && _PyType_HasFeature(Py_TYPE(res), Py_TPFLAGS_METHOD_DESCRIPTOR)) { *method = 1; } else { descrgetfunc f = Py_TYPE(res)->tp_descr_get; if (f != NULL) { PyObject *res2; res2 = f(res, /* Only pass 'obj' param if this is instance-mode super (See SF ID #743627) */ (su_obj == (PyObject *)su_obj_type) ? NULL : su_obj, (PyObject *)su_obj_type); Py_SETREF(res, res2); } } return res; } else if (PyErr_Occurred()) { return NULL; } skip: if (su == NULL) { PyObject *args[] = {(PyObject *)su_type, su_obj}; su = (superobject *)PyObject_Vectorcall((PyObject *)&PySuper_Type, args, 2, NULL); if (su == NULL) { return NULL; } temp_su = 1; } res = PyObject_GenericGetAttr((PyObject *)su, name); if (temp_su) { Py_DECREF(su); } return res; } static PyObject * super_getattro(PyObject *self, PyObject *name) { superobject *su = (superobject *)self; /* We want __class__ to return the class of the super object (i.e. super, or a subclass), not the class of su->obj. */ if (PyUnicode_Check(name) && PyUnicode_GET_LENGTH(name) == 9 && _PyUnicode_Equal(name, &_Py_ID(__class__))) return PyObject_GenericGetAttr(self, name); return do_super_lookup(su, su->type, su->obj, su->obj_type, name, NULL); } static PyTypeObject * supercheck(PyTypeObject *type, PyObject *obj) { /* Check that a super() call makes sense. Return a type object. obj can be a class, or an instance of one: - If it is a class, it must be a subclass of 'type'. This case is used for class methods; the return value is obj. - If it is an instance, it must be an instance of 'type'. This is the normal case; the return value is obj.__class__. But... when obj is an instance, we want to allow for the case where Py_TYPE(obj) is not a subclass of type, but obj.__class__ is! This will allow using super() with a proxy for obj. */ /* Check for first bullet above (special case) */ if (PyType_Check(obj) && PyType_IsSubtype((PyTypeObject *)obj, type)) { return (PyTypeObject *)Py_NewRef(obj); } /* Normal case */ if (PyType_IsSubtype(Py_TYPE(obj), type)) { return (PyTypeObject*)Py_NewRef(Py_TYPE(obj)); } else { /* Try the slow way */ PyObject *class_attr; if (PyObject_GetOptionalAttr(obj, &_Py_ID(__class__), &class_attr) < 0) { return NULL; } if (class_attr != NULL && PyType_Check(class_attr) && (PyTypeObject *)class_attr != Py_TYPE(obj)) { int ok = PyType_IsSubtype( (PyTypeObject *)class_attr, type); if (ok) { return (PyTypeObject *)class_attr; } } Py_XDECREF(class_attr); } const char *type_or_instance, *obj_str; if (PyType_Check(obj)) { type_or_instance = "type"; obj_str = ((PyTypeObject*)obj)->tp_name; } else { type_or_instance = "instance of"; obj_str = Py_TYPE(obj)->tp_name; } PyErr_Format(PyExc_TypeError, "super(type, obj): obj (%s %.200s) is not " "an instance or subtype of type (%.200s).", type_or_instance, obj_str, type->tp_name); return NULL; } PyObject * _PySuper_Lookup(PyTypeObject *su_type, PyObject *su_obj, PyObject *name, int *method) { PyTypeObject *su_obj_type = supercheck(su_type, su_obj); if (su_obj_type == NULL) { return NULL; } PyObject *res = do_super_lookup(NULL, su_type, su_obj, su_obj_type, name, method); Py_DECREF(su_obj_type); return res; } static PyObject * super_descr_get(PyObject *self, PyObject *obj, PyObject *type) { superobject *su = (superobject *)self; superobject *newobj; if (obj == NULL || obj == Py_None || su->obj != NULL) { /* Not binding to an object, or already bound */ return Py_NewRef(self); } if (!Py_IS_TYPE(su, &PySuper_Type)) /* If su is an instance of a (strict) subclass of super, call its type */ return PyObject_CallFunctionObjArgs((PyObject *)Py_TYPE(su), su->type, obj, NULL); else { /* Inline the common case */ PyTypeObject *obj_type = supercheck(su->type, obj); if (obj_type == NULL) return NULL; newobj = (superobject *)PySuper_Type.tp_new(&PySuper_Type, NULL, NULL); if (newobj == NULL) { Py_DECREF(obj_type); return NULL; } newobj->type = (PyTypeObject*)Py_NewRef(su->type); newobj->obj = Py_NewRef(obj); newobj->obj_type = obj_type; return (PyObject *)newobj; } } static int super_init_without_args(_PyInterpreterFrame *cframe, PyTypeObject **type_p, PyObject **obj_p) { PyCodeObject *co = _PyFrame_GetCode(cframe); if (co->co_argcount == 0) { PyErr_SetString(PyExc_RuntimeError, "super(): no arguments"); return -1; } assert(_PyFrame_GetCode(cframe)->co_nlocalsplus > 0); PyObject *firstarg = PyStackRef_AsPyObjectBorrow(_PyFrame_GetLocalsArray(cframe)[0]); // The first argument might be a cell. if (firstarg != NULL && (_PyLocals_GetKind(co->co_localspluskinds, 0) & CO_FAST_CELL)) { // "firstarg" is a cell here unless (very unlikely) super() // was called from the C-API before the first MAKE_CELL op. if (_PyInterpreterFrame_LASTI(cframe) >= 0) { // MAKE_CELL and COPY_FREE_VARS have no quickened forms, so no need // to use _PyOpcode_Deopt here: assert(_PyCode_CODE(co)[0].op.code == MAKE_CELL || _PyCode_CODE(co)[0].op.code == COPY_FREE_VARS); assert(PyCell_Check(firstarg)); firstarg = PyCell_GET(firstarg); } } if (firstarg == NULL) { PyErr_SetString(PyExc_RuntimeError, "super(): arg[0] deleted"); return -1; } // Look for __class__ in the free vars. PyTypeObject *type = NULL; int i = PyUnstable_Code_GetFirstFree(co); for (; i < co->co_nlocalsplus; i++) { assert((_PyLocals_GetKind(co->co_localspluskinds, i) & CO_FAST_FREE) != 0); PyObject *name = PyTuple_GET_ITEM(co->co_localsplusnames, i); assert(PyUnicode_Check(name)); if (_PyUnicode_Equal(name, &_Py_ID(__class__))) { PyObject *cell = PyStackRef_AsPyObjectBorrow(_PyFrame_GetLocalsArray(cframe)[i]); if (cell == NULL || !PyCell_Check(cell)) { PyErr_SetString(PyExc_RuntimeError, "super(): bad __class__ cell"); return -1; } type = (PyTypeObject *) PyCell_GET(cell); if (type == NULL) { PyErr_SetString(PyExc_RuntimeError, "super(): empty __class__ cell"); return -1; } if (!PyType_Check(type)) { PyErr_Format(PyExc_RuntimeError, "super(): __class__ is not a type (%s)", Py_TYPE(type)->tp_name); return -1; } break; } } if (type == NULL) { PyErr_SetString(PyExc_RuntimeError, "super(): __class__ cell not found"); return -1; } *type_p = type; *obj_p = firstarg; return 0; } static int super_init_impl(PyObject *self, PyTypeObject *type, PyObject *obj); static int super_init(PyObject *self, PyObject *args, PyObject *kwds) { PyTypeObject *type = NULL; PyObject *obj = NULL; if (!_PyArg_NoKeywords("super", kwds)) return -1; if (!PyArg_ParseTuple(args, "|O!O:super", &PyType_Type, &type, &obj)) return -1; if (super_init_impl(self, type, obj) < 0) { return -1; } return 0; } static inline int super_init_impl(PyObject *self, PyTypeObject *type, PyObject *obj) { superobject *su = (superobject *)self; PyTypeObject *obj_type = NULL; if (type == NULL) { /* Call super(), without args -- fill in from __class__ and first local variable on the stack. */ PyThreadState *tstate = _PyThreadState_GET(); _PyInterpreterFrame *frame = _PyThreadState_GetFrame(tstate); if (frame == NULL) { PyErr_SetString(PyExc_RuntimeError, "super(): no current frame"); return -1; } int res = super_init_without_args(frame, &type, &obj); if (res < 0) { return -1; } } if (obj == Py_None) obj = NULL; if (obj != NULL) { obj_type = supercheck(type, obj); if (obj_type == NULL) return -1; Py_INCREF(obj); } Py_XSETREF(su->type, (PyTypeObject*)Py_NewRef(type)); Py_XSETREF(su->obj, obj); Py_XSETREF(su->obj_type, obj_type); return 0; } PyDoc_STRVAR(super_doc, "super() -> same as super(__class__, )\n" "super(type) -> unbound super object\n" "super(type, obj) -> bound super object; requires isinstance(obj, type)\n" "super(type, type2) -> bound super object; requires issubclass(type2, type)\n" "Typical use to call a cooperative superclass method:\n" "class C(B):\n" " def meth(self, arg):\n" " super().meth(arg)\n" "This works for class methods too:\n" "class C(B):\n" " @classmethod\n" " def cmeth(cls, arg):\n" " super().cmeth(arg)\n"); static int super_traverse(PyObject *self, visitproc visit, void *arg) { superobject *su = (superobject *)self; Py_VISIT(su->obj); Py_VISIT(su->type); Py_VISIT(su->obj_type); return 0; } static PyObject * super_vectorcall(PyObject *self, PyObject *const *args, size_t nargsf, PyObject *kwnames) { assert(PyType_Check(self)); if (!_PyArg_NoKwnames("super", kwnames)) { return NULL; } Py_ssize_t nargs = PyVectorcall_NARGS(nargsf); if (!_PyArg_CheckPositional("super()", nargs, 0, 2)) { return NULL; } PyTypeObject *type = NULL; PyObject *obj = NULL; PyTypeObject *self_type = (PyTypeObject *)self; PyObject *su = self_type->tp_alloc(self_type, 0); if (su == NULL) { return NULL; } // 1 or 2 argument form super(). if (nargs != 0) { PyObject *arg0 = args[0]; if (!PyType_Check(arg0)) { PyErr_Format(PyExc_TypeError, "super() argument 1 must be a type, not %.200s", Py_TYPE(arg0)->tp_name); goto fail; } type = (PyTypeObject *)arg0; } if (nargs == 2) { obj = args[1]; } if (super_init_impl(su, type, obj) < 0) { goto fail; } return su; fail: Py_DECREF(su); return NULL; } PyTypeObject PySuper_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "super", /* tp_name */ sizeof(superobject), /* tp_basicsize */ 0, /* tp_itemsize */ /* methods */ super_dealloc, /* tp_dealloc */ 0, /* tp_vectorcall_offset */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_as_async */ super_repr, /* tp_repr */ 0, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ super_getattro, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE, /* tp_flags */ super_doc, /* tp_doc */ super_traverse, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ 0, /* tp_methods */ super_members, /* tp_members */ 0, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ super_descr_get, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ super_init, /* tp_init */ PyType_GenericAlloc, /* tp_alloc */ PyType_GenericNew, /* tp_new */ PyObject_GC_Del, /* tp_free */ .tp_vectorcall = (vectorcallfunc)super_vectorcall, };