// This file contains instruction definitions. // It is read by generators stored in Tools/cases_generator/ // to generate Python/generated_cases.c.h and others. // Note that there is some dummy C code at the top and bottom of the file // to fool text editors like VS Code into believing this is valid C code. // The actual instruction definitions start at // BEGIN BYTECODES //. // See Tools/cases_generator/README.md for more information. #include "Python.h" #include "pycore_abstract.h" // _PyIndex_Check() #include "pycore_backoff.h" #include "pycore_cell.h" // PyCell_GetRef() #include "pycore_code.h" #include "pycore_emscripten_signal.h" // _Py_CHECK_EMSCRIPTEN_SIGNALS #include "pycore_function.h" #include "pycore_instruments.h" #include "pycore_intrinsics.h" #include "pycore_long.h" // _PyLong_GetZero() #include "pycore_moduleobject.h" // PyModuleObject #include "pycore_object.h" // _PyObject_GC_TRACK() #include "pycore_opcode_metadata.h" // uop names #include "pycore_opcode_utils.h" // MAKE_FUNCTION_* #include "pycore_pyatomic_ft_wrappers.h" // FT_ATOMIC_* #include "pycore_pyerrors.h" // _PyErr_GetRaisedException() #include "pycore_pystate.h" // _PyInterpreterState_GET() #include "pycore_range.h" // _PyRangeIterObject #include "pycore_setobject.h" // _PySet_NextEntry() #include "pycore_sliceobject.h" // _PyBuildSlice_ConsumeRefs #include "pycore_sysmodule.h" // _PySys_Audit() #include "pycore_tuple.h" // _PyTuple_ITEMS() #include "pycore_typeobject.h" // _PySuper_Lookup() #include "pycore_dict.h" #include "dictobject.h" #include "pycore_frame.h" #include "opcode.h" #include "optimizer.h" #include "pydtrace.h" #include "setobject.h" #define USE_COMPUTED_GOTOS 0 #include "ceval_macros.h" /* Flow control macros */ #define GO_TO_INSTRUCTION(instname) ((void)0) #define inst(name, ...) case name: #define op(name, ...) /* NAME is ignored */ #define macro(name) static int MACRO_##name #define super(name) static int SUPER_##name #define family(name, ...) static int family_##name #define pseudo(name) static int pseudo_##name /* Annotations */ #define guard #define override #define specializing #define split #define replicate(TIMES) // Dummy variables for stack effects. static PyObject *value, *value1, *value2, *left, *right, *res, *sum, *prod, *sub; static PyObject *container, *start, *stop, *v, *lhs, *rhs, *res2; static PyObject *list, *tuple, *dict, *owner, *set, *str, *tup, *map, *keys; static PyObject *exit_func, *lasti, *val, *retval, *obj, *iter, *exhausted; static PyObject *aiter, *awaitable, *iterable, *w, *exc_value, *bc, *locals; static PyObject *orig, *excs, *update, *b, *fromlist, *level, *from; static PyObject **pieces, **values; static size_t jump; // Dummy variables for cache effects static uint16_t invert, counter, index, hint; #define unused 0 // Used in a macro def, can't be static static uint32_t type_version; static _PyExecutorObject *current_executor; static PyObject * dummy_func( PyThreadState *tstate, _PyInterpreterFrame *frame, unsigned char opcode, unsigned int oparg, _Py_CODEUNIT *next_instr, PyObject **stack_pointer, int throwflag, PyObject *args[] ) { // Dummy labels. pop_1_error: // Dummy locals. PyObject *dummy; _Py_CODEUNIT *this_instr; PyObject *attr; PyObject *attrs; PyObject *bottom; PyObject *callable; PyObject *callargs; PyObject *codeobj; PyObject *cond; PyObject *descr; _PyInterpreterFrame entry_frame; PyObject *exc; PyObject *exit; PyObject *fget; PyObject *fmt_spec; PyObject *func; uint32_t func_version; PyObject *getattribute; PyObject *kwargs; PyObject *kwdefaults; PyObject *len_o; PyObject *match; PyObject *match_type; PyObject *method; PyObject *mgr; Py_ssize_t min_args; PyObject *names; PyObject *new_exc; PyObject *next; PyObject *none; PyObject *null; PyObject *prev_exc; PyObject *receiver; PyObject *rest; int result; PyObject *self; PyObject *seq; PyObject *slice; PyObject *step; PyObject *subject; PyObject *top; PyObject *type; PyObject *typevars; PyObject *val0; PyObject *val1; int values_or_none; switch (opcode) { // BEGIN BYTECODES // pure inst(NOP, (--)) { } family(RESUME, 0) = { RESUME_CHECK, }; tier1 inst(RESUME, (--)) { assert(frame == tstate->current_frame); if (tstate->tracing == 0) { uintptr_t global_version = _Py_atomic_load_uintptr_relaxed(&tstate->eval_breaker) & ~_PY_EVAL_EVENTS_MASK; PyCodeObject* code = _PyFrame_GetCode(frame); uintptr_t code_version = FT_ATOMIC_LOAD_UINTPTR_ACQUIRE(code->_co_instrumentation_version); assert((code_version & 255) == 0); if (code_version != global_version) { int err = _Py_Instrument(_PyFrame_GetCode(frame), tstate->interp); ERROR_IF(err, error); next_instr = this_instr; DISPATCH(); } assert(this_instr->op.code == RESUME || this_instr->op.code == RESUME_CHECK || this_instr->op.code == INSTRUMENTED_RESUME || this_instr->op.code == ENTER_EXECUTOR); if (this_instr->op.code == RESUME) { #if ENABLE_SPECIALIZATION FT_ATOMIC_STORE_UINT8_RELAXED(this_instr->op.code, RESUME_CHECK); #endif /* ENABLE_SPECIALIZATION */ } } if ((oparg & RESUME_OPARG_LOCATION_MASK) < RESUME_AFTER_YIELD_FROM) { CHECK_EVAL_BREAKER(); } } inst(RESUME_CHECK, (--)) { #if defined(__EMSCRIPTEN__) DEOPT_IF(_Py_emscripten_signal_clock == 0); _Py_emscripten_signal_clock -= Py_EMSCRIPTEN_SIGNAL_HANDLING; #endif uintptr_t eval_breaker = _Py_atomic_load_uintptr_relaxed(&tstate->eval_breaker); uintptr_t version = FT_ATOMIC_LOAD_UINTPTR_ACQUIRE(_PyFrame_GetCode(frame)->_co_instrumentation_version); assert((version & _PY_EVAL_EVENTS_MASK) == 0); DEOPT_IF(eval_breaker != version); } inst(INSTRUMENTED_RESUME, (--)) { uintptr_t global_version = _Py_atomic_load_uintptr_relaxed(&tstate->eval_breaker) & ~_PY_EVAL_EVENTS_MASK; uintptr_t code_version = FT_ATOMIC_LOAD_UINTPTR_ACQUIRE(_PyFrame_GetCode(frame)->_co_instrumentation_version); if (code_version != global_version && tstate->tracing == 0) { if (_Py_Instrument(_PyFrame_GetCode(frame), tstate->interp)) { ERROR_NO_POP(); } next_instr = this_instr; } else { if ((oparg & RESUME_OPARG_LOCATION_MASK) < RESUME_AFTER_YIELD_FROM) { CHECK_EVAL_BREAKER(); } _PyFrame_SetStackPointer(frame, stack_pointer); int err = _Py_call_instrumentation( tstate, oparg > 0, frame, this_instr); stack_pointer = _PyFrame_GetStackPointer(frame); ERROR_IF(err, error); if (frame->instr_ptr != this_instr) { /* Instrumentation has jumped */ next_instr = frame->instr_ptr; DISPATCH(); } } } pseudo(LOAD_CLOSURE) = { LOAD_FAST, }; inst(LOAD_FAST_CHECK, (-- value)) { value = GETLOCAL(oparg); if (value == NULL) { _PyEval_FormatExcCheckArg(tstate, PyExc_UnboundLocalError, UNBOUNDLOCAL_ERROR_MSG, PyTuple_GetItem(_PyFrame_GetCode(frame)->co_localsplusnames, oparg) ); ERROR_IF(1, error); } Py_INCREF(value); } replicate(8) pure inst(LOAD_FAST, (-- value)) { value = GETLOCAL(oparg); assert(value != NULL); Py_INCREF(value); } inst(LOAD_FAST_AND_CLEAR, (-- value)) { value = GETLOCAL(oparg); // do not use SETLOCAL here, it decrefs the old value GETLOCAL(oparg) = NULL; } inst(LOAD_FAST_LOAD_FAST, ( -- value1, value2)) { uint32_t oparg1 = oparg >> 4; uint32_t oparg2 = oparg & 15; value1 = GETLOCAL(oparg1); value2 = GETLOCAL(oparg2); Py_INCREF(value1); Py_INCREF(value2); } pure inst(LOAD_CONST, (-- value)) { value = GETITEM(FRAME_CO_CONSTS, oparg); Py_INCREF(value); } replicate(8) inst(STORE_FAST, (value --)) { SETLOCAL(oparg, value); } pseudo(STORE_FAST_MAYBE_NULL) = { STORE_FAST, }; inst(STORE_FAST_LOAD_FAST, (value1 -- value2)) { uint32_t oparg1 = oparg >> 4; uint32_t oparg2 = oparg & 15; SETLOCAL(oparg1, value1); value2 = GETLOCAL(oparg2); Py_INCREF(value2); } inst(STORE_FAST_STORE_FAST, (value2, value1 --)) { uint32_t oparg1 = oparg >> 4; uint32_t oparg2 = oparg & 15; SETLOCAL(oparg1, value1); SETLOCAL(oparg2, value2); } pure inst(POP_TOP, (value --)) { DECREF_INPUTS(); } pure inst(PUSH_NULL, (-- res)) { res = NULL; } macro(END_FOR) = POP_TOP; tier1 inst(INSTRUMENTED_END_FOR, (receiver, value -- receiver)) { /* Need to create a fake StopIteration error here, * to conform to PEP 380 */ if (PyGen_Check(receiver)) { if (monitor_stop_iteration(tstate, frame, this_instr, value)) { ERROR_NO_POP(); } } DECREF_INPUTS(); } pure inst(END_SEND, (receiver, value -- value)) { Py_DECREF(receiver); } tier1 inst(INSTRUMENTED_END_SEND, (receiver, value -- value)) { if (PyGen_Check(receiver) || PyCoro_CheckExact(receiver)) { if (monitor_stop_iteration(tstate, frame, this_instr, value)) { ERROR_NO_POP(); } } Py_DECREF(receiver); } inst(UNARY_NEGATIVE, (value -- res)) { res = PyNumber_Negative(value); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } pure inst(UNARY_NOT, (value -- res)) { assert(PyBool_Check(value)); res = Py_IsFalse(value) ? Py_True : Py_False; } family(TO_BOOL, INLINE_CACHE_ENTRIES_TO_BOOL) = { TO_BOOL_ALWAYS_TRUE, TO_BOOL_BOOL, TO_BOOL_INT, TO_BOOL_LIST, TO_BOOL_NONE, TO_BOOL_STR, }; specializing op(_SPECIALIZE_TO_BOOL, (counter/1, value -- value)) { #if ENABLE_SPECIALIZATION if (ADAPTIVE_COUNTER_TRIGGERS(counter)) { next_instr = this_instr; _Py_Specialize_ToBool(value, next_instr); DISPATCH_SAME_OPARG(); } STAT_INC(TO_BOOL, deferred); ADVANCE_ADAPTIVE_COUNTER(this_instr[1].counter); #endif /* ENABLE_SPECIALIZATION */ } op(_TO_BOOL, (value -- res)) { int err = PyObject_IsTrue(value); DECREF_INPUTS(); ERROR_IF(err < 0, error); res = err ? Py_True : Py_False; } macro(TO_BOOL) = _SPECIALIZE_TO_BOOL + unused/2 + _TO_BOOL; inst(TO_BOOL_BOOL, (unused/1, unused/2, value -- value)) { EXIT_IF(!PyBool_Check(value)); STAT_INC(TO_BOOL, hit); } inst(TO_BOOL_INT, (unused/1, unused/2, value -- res)) { EXIT_IF(!PyLong_CheckExact(value)); STAT_INC(TO_BOOL, hit); if (_PyLong_IsZero((PyLongObject *)value)) { assert(_Py_IsImmortalLoose(value)); res = Py_False; } else { DECREF_INPUTS(); res = Py_True; } } inst(TO_BOOL_LIST, (unused/1, unused/2, value -- res)) { EXIT_IF(!PyList_CheckExact(value)); STAT_INC(TO_BOOL, hit); res = Py_SIZE(value) ? Py_True : Py_False; DECREF_INPUTS(); } inst(TO_BOOL_NONE, (unused/1, unused/2, value -- res)) { // This one is a bit weird, because we expect *some* failures: EXIT_IF(!Py_IsNone(value)); STAT_INC(TO_BOOL, hit); res = Py_False; } inst(TO_BOOL_STR, (unused/1, unused/2, value -- res)) { EXIT_IF(!PyUnicode_CheckExact(value)); STAT_INC(TO_BOOL, hit); if (value == &_Py_STR(empty)) { assert(_Py_IsImmortalLoose(value)); res = Py_False; } else { assert(Py_SIZE(value)); DECREF_INPUTS(); res = Py_True; } } op(_REPLACE_WITH_TRUE, (value -- res)) { Py_DECREF(value); res = Py_True; } macro(TO_BOOL_ALWAYS_TRUE) = unused/1 + _GUARD_TYPE_VERSION + _REPLACE_WITH_TRUE; inst(UNARY_INVERT, (value -- res)) { res = PyNumber_Invert(value); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } family(BINARY_OP, INLINE_CACHE_ENTRIES_BINARY_OP) = { BINARY_OP_MULTIPLY_INT, BINARY_OP_ADD_INT, BINARY_OP_SUBTRACT_INT, BINARY_OP_MULTIPLY_FLOAT, BINARY_OP_ADD_FLOAT, BINARY_OP_SUBTRACT_FLOAT, BINARY_OP_ADD_UNICODE, // BINARY_OP_INPLACE_ADD_UNICODE, // See comments at that opcode. }; op(_GUARD_BOTH_INT, (left, right -- left, right)) { EXIT_IF(!PyLong_CheckExact(left)); EXIT_IF(!PyLong_CheckExact(right)); } op(_GUARD_NOS_INT, (left, unused -- left, unused)) { EXIT_IF(!PyLong_CheckExact(left)); } op(_GUARD_TOS_INT, (value -- value)) { EXIT_IF(!PyLong_CheckExact(value)); } pure op(_BINARY_OP_MULTIPLY_INT, (left, right -- res)) { STAT_INC(BINARY_OP, hit); res = _PyLong_Multiply((PyLongObject *)left, (PyLongObject *)right); _Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free); _Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free); ERROR_IF(res == NULL, error); } pure op(_BINARY_OP_ADD_INT, (left, right -- res)) { STAT_INC(BINARY_OP, hit); res = _PyLong_Add((PyLongObject *)left, (PyLongObject *)right); _Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free); _Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free); ERROR_IF(res == NULL, error); } pure op(_BINARY_OP_SUBTRACT_INT, (left, right -- res)) { STAT_INC(BINARY_OP, hit); res = _PyLong_Subtract((PyLongObject *)left, (PyLongObject *)right); _Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free); _Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free); ERROR_IF(res == NULL, error); } macro(BINARY_OP_MULTIPLY_INT) = _GUARD_BOTH_INT + unused/1 + _BINARY_OP_MULTIPLY_INT; macro(BINARY_OP_ADD_INT) = _GUARD_BOTH_INT + unused/1 + _BINARY_OP_ADD_INT; macro(BINARY_OP_SUBTRACT_INT) = _GUARD_BOTH_INT + unused/1 + _BINARY_OP_SUBTRACT_INT; op(_GUARD_BOTH_FLOAT, (left, right -- left, right)) { EXIT_IF(!PyFloat_CheckExact(left)); EXIT_IF(!PyFloat_CheckExact(right)); } op(_GUARD_NOS_FLOAT, (left, unused -- left, unused)) { EXIT_IF(!PyFloat_CheckExact(left)); } op(_GUARD_TOS_FLOAT, (value -- value)) { EXIT_IF(!PyFloat_CheckExact(value)); } pure op(_BINARY_OP_MULTIPLY_FLOAT, (left, right -- res)) { STAT_INC(BINARY_OP, hit); double dres = ((PyFloatObject *)left)->ob_fval * ((PyFloatObject *)right)->ob_fval; DECREF_INPUTS_AND_REUSE_FLOAT(left, right, dres, res); } pure op(_BINARY_OP_ADD_FLOAT, (left, right -- res)) { STAT_INC(BINARY_OP, hit); double dres = ((PyFloatObject *)left)->ob_fval + ((PyFloatObject *)right)->ob_fval; DECREF_INPUTS_AND_REUSE_FLOAT(left, right, dres, res); } pure op(_BINARY_OP_SUBTRACT_FLOAT, (left, right -- res)) { STAT_INC(BINARY_OP, hit); double dres = ((PyFloatObject *)left)->ob_fval - ((PyFloatObject *)right)->ob_fval; DECREF_INPUTS_AND_REUSE_FLOAT(left, right, dres, res); } macro(BINARY_OP_MULTIPLY_FLOAT) = _GUARD_BOTH_FLOAT + unused/1 + _BINARY_OP_MULTIPLY_FLOAT; macro(BINARY_OP_ADD_FLOAT) = _GUARD_BOTH_FLOAT + unused/1 + _BINARY_OP_ADD_FLOAT; macro(BINARY_OP_SUBTRACT_FLOAT) = _GUARD_BOTH_FLOAT + unused/1 + _BINARY_OP_SUBTRACT_FLOAT; op(_GUARD_BOTH_UNICODE, (left, right -- left, right)) { EXIT_IF(!PyUnicode_CheckExact(left)); EXIT_IF(!PyUnicode_CheckExact(right)); } pure op(_BINARY_OP_ADD_UNICODE, (left, right -- res)) { STAT_INC(BINARY_OP, hit); res = PyUnicode_Concat(left, right); _Py_DECREF_SPECIALIZED(left, _PyUnicode_ExactDealloc); _Py_DECREF_SPECIALIZED(right, _PyUnicode_ExactDealloc); ERROR_IF(res == NULL, error); } macro(BINARY_OP_ADD_UNICODE) = _GUARD_BOTH_UNICODE + unused/1 + _BINARY_OP_ADD_UNICODE; // This is a subtle one. It's a super-instruction for // BINARY_OP_ADD_UNICODE followed by STORE_FAST // where the store goes into the left argument. // So the inputs are the same as for all BINARY_OP // specializations, but there is no output. // At the end we just skip over the STORE_FAST. tier1 op(_BINARY_OP_INPLACE_ADD_UNICODE, (left, right --)) { assert(next_instr->op.code == STORE_FAST); PyObject **target_local = &GETLOCAL(next_instr->op.arg); DEOPT_IF(*target_local != left); STAT_INC(BINARY_OP, hit); /* Handle `left = left + right` or `left += right` for str. * * When possible, extend `left` in place rather than * allocating a new PyUnicodeObject. This attempts to avoid * quadratic behavior when one neglects to use str.join(). * * If `left` has only two references remaining (one from * the stack, one in the locals), DECREFing `left` leaves * only the locals reference, so PyUnicode_Append knows * that the string is safe to mutate. */ assert(Py_REFCNT(left) >= 2); _Py_DECREF_NO_DEALLOC(left); PyUnicode_Append(target_local, right); _Py_DECREF_SPECIALIZED(right, _PyUnicode_ExactDealloc); ERROR_IF(*target_local == NULL, error); // The STORE_FAST is already done. assert(next_instr->op.code == STORE_FAST); SKIP_OVER(1); } macro(BINARY_OP_INPLACE_ADD_UNICODE) = _GUARD_BOTH_UNICODE + unused/1 + _BINARY_OP_INPLACE_ADD_UNICODE; family(BINARY_SUBSCR, INLINE_CACHE_ENTRIES_BINARY_SUBSCR) = { BINARY_SUBSCR_DICT, BINARY_SUBSCR_GETITEM, BINARY_SUBSCR_LIST_INT, BINARY_SUBSCR_STR_INT, BINARY_SUBSCR_TUPLE_INT, }; specializing op(_SPECIALIZE_BINARY_SUBSCR, (counter/1, container, sub -- container, sub)) { #if ENABLE_SPECIALIZATION if (ADAPTIVE_COUNTER_TRIGGERS(counter)) { next_instr = this_instr; _Py_Specialize_BinarySubscr(container, sub, next_instr); DISPATCH_SAME_OPARG(); } STAT_INC(BINARY_SUBSCR, deferred); ADVANCE_ADAPTIVE_COUNTER(this_instr[1].counter); #endif /* ENABLE_SPECIALIZATION */ } op(_BINARY_SUBSCR, (container, sub -- res)) { res = PyObject_GetItem(container, sub); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } macro(BINARY_SUBSCR) = _SPECIALIZE_BINARY_SUBSCR + _BINARY_SUBSCR; inst(BINARY_SLICE, (container, start, stop -- res)) { PyObject *slice = _PyBuildSlice_ConsumeRefs(start, stop); // Can't use ERROR_IF() here, because we haven't // DECREF'ed container yet, and we still own slice. if (slice == NULL) { res = NULL; } else { res = PyObject_GetItem(container, slice); Py_DECREF(slice); } Py_DECREF(container); ERROR_IF(res == NULL, error); } inst(STORE_SLICE, (v, container, start, stop -- )) { PyObject *slice = _PyBuildSlice_ConsumeRefs(start, stop); int err; if (slice == NULL) { err = 1; } else { err = PyObject_SetItem(container, slice, v); Py_DECREF(slice); } Py_DECREF(v); Py_DECREF(container); ERROR_IF(err, error); } inst(BINARY_SUBSCR_LIST_INT, (unused/1, list, sub -- res)) { DEOPT_IF(!PyLong_CheckExact(sub)); DEOPT_IF(!PyList_CheckExact(list)); // Deopt unless 0 <= sub < PyList_Size(list) DEOPT_IF(!_PyLong_IsNonNegativeCompact((PyLongObject *)sub)); Py_ssize_t index = ((PyLongObject*)sub)->long_value.ob_digit[0]; DEOPT_IF(index >= PyList_GET_SIZE(list)); STAT_INC(BINARY_SUBSCR, hit); res = PyList_GET_ITEM(list, index); assert(res != NULL); Py_INCREF(res); _Py_DECREF_SPECIALIZED(sub, (destructor)PyObject_Free); Py_DECREF(list); } inst(BINARY_SUBSCR_STR_INT, (unused/1, str, sub -- res)) { DEOPT_IF(!PyLong_CheckExact(sub)); DEOPT_IF(!PyUnicode_CheckExact(str)); DEOPT_IF(!_PyLong_IsNonNegativeCompact((PyLongObject *)sub)); Py_ssize_t index = ((PyLongObject*)sub)->long_value.ob_digit[0]; DEOPT_IF(PyUnicode_GET_LENGTH(str) <= index); // Specialize for reading an ASCII character from any string: Py_UCS4 c = PyUnicode_READ_CHAR(str, index); DEOPT_IF(Py_ARRAY_LENGTH(_Py_SINGLETON(strings).ascii) <= c); STAT_INC(BINARY_SUBSCR, hit); res = (PyObject*)&_Py_SINGLETON(strings).ascii[c]; _Py_DECREF_SPECIALIZED(sub, (destructor)PyObject_Free); Py_DECREF(str); } inst(BINARY_SUBSCR_TUPLE_INT, (unused/1, tuple, sub -- res)) { DEOPT_IF(!PyLong_CheckExact(sub)); DEOPT_IF(!PyTuple_CheckExact(tuple)); // Deopt unless 0 <= sub < PyTuple_Size(list) DEOPT_IF(!_PyLong_IsNonNegativeCompact((PyLongObject *)sub)); Py_ssize_t index = ((PyLongObject*)sub)->long_value.ob_digit[0]; DEOPT_IF(index >= PyTuple_GET_SIZE(tuple)); STAT_INC(BINARY_SUBSCR, hit); res = PyTuple_GET_ITEM(tuple, index); assert(res != NULL); Py_INCREF(res); _Py_DECREF_SPECIALIZED(sub, (destructor)PyObject_Free); Py_DECREF(tuple); } inst(BINARY_SUBSCR_DICT, (unused/1, dict, sub -- res)) { DEOPT_IF(!PyDict_CheckExact(dict)); STAT_INC(BINARY_SUBSCR, hit); int rc = PyDict_GetItemRef(dict, sub, &res); if (rc == 0) { _PyErr_SetKeyError(sub); } DECREF_INPUTS(); ERROR_IF(rc <= 0, error); // not found or error } inst(BINARY_SUBSCR_GETITEM, (unused/1, container, sub -- unused)) { DEOPT_IF(tstate->interp->eval_frame); PyTypeObject *tp = Py_TYPE(container); DEOPT_IF(!PyType_HasFeature(tp, Py_TPFLAGS_HEAPTYPE)); PyHeapTypeObject *ht = (PyHeapTypeObject *)tp; PyObject *cached = ht->_spec_cache.getitem; DEOPT_IF(cached == NULL); assert(PyFunction_Check(cached)); PyFunctionObject *getitem = (PyFunctionObject *)cached; uint32_t cached_version = ht->_spec_cache.getitem_version; DEOPT_IF(getitem->func_version != cached_version); PyCodeObject *code = (PyCodeObject *)getitem->func_code; assert(code->co_argcount == 2); DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize)); STAT_INC(BINARY_SUBSCR, hit); Py_INCREF(getitem); _PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, getitem, 2); STACK_SHRINK(2); new_frame->localsplus[0] = container; new_frame->localsplus[1] = sub; frame->return_offset = (uint16_t)(next_instr - this_instr); DISPATCH_INLINED(new_frame); } inst(LIST_APPEND, (list, unused[oparg-1], v -- list, unused[oparg-1])) { ERROR_IF(_PyList_AppendTakeRef((PyListObject *)list, v) < 0, error); } inst(SET_ADD, (set, unused[oparg-1], v -- set, unused[oparg-1])) { int err = PySet_Add(set, v); DECREF_INPUTS(); ERROR_IF(err, error); } family(STORE_SUBSCR, INLINE_CACHE_ENTRIES_STORE_SUBSCR) = { STORE_SUBSCR_DICT, STORE_SUBSCR_LIST_INT, }; specializing op(_SPECIALIZE_STORE_SUBSCR, (counter/1, container, sub -- container, sub)) { #if ENABLE_SPECIALIZATION if (ADAPTIVE_COUNTER_TRIGGERS(counter)) { next_instr = this_instr; _Py_Specialize_StoreSubscr(container, sub, next_instr); DISPATCH_SAME_OPARG(); } STAT_INC(STORE_SUBSCR, deferred); ADVANCE_ADAPTIVE_COUNTER(this_instr[1].counter); #endif /* ENABLE_SPECIALIZATION */ } op(_STORE_SUBSCR, (v, container, sub -- )) { /* container[sub] = v */ int err = PyObject_SetItem(container, sub, v); DECREF_INPUTS(); ERROR_IF(err, error); } macro(STORE_SUBSCR) = _SPECIALIZE_STORE_SUBSCR + _STORE_SUBSCR; inst(STORE_SUBSCR_LIST_INT, (unused/1, value, list, sub -- )) { DEOPT_IF(!PyLong_CheckExact(sub)); DEOPT_IF(!PyList_CheckExact(list)); // Ensure nonnegative, zero-or-one-digit ints. DEOPT_IF(!_PyLong_IsNonNegativeCompact((PyLongObject *)sub)); Py_ssize_t index = ((PyLongObject*)sub)->long_value.ob_digit[0]; // Ensure index < len(list) DEOPT_IF(index >= PyList_GET_SIZE(list)); STAT_INC(STORE_SUBSCR, hit); PyObject *old_value = PyList_GET_ITEM(list, index); PyList_SET_ITEM(list, index, value); assert(old_value != NULL); Py_DECREF(old_value); _Py_DECREF_SPECIALIZED(sub, (destructor)PyObject_Free); Py_DECREF(list); } inst(STORE_SUBSCR_DICT, (unused/1, value, dict, sub -- )) { DEOPT_IF(!PyDict_CheckExact(dict)); STAT_INC(STORE_SUBSCR, hit); int err = _PyDict_SetItem_Take2((PyDictObject *)dict, sub, value); Py_DECREF(dict); ERROR_IF(err, error); } inst(DELETE_SUBSCR, (container, sub --)) { /* del container[sub] */ int err = PyObject_DelItem(container, sub); DECREF_INPUTS(); ERROR_IF(err, error); } inst(CALL_INTRINSIC_1, (value -- res)) { assert(oparg <= MAX_INTRINSIC_1); res = _PyIntrinsics_UnaryFunctions[oparg].func(tstate, value); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } inst(CALL_INTRINSIC_2, (value2, value1 -- res)) { assert(oparg <= MAX_INTRINSIC_2); res = _PyIntrinsics_BinaryFunctions[oparg].func(tstate, value2, value1); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } tier1 inst(RAISE_VARARGS, (args[oparg] -- )) { PyObject *cause = NULL, *exc = NULL; switch (oparg) { case 2: cause = args[1]; /* fall through */ case 1: exc = args[0]; /* fall through */ case 0: if (do_raise(tstate, exc, cause)) { assert(oparg == 0); monitor_reraise(tstate, frame, this_instr); goto exception_unwind; } break; default: _PyErr_SetString(tstate, PyExc_SystemError, "bad RAISE_VARARGS oparg"); break; } ERROR_IF(true, error); } tier1 inst(INTERPRETER_EXIT, (retval --)) { assert(frame == &entry_frame); assert(_PyFrame_IsIncomplete(frame)); /* Restore previous frame and return. */ tstate->current_frame = frame->previous; assert(!_PyErr_Occurred(tstate)); tstate->c_recursion_remaining += PY_EVAL_C_STACK_UNITS; return retval; } // The stack effect here is ambiguous. // We definitely pop the return value off the stack on entry. // We also push it onto the stack on exit, but that's a // different frame, and it's accounted for by _PUSH_FRAME. op(_POP_FRAME, (retval --)) { #if TIER_ONE assert(frame != &entry_frame); #endif SYNC_SP(); _PyFrame_SetStackPointer(frame, stack_pointer); assert(EMPTY()); _Py_LeaveRecursiveCallPy(tstate); // GH-99729: We need to unlink the frame *before* clearing it: _PyInterpreterFrame *dying = frame; frame = tstate->current_frame = dying->previous; _PyEval_FrameClearAndPop(tstate, dying); _PyFrame_StackPush(frame, retval); LOAD_SP(); LOAD_IP(frame->return_offset); LLTRACE_RESUME_FRAME(); } macro(RETURN_VALUE) = _POP_FRAME; inst(INSTRUMENTED_RETURN_VALUE, (retval --)) { int err = _Py_call_instrumentation_arg( tstate, PY_MONITORING_EVENT_PY_RETURN, frame, this_instr, retval); if (err) ERROR_NO_POP(); STACK_SHRINK(1); assert(EMPTY()); _PyFrame_SetStackPointer(frame, stack_pointer); _Py_LeaveRecursiveCallPy(tstate); assert(frame != &entry_frame); // GH-99729: We need to unlink the frame *before* clearing it: _PyInterpreterFrame *dying = frame; frame = tstate->current_frame = dying->previous; _PyEval_FrameClearAndPop(tstate, dying); _PyFrame_StackPush(frame, retval); LOAD_IP(frame->return_offset); goto resume_frame; } macro(RETURN_CONST) = LOAD_CONST + _POP_FRAME; inst(INSTRUMENTED_RETURN_CONST, (--)) { PyObject *retval = GETITEM(FRAME_CO_CONSTS, oparg); int err = _Py_call_instrumentation_arg( tstate, PY_MONITORING_EVENT_PY_RETURN, frame, this_instr, retval); if (err) ERROR_NO_POP(); Py_INCREF(retval); assert(EMPTY()); _PyFrame_SetStackPointer(frame, stack_pointer); _Py_LeaveRecursiveCallPy(tstate); assert(frame != &entry_frame); // GH-99729: We need to unlink the frame *before* clearing it: _PyInterpreterFrame *dying = frame; frame = tstate->current_frame = dying->previous; _PyEval_FrameClearAndPop(tstate, dying); _PyFrame_StackPush(frame, retval); LOAD_IP(frame->return_offset); goto resume_frame; } inst(GET_AITER, (obj -- iter)) { unaryfunc getter = NULL; PyTypeObject *type = Py_TYPE(obj); if (type->tp_as_async != NULL) { getter = type->tp_as_async->am_aiter; } if (getter == NULL) { _PyErr_Format(tstate, PyExc_TypeError, "'async for' requires an object with " "__aiter__ method, got %.100s", type->tp_name); DECREF_INPUTS(); ERROR_IF(true, error); } iter = (*getter)(obj); DECREF_INPUTS(); ERROR_IF(iter == NULL, error); if (Py_TYPE(iter)->tp_as_async == NULL || Py_TYPE(iter)->tp_as_async->am_anext == NULL) { _PyErr_Format(tstate, PyExc_TypeError, "'async for' received an object from __aiter__ " "that does not implement __anext__: %.100s", Py_TYPE(iter)->tp_name); Py_DECREF(iter); ERROR_IF(true, error); } } inst(GET_ANEXT, (aiter -- aiter, awaitable)) { unaryfunc getter = NULL; PyObject *next_iter = NULL; PyTypeObject *type = Py_TYPE(aiter); if (PyAsyncGen_CheckExact(aiter)) { awaitable = type->tp_as_async->am_anext(aiter); if (awaitable == NULL) { ERROR_NO_POP(); } } else { if (type->tp_as_async != NULL){ getter = type->tp_as_async->am_anext; } if (getter != NULL) { next_iter = (*getter)(aiter); if (next_iter == NULL) { ERROR_NO_POP(); } } else { _PyErr_Format(tstate, PyExc_TypeError, "'async for' requires an iterator with " "__anext__ method, got %.100s", type->tp_name); ERROR_NO_POP(); } awaitable = _PyCoro_GetAwaitableIter(next_iter); if (awaitable == NULL) { _PyErr_FormatFromCause( PyExc_TypeError, "'async for' received an invalid object " "from __anext__: %.100s", Py_TYPE(next_iter)->tp_name); Py_DECREF(next_iter); ERROR_NO_POP(); } else { Py_DECREF(next_iter); } } } inst(GET_AWAITABLE, (iterable -- iter)) { iter = _PyCoro_GetAwaitableIter(iterable); if (iter == NULL) { _PyEval_FormatAwaitableError(tstate, Py_TYPE(iterable), oparg); } DECREF_INPUTS(); if (iter != NULL && PyCoro_CheckExact(iter)) { PyObject *yf = _PyGen_yf((PyGenObject*)iter); if (yf != NULL) { /* `iter` is a coroutine object that is being awaited, `yf` is a pointer to the current awaitable being awaited on. */ Py_DECREF(yf); Py_CLEAR(iter); _PyErr_SetString(tstate, PyExc_RuntimeError, "coroutine is being awaited already"); /* The code below jumps to `error` if `iter` is NULL. */ } } ERROR_IF(iter == NULL, error); } family(SEND, INLINE_CACHE_ENTRIES_SEND) = { SEND_GEN, }; specializing op(_SPECIALIZE_SEND, (counter/1, receiver, unused -- receiver, unused)) { #if ENABLE_SPECIALIZATION if (ADAPTIVE_COUNTER_TRIGGERS(counter)) { next_instr = this_instr; _Py_Specialize_Send(receiver, next_instr); DISPATCH_SAME_OPARG(); } STAT_INC(SEND, deferred); ADVANCE_ADAPTIVE_COUNTER(this_instr[1].counter); #endif /* ENABLE_SPECIALIZATION */ } op(_SEND, (receiver, v -- receiver, retval)) { assert(frame != &entry_frame); if ((tstate->interp->eval_frame == NULL) && (Py_TYPE(receiver) == &PyGen_Type || Py_TYPE(receiver) == &PyCoro_Type) && ((PyGenObject *)receiver)->gi_frame_state < FRAME_EXECUTING) { PyGenObject *gen = (PyGenObject *)receiver; _PyInterpreterFrame *gen_frame = (_PyInterpreterFrame *)gen->gi_iframe; STACK_SHRINK(1); _PyFrame_StackPush(gen_frame, v); gen->gi_frame_state = FRAME_EXECUTING; gen->gi_exc_state.previous_item = tstate->exc_info; tstate->exc_info = &gen->gi_exc_state; assert(next_instr - this_instr + oparg <= UINT16_MAX); frame->return_offset = (uint16_t)(next_instr - this_instr + oparg); DISPATCH_INLINED(gen_frame); } if (Py_IsNone(v) && PyIter_Check(receiver)) { retval = Py_TYPE(receiver)->tp_iternext(receiver); } else { retval = PyObject_CallMethodOneArg(receiver, &_Py_ID(send), v); } if (retval == NULL) { if (_PyErr_ExceptionMatches(tstate, PyExc_StopIteration) ) { _PyEval_MonitorRaise(tstate, frame, this_instr); } if (_PyGen_FetchStopIterationValue(&retval) == 0) { assert(retval != NULL); JUMPBY(oparg); } else { ERROR_NO_POP(); } } Py_DECREF(v); } macro(SEND) = _SPECIALIZE_SEND + _SEND; inst(SEND_GEN, (unused/1, receiver, v -- receiver, unused)) { DEOPT_IF(tstate->interp->eval_frame); PyGenObject *gen = (PyGenObject *)receiver; DEOPT_IF(Py_TYPE(gen) != &PyGen_Type && Py_TYPE(gen) != &PyCoro_Type); DEOPT_IF(gen->gi_frame_state >= FRAME_EXECUTING); STAT_INC(SEND, hit); _PyInterpreterFrame *gen_frame = (_PyInterpreterFrame *)gen->gi_iframe; STACK_SHRINK(1); _PyFrame_StackPush(gen_frame, v); gen->gi_frame_state = FRAME_EXECUTING; gen->gi_exc_state.previous_item = tstate->exc_info; tstate->exc_info = &gen->gi_exc_state; assert(next_instr - this_instr + oparg <= UINT16_MAX); frame->return_offset = (uint16_t)(next_instr - this_instr + oparg); DISPATCH_INLINED(gen_frame); } inst(INSTRUMENTED_YIELD_VALUE, (retval -- unused)) { assert(frame != &entry_frame); frame->instr_ptr = next_instr; PyGenObject *gen = _PyFrame_GetGenerator(frame); assert(FRAME_SUSPENDED_YIELD_FROM == FRAME_SUSPENDED + 1); assert(oparg == 0 || oparg == 1); gen->gi_frame_state = FRAME_SUSPENDED + oparg; _PyFrame_SetStackPointer(frame, stack_pointer - 1); int err = _Py_call_instrumentation_arg( tstate, PY_MONITORING_EVENT_PY_YIELD, frame, this_instr, retval); if (err) ERROR_NO_POP(); tstate->exc_info = gen->gi_exc_state.previous_item; gen->gi_exc_state.previous_item = NULL; _Py_LeaveRecursiveCallPy(tstate); _PyInterpreterFrame *gen_frame = frame; frame = tstate->current_frame = frame->previous; gen_frame->previous = NULL; _PyFrame_StackPush(frame, retval); /* We don't know which of these is relevant here, so keep them equal */ assert(INLINE_CACHE_ENTRIES_SEND == INLINE_CACHE_ENTRIES_FOR_ITER); LOAD_IP(1 + INLINE_CACHE_ENTRIES_SEND); goto resume_frame; } inst(YIELD_VALUE, (retval -- value)) { // NOTE: It's important that YIELD_VALUE never raises an exception! // The compiler treats any exception raised here as a failed close() // or throw() call. #if TIER_ONE assert(frame != &entry_frame); #endif frame->instr_ptr++; PyGenObject *gen = _PyFrame_GetGenerator(frame); assert(FRAME_SUSPENDED_YIELD_FROM == FRAME_SUSPENDED + 1); assert(oparg == 0 || oparg == 1); gen->gi_frame_state = FRAME_SUSPENDED + oparg; SYNC_SP(); _PyFrame_SetStackPointer(frame, stack_pointer); tstate->exc_info = gen->gi_exc_state.previous_item; gen->gi_exc_state.previous_item = NULL; _Py_LeaveRecursiveCallPy(tstate); _PyInterpreterFrame *gen_frame = frame; frame = tstate->current_frame = frame->previous; gen_frame->previous = NULL; /* We don't know which of these is relevant here, so keep them equal */ assert(INLINE_CACHE_ENTRIES_SEND == INLINE_CACHE_ENTRIES_FOR_ITER); #if TIER_ONE assert(frame->instr_ptr->op.code == INSTRUMENTED_LINE || frame->instr_ptr->op.code == INSTRUMENTED_INSTRUCTION || _PyOpcode_Deopt[frame->instr_ptr->op.code] == SEND || _PyOpcode_Deopt[frame->instr_ptr->op.code] == FOR_ITER || _PyOpcode_Deopt[frame->instr_ptr->op.code] == INTERPRETER_EXIT || _PyOpcode_Deopt[frame->instr_ptr->op.code] == ENTER_EXECUTOR); #endif LOAD_IP(1 + INLINE_CACHE_ENTRIES_SEND); LOAD_SP(); value = retval; LLTRACE_RESUME_FRAME(); } inst(POP_EXCEPT, (exc_value -- )) { _PyErr_StackItem *exc_info = tstate->exc_info; Py_XSETREF(exc_info->exc_value, exc_value == Py_None ? NULL : exc_value); } tier1 inst(RERAISE, (values[oparg], exc -- values[oparg])) { assert(oparg >= 0 && oparg <= 2); if (oparg) { PyObject *lasti = values[0]; if (PyLong_Check(lasti)) { frame->instr_ptr = _PyCode_CODE(_PyFrame_GetCode(frame)) + PyLong_AsLong(lasti); assert(!_PyErr_Occurred(tstate)); } else { assert(PyLong_Check(lasti)); _PyErr_SetString(tstate, PyExc_SystemError, "lasti is not an int"); ERROR_NO_POP(); } } assert(exc && PyExceptionInstance_Check(exc)); Py_INCREF(exc); _PyErr_SetRaisedException(tstate, exc); monitor_reraise(tstate, frame, this_instr); goto exception_unwind; } tier1 inst(END_ASYNC_FOR, (awaitable, exc -- )) { assert(exc && PyExceptionInstance_Check(exc)); if (PyErr_GivenExceptionMatches(exc, PyExc_StopAsyncIteration)) { DECREF_INPUTS(); } else { Py_INCREF(exc); _PyErr_SetRaisedException(tstate, exc); monitor_reraise(tstate, frame, this_instr); goto exception_unwind; } } tier1 inst(CLEANUP_THROW, (sub_iter, last_sent_val, exc_value -- none, value)) { assert(throwflag); assert(exc_value && PyExceptionInstance_Check(exc_value)); if (PyErr_GivenExceptionMatches(exc_value, PyExc_StopIteration)) { value = Py_NewRef(((PyStopIterationObject *)exc_value)->value); DECREF_INPUTS(); none = Py_None; } else { _PyErr_SetRaisedException(tstate, Py_NewRef(exc_value)); monitor_reraise(tstate, frame, this_instr); goto exception_unwind; } } inst(LOAD_ASSERTION_ERROR, ( -- value)) { value = Py_NewRef(PyExc_AssertionError); } inst(LOAD_BUILD_CLASS, ( -- bc)) { ERROR_IF(PyMapping_GetOptionalItem(BUILTINS(), &_Py_ID(__build_class__), &bc) < 0, error); if (bc == NULL) { _PyErr_SetString(tstate, PyExc_NameError, "__build_class__ not found"); ERROR_IF(true, error); } } inst(STORE_NAME, (v -- )) { PyObject *name = GETITEM(FRAME_CO_NAMES, oparg); PyObject *ns = LOCALS(); int err; if (ns == NULL) { _PyErr_Format(tstate, PyExc_SystemError, "no locals found when storing %R", name); DECREF_INPUTS(); ERROR_IF(true, error); } if (PyDict_CheckExact(ns)) err = PyDict_SetItem(ns, name, v); else err = PyObject_SetItem(ns, name, v); DECREF_INPUTS(); ERROR_IF(err, error); } inst(DELETE_NAME, (--)) { PyObject *name = GETITEM(FRAME_CO_NAMES, oparg); PyObject *ns = LOCALS(); int err; if (ns == NULL) { _PyErr_Format(tstate, PyExc_SystemError, "no locals when deleting %R", name); ERROR_NO_POP(); } err = PyObject_DelItem(ns, name); // Can't use ERROR_IF here. if (err != 0) { _PyEval_FormatExcCheckArg(tstate, PyExc_NameError, NAME_ERROR_MSG, name); ERROR_NO_POP(); } } family(UNPACK_SEQUENCE, INLINE_CACHE_ENTRIES_UNPACK_SEQUENCE) = { UNPACK_SEQUENCE_TWO_TUPLE, UNPACK_SEQUENCE_TUPLE, UNPACK_SEQUENCE_LIST, }; specializing op(_SPECIALIZE_UNPACK_SEQUENCE, (counter/1, seq -- seq)) { #if ENABLE_SPECIALIZATION if (ADAPTIVE_COUNTER_TRIGGERS(counter)) { next_instr = this_instr; _Py_Specialize_UnpackSequence(seq, next_instr, oparg); DISPATCH_SAME_OPARG(); } STAT_INC(UNPACK_SEQUENCE, deferred); ADVANCE_ADAPTIVE_COUNTER(this_instr[1].counter); #endif /* ENABLE_SPECIALIZATION */ (void)seq; (void)counter; } op(_UNPACK_SEQUENCE, (seq -- unused[oparg])) { PyObject **top = stack_pointer + oparg - 1; int res = _PyEval_UnpackIterable(tstate, seq, oparg, -1, top); DECREF_INPUTS(); ERROR_IF(res == 0, error); } macro(UNPACK_SEQUENCE) = _SPECIALIZE_UNPACK_SEQUENCE + _UNPACK_SEQUENCE; inst(UNPACK_SEQUENCE_TWO_TUPLE, (unused/1, seq -- val1, val0)) { assert(oparg == 2); DEOPT_IF(!PyTuple_CheckExact(seq)); DEOPT_IF(PyTuple_GET_SIZE(seq) != 2); STAT_INC(UNPACK_SEQUENCE, hit); val0 = Py_NewRef(PyTuple_GET_ITEM(seq, 0)); val1 = Py_NewRef(PyTuple_GET_ITEM(seq, 1)); DECREF_INPUTS(); } inst(UNPACK_SEQUENCE_TUPLE, (unused/1, seq -- values[oparg])) { DEOPT_IF(!PyTuple_CheckExact(seq)); DEOPT_IF(PyTuple_GET_SIZE(seq) != oparg); STAT_INC(UNPACK_SEQUENCE, hit); PyObject **items = _PyTuple_ITEMS(seq); for (int i = oparg; --i >= 0; ) { *values++ = Py_NewRef(items[i]); } DECREF_INPUTS(); } inst(UNPACK_SEQUENCE_LIST, (unused/1, seq -- values[oparg])) { DEOPT_IF(!PyList_CheckExact(seq)); DEOPT_IF(PyList_GET_SIZE(seq) != oparg); STAT_INC(UNPACK_SEQUENCE, hit); PyObject **items = _PyList_ITEMS(seq); for (int i = oparg; --i >= 0; ) { *values++ = Py_NewRef(items[i]); } DECREF_INPUTS(); } inst(UNPACK_EX, (seq -- unused[oparg & 0xFF], unused, unused[oparg >> 8])) { int totalargs = 1 + (oparg & 0xFF) + (oparg >> 8); PyObject **top = stack_pointer + totalargs - 1; int res = _PyEval_UnpackIterable(tstate, seq, oparg & 0xFF, oparg >> 8, top); DECREF_INPUTS(); ERROR_IF(res == 0, error); } family(STORE_ATTR, INLINE_CACHE_ENTRIES_STORE_ATTR) = { STORE_ATTR_INSTANCE_VALUE, STORE_ATTR_SLOT, STORE_ATTR_WITH_HINT, }; specializing op(_SPECIALIZE_STORE_ATTR, (counter/1, owner -- owner)) { #if ENABLE_SPECIALIZATION if (ADAPTIVE_COUNTER_TRIGGERS(counter)) { PyObject *name = GETITEM(FRAME_CO_NAMES, oparg); next_instr = this_instr; _Py_Specialize_StoreAttr(owner, next_instr, name); DISPATCH_SAME_OPARG(); } STAT_INC(STORE_ATTR, deferred); ADVANCE_ADAPTIVE_COUNTER(this_instr[1].counter); #endif /* ENABLE_SPECIALIZATION */ } op(_STORE_ATTR, (v, owner --)) { PyObject *name = GETITEM(FRAME_CO_NAMES, oparg); int err = PyObject_SetAttr(owner, name, v); DECREF_INPUTS(); ERROR_IF(err, error); } macro(STORE_ATTR) = _SPECIALIZE_STORE_ATTR + unused/3 + _STORE_ATTR; inst(DELETE_ATTR, (owner --)) { PyObject *name = GETITEM(FRAME_CO_NAMES, oparg); int err = PyObject_DelAttr(owner, name); DECREF_INPUTS(); ERROR_IF(err, error); } inst(STORE_GLOBAL, (v --)) { PyObject *name = GETITEM(FRAME_CO_NAMES, oparg); int err = PyDict_SetItem(GLOBALS(), name, v); DECREF_INPUTS(); ERROR_IF(err, error); } inst(DELETE_GLOBAL, (--)) { PyObject *name = GETITEM(FRAME_CO_NAMES, oparg); int err = PyDict_Pop(GLOBALS(), name, NULL); // Can't use ERROR_IF here. if (err < 0) { ERROR_NO_POP(); } if (err == 0) { _PyEval_FormatExcCheckArg(tstate, PyExc_NameError, NAME_ERROR_MSG, name); ERROR_NO_POP(); } } inst(LOAD_LOCALS, ( -- locals)) { locals = LOCALS(); if (locals == NULL) { _PyErr_SetString(tstate, PyExc_SystemError, "no locals found"); ERROR_IF(true, error); } Py_INCREF(locals); } inst(LOAD_FROM_DICT_OR_GLOBALS, (mod_or_class_dict -- v)) { PyObject *name = GETITEM(FRAME_CO_NAMES, oparg); if (PyMapping_GetOptionalItem(mod_or_class_dict, name, &v) < 0) { ERROR_NO_POP(); } if (v == NULL) { if (PyDict_CheckExact(GLOBALS()) && PyDict_CheckExact(BUILTINS())) { v = _PyDict_LoadGlobal((PyDictObject *)GLOBALS(), (PyDictObject *)BUILTINS(), name); if (v == NULL) { if (!_PyErr_Occurred(tstate)) { /* _PyDict_LoadGlobal() returns NULL without raising * an exception if the key doesn't exist */ _PyEval_FormatExcCheckArg(tstate, PyExc_NameError, NAME_ERROR_MSG, name); } ERROR_NO_POP(); } } else { /* Slow-path if globals or builtins is not a dict */ /* namespace 1: globals */ ERROR_IF(PyMapping_GetOptionalItem(GLOBALS(), name, &v) < 0, error); if (v == NULL) { /* namespace 2: builtins */ ERROR_IF(PyMapping_GetOptionalItem(BUILTINS(), name, &v) < 0, error); if (v == NULL) { _PyEval_FormatExcCheckArg( tstate, PyExc_NameError, NAME_ERROR_MSG, name); ERROR_IF(true, error); } } } } DECREF_INPUTS(); } inst(LOAD_NAME, (-- v)) { PyObject *mod_or_class_dict = LOCALS(); if (mod_or_class_dict == NULL) { _PyErr_SetString(tstate, PyExc_SystemError, "no locals found"); ERROR_IF(true, error); } PyObject *name = GETITEM(FRAME_CO_NAMES, oparg); if (PyMapping_GetOptionalItem(mod_or_class_dict, name, &v) < 0) { ERROR_NO_POP(); } if (v == NULL) { if (PyDict_GetItemRef(GLOBALS(), name, &v) < 0) { ERROR_NO_POP(); } if (v == NULL) { if (PyMapping_GetOptionalItem(BUILTINS(), name, &v) < 0) { ERROR_NO_POP(); } if (v == NULL) { _PyEval_FormatExcCheckArg( tstate, PyExc_NameError, NAME_ERROR_MSG, name); ERROR_NO_POP(); } } } } family(LOAD_GLOBAL, INLINE_CACHE_ENTRIES_LOAD_GLOBAL) = { LOAD_GLOBAL_MODULE, LOAD_GLOBAL_BUILTIN, }; specializing op(_SPECIALIZE_LOAD_GLOBAL, (counter/1 -- )) { #if ENABLE_SPECIALIZATION if (ADAPTIVE_COUNTER_TRIGGERS(counter)) { PyObject *name = GETITEM(FRAME_CO_NAMES, oparg>>1); next_instr = this_instr; _Py_Specialize_LoadGlobal(GLOBALS(), BUILTINS(), next_instr, name); DISPATCH_SAME_OPARG(); } STAT_INC(LOAD_GLOBAL, deferred); ADVANCE_ADAPTIVE_COUNTER(this_instr[1].counter); #endif /* ENABLE_SPECIALIZATION */ } op(_LOAD_GLOBAL, ( -- res, null if (oparg & 1))) { PyObject *name = GETITEM(FRAME_CO_NAMES, oparg>>1); if (PyDict_CheckExact(GLOBALS()) && PyDict_CheckExact(BUILTINS())) { res = _PyDict_LoadGlobal((PyDictObject *)GLOBALS(), (PyDictObject *)BUILTINS(), name); if (res == NULL) { if (!_PyErr_Occurred(tstate)) { /* _PyDict_LoadGlobal() returns NULL without raising * an exception if the key doesn't exist */ _PyEval_FormatExcCheckArg(tstate, PyExc_NameError, NAME_ERROR_MSG, name); } ERROR_IF(true, error); } } else { /* Slow-path if globals or builtins is not a dict */ /* namespace 1: globals */ ERROR_IF(PyMapping_GetOptionalItem(GLOBALS(), name, &res) < 0, error); if (res == NULL) { /* namespace 2: builtins */ ERROR_IF(PyMapping_GetOptionalItem(BUILTINS(), name, &res) < 0, error); if (res == NULL) { _PyEval_FormatExcCheckArg( tstate, PyExc_NameError, NAME_ERROR_MSG, name); ERROR_IF(true, error); } } } null = NULL; } macro(LOAD_GLOBAL) = _SPECIALIZE_LOAD_GLOBAL + counter/1 + globals_version/1 + builtins_version/1 + _LOAD_GLOBAL; op(_GUARD_GLOBALS_VERSION, (version/1 --)) { PyDictObject *dict = (PyDictObject *)GLOBALS(); DEOPT_IF(!PyDict_CheckExact(dict)); DEOPT_IF(dict->ma_keys->dk_version != version); assert(DK_IS_UNICODE(dict->ma_keys)); } op(_GUARD_BUILTINS_VERSION, (version/1 --)) { PyDictObject *dict = (PyDictObject *)BUILTINS(); DEOPT_IF(!PyDict_CheckExact(dict)); DEOPT_IF(dict->ma_keys->dk_version != version); assert(DK_IS_UNICODE(dict->ma_keys)); } op(_LOAD_GLOBAL_MODULE, (index/1 -- res, null if (oparg & 1))) { PyDictObject *dict = (PyDictObject *)GLOBALS(); PyDictUnicodeEntry *entries = DK_UNICODE_ENTRIES(dict->ma_keys); res = entries[index].me_value; DEOPT_IF(res == NULL); Py_INCREF(res); STAT_INC(LOAD_GLOBAL, hit); null = NULL; } op(_LOAD_GLOBAL_BUILTINS, (index/1 -- res, null if (oparg & 1))) { PyDictObject *bdict = (PyDictObject *)BUILTINS(); PyDictUnicodeEntry *entries = DK_UNICODE_ENTRIES(bdict->ma_keys); res = entries[index].me_value; DEOPT_IF(res == NULL); Py_INCREF(res); STAT_INC(LOAD_GLOBAL, hit); null = NULL; } macro(LOAD_GLOBAL_MODULE) = unused/1 + // Skip over the counter _GUARD_GLOBALS_VERSION + unused/1 + // Skip over the builtins version _LOAD_GLOBAL_MODULE; macro(LOAD_GLOBAL_BUILTIN) = unused/1 + // Skip over the counter _GUARD_GLOBALS_VERSION + _GUARD_BUILTINS_VERSION + _LOAD_GLOBAL_BUILTINS; inst(DELETE_FAST, (--)) { PyObject *v = GETLOCAL(oparg); if (v == NULL) { _PyEval_FormatExcCheckArg(tstate, PyExc_UnboundLocalError, UNBOUNDLOCAL_ERROR_MSG, PyTuple_GetItem(_PyFrame_GetCode(frame)->co_localsplusnames, oparg) ); ERROR_IF(1, error); } SETLOCAL(oparg, NULL); } inst(MAKE_CELL, (--)) { // "initial" is probably NULL but not if it's an arg (or set // via the f_locals proxy before MAKE_CELL has run). PyObject *initial = GETLOCAL(oparg); PyObject *cell = PyCell_New(initial); if (cell == NULL) { ERROR_NO_POP(); } SETLOCAL(oparg, cell); } inst(DELETE_DEREF, (--)) { PyObject *cell = GETLOCAL(oparg); // Can't use ERROR_IF here. // Fortunately we don't need its superpower. PyObject *oldobj = PyCell_SwapTakeRef((PyCellObject *)cell, NULL); if (oldobj == NULL) { _PyEval_FormatExcUnbound(tstate, _PyFrame_GetCode(frame), oparg); ERROR_NO_POP(); } Py_DECREF(oldobj); } inst(LOAD_FROM_DICT_OR_DEREF, (class_dict -- value)) { PyObject *name; assert(class_dict); assert(oparg >= 0 && oparg < _PyFrame_GetCode(frame)->co_nlocalsplus); name = PyTuple_GET_ITEM(_PyFrame_GetCode(frame)->co_localsplusnames, oparg); if (PyMapping_GetOptionalItem(class_dict, name, &value) < 0) { ERROR_NO_POP(); } if (!value) { PyCellObject *cell = (PyCellObject *)GETLOCAL(oparg); value = PyCell_GetRef(cell); if (value == NULL) { _PyEval_FormatExcUnbound(tstate, _PyFrame_GetCode(frame), oparg); ERROR_NO_POP(); } } Py_DECREF(class_dict); } inst(LOAD_DEREF, ( -- value)) { PyCellObject *cell = (PyCellObject *)GETLOCAL(oparg); value = PyCell_GetRef(cell); if (value == NULL) { _PyEval_FormatExcUnbound(tstate, _PyFrame_GetCode(frame), oparg); ERROR_IF(true, error); } } inst(STORE_DEREF, (v --)) { PyCellObject *cell = (PyCellObject *)GETLOCAL(oparg); PyCell_SetTakeRef(cell, v); } inst(COPY_FREE_VARS, (--)) { /* Copy closure variables to free variables */ PyCodeObject *co = _PyFrame_GetCode(frame); assert(PyFunction_Check(frame->f_funcobj)); PyObject *closure = ((PyFunctionObject *)frame->f_funcobj)->func_closure; assert(oparg == co->co_nfreevars); int offset = co->co_nlocalsplus - oparg; for (int i = 0; i < oparg; ++i) { PyObject *o = PyTuple_GET_ITEM(closure, i); frame->localsplus[offset + i] = Py_NewRef(o); } } inst(BUILD_STRING, (pieces[oparg] -- str)) { str = _PyUnicode_JoinArray(&_Py_STR(empty), pieces, oparg); DECREF_INPUTS(); ERROR_IF(str == NULL, error); } inst(BUILD_TUPLE, (values[oparg] -- tup)) { tup = _PyTuple_FromArraySteal(values, oparg); ERROR_IF(tup == NULL, error); } inst(BUILD_LIST, (values[oparg] -- list)) { list = _PyList_FromArraySteal(values, oparg); ERROR_IF(list == NULL, error); } inst(LIST_EXTEND, (list, unused[oparg-1], iterable -- list, unused[oparg-1])) { PyObject *none_val = _PyList_Extend((PyListObject *)list, iterable); if (none_val == NULL) { if (_PyErr_ExceptionMatches(tstate, PyExc_TypeError) && (Py_TYPE(iterable)->tp_iter == NULL && !PySequence_Check(iterable))) { _PyErr_Clear(tstate); _PyErr_Format(tstate, PyExc_TypeError, "Value after * must be an iterable, not %.200s", Py_TYPE(iterable)->tp_name); } DECREF_INPUTS(); ERROR_IF(true, error); } assert(Py_IsNone(none_val)); DECREF_INPUTS(); } inst(SET_UPDATE, (set, unused[oparg-1], iterable -- set, unused[oparg-1])) { int err = _PySet_Update(set, iterable); DECREF_INPUTS(); ERROR_IF(err < 0, error); } inst(BUILD_SET, (values[oparg] -- set)) { set = PySet_New(NULL); if (set == NULL) ERROR_NO_POP(); int err = 0; for (int i = 0; i < oparg; i++) { PyObject *item = values[i]; if (err == 0) err = PySet_Add(set, item); Py_DECREF(item); } if (err != 0) { Py_DECREF(set); ERROR_IF(true, error); } } inst(BUILD_MAP, (values[oparg*2] -- map)) { map = _PyDict_FromItems( values, 2, values+1, 2, oparg); DECREF_INPUTS(); ERROR_IF(map == NULL, error); } inst(SETUP_ANNOTATIONS, (--)) { int err; PyObject *ann_dict; if (LOCALS() == NULL) { _PyErr_Format(tstate, PyExc_SystemError, "no locals found when setting up annotations"); ERROR_IF(true, error); } /* check if __annotations__ in locals()... */ ERROR_IF(PyMapping_GetOptionalItem(LOCALS(), &_Py_ID(__annotations__), &ann_dict) < 0, error); if (ann_dict == NULL) { ann_dict = PyDict_New(); ERROR_IF(ann_dict == NULL, error); err = PyObject_SetItem(LOCALS(), &_Py_ID(__annotations__), ann_dict); Py_DECREF(ann_dict); ERROR_IF(err, error); } else { Py_DECREF(ann_dict); } } inst(BUILD_CONST_KEY_MAP, (values[oparg], keys -- map)) { assert(PyTuple_CheckExact(keys)); assert(PyTuple_GET_SIZE(keys) == (Py_ssize_t)oparg); map = _PyDict_FromItems( &PyTuple_GET_ITEM(keys, 0), 1, values, 1, oparg); DECREF_INPUTS(); ERROR_IF(map == NULL, error); } inst(DICT_UPDATE, (dict, unused[oparg - 1], update -- dict, unused[oparg - 1])) { if (PyDict_Update(dict, update) < 0) { if (_PyErr_ExceptionMatches(tstate, PyExc_AttributeError)) { _PyErr_Format(tstate, PyExc_TypeError, "'%.200s' object is not a mapping", Py_TYPE(update)->tp_name); } DECREF_INPUTS(); ERROR_IF(true, error); } DECREF_INPUTS(); } inst(DICT_MERGE, (callable, unused, unused, dict, unused[oparg - 1], update -- callable, unused, unused, dict, unused[oparg - 1])) { if (_PyDict_MergeEx(dict, update, 2) < 0) { _PyEval_FormatKwargsError(tstate, callable, update); DECREF_INPUTS(); ERROR_IF(true, error); } DECREF_INPUTS(); } inst(MAP_ADD, (dict, unused[oparg - 1], key, value -- dict, unused[oparg - 1])) { assert(PyDict_CheckExact(dict)); /* dict[key] = value */ // Do not DECREF INPUTS because the function steals the references ERROR_IF(_PyDict_SetItem_Take2((PyDictObject *)dict, key, value) != 0, error); } inst(INSTRUMENTED_LOAD_SUPER_ATTR, (unused/1, unused, unused, unused -- unused, unused if (oparg & 1))) { // cancel out the decrement that will happen in LOAD_SUPER_ATTR; we // don't want to specialize instrumented instructions PAUSE_ADAPTIVE_COUNTER(this_instr[1].counter); GO_TO_INSTRUCTION(LOAD_SUPER_ATTR); } family(LOAD_SUPER_ATTR, INLINE_CACHE_ENTRIES_LOAD_SUPER_ATTR) = { LOAD_SUPER_ATTR_ATTR, LOAD_SUPER_ATTR_METHOD, }; specializing op(_SPECIALIZE_LOAD_SUPER_ATTR, (counter/1, global_super, class, unused -- global_super, class, unused)) { #if ENABLE_SPECIALIZATION int load_method = oparg & 1; if (ADAPTIVE_COUNTER_TRIGGERS(counter)) { next_instr = this_instr; _Py_Specialize_LoadSuperAttr(global_super, class, next_instr, load_method); DISPATCH_SAME_OPARG(); } STAT_INC(LOAD_SUPER_ATTR, deferred); ADVANCE_ADAPTIVE_COUNTER(this_instr[1].counter); #endif /* ENABLE_SPECIALIZATION */ } tier1 op(_LOAD_SUPER_ATTR, (global_super, class, self -- attr, null if (oparg & 1))) { if (opcode == INSTRUMENTED_LOAD_SUPER_ATTR) { PyObject *arg = oparg & 2 ? class : &_PyInstrumentation_MISSING; int err = _Py_call_instrumentation_2args( tstate, PY_MONITORING_EVENT_CALL, frame, this_instr, global_super, arg); ERROR_IF(err, error); } // we make no attempt to optimize here; specializations should // handle any case whose performance we care about PyObject *stack[] = {class, self}; PyObject *super = PyObject_Vectorcall(global_super, stack, oparg & 2, NULL); if (opcode == INSTRUMENTED_LOAD_SUPER_ATTR) { PyObject *arg = oparg & 2 ? class : &_PyInstrumentation_MISSING; if (super == NULL) { _Py_call_instrumentation_exc2( tstate, PY_MONITORING_EVENT_C_RAISE, frame, this_instr, global_super, arg); } else { int err = _Py_call_instrumentation_2args( tstate, PY_MONITORING_EVENT_C_RETURN, frame, this_instr, global_super, arg); if (err < 0) { Py_CLEAR(super); } } } DECREF_INPUTS(); ERROR_IF(super == NULL, error); PyObject *name = GETITEM(FRAME_CO_NAMES, oparg >> 2); attr = PyObject_GetAttr(super, name); Py_DECREF(super); ERROR_IF(attr == NULL, error); null = NULL; } macro(LOAD_SUPER_ATTR) = _SPECIALIZE_LOAD_SUPER_ATTR + _LOAD_SUPER_ATTR; pseudo(LOAD_SUPER_METHOD) = { LOAD_SUPER_ATTR, }; pseudo(LOAD_ZERO_SUPER_METHOD) = { LOAD_SUPER_ATTR, }; pseudo(LOAD_ZERO_SUPER_ATTR) = { LOAD_SUPER_ATTR, }; inst(LOAD_SUPER_ATTR_ATTR, (unused/1, global_super, class, self -- attr, unused if (0))) { assert(!(oparg & 1)); DEOPT_IF(global_super != (PyObject *)&PySuper_Type); DEOPT_IF(!PyType_Check(class)); STAT_INC(LOAD_SUPER_ATTR, hit); PyObject *name = GETITEM(FRAME_CO_NAMES, oparg >> 2); attr = _PySuper_Lookup((PyTypeObject *)class, self, name, NULL); DECREF_INPUTS(); ERROR_IF(attr == NULL, error); } inst(LOAD_SUPER_ATTR_METHOD, (unused/1, global_super, class, self -- attr, self_or_null)) { assert(oparg & 1); DEOPT_IF(global_super != (PyObject *)&PySuper_Type); DEOPT_IF(!PyType_Check(class)); STAT_INC(LOAD_SUPER_ATTR, hit); PyObject *name = GETITEM(FRAME_CO_NAMES, oparg >> 2); PyTypeObject *cls = (PyTypeObject *)class; int method_found = 0; attr = _PySuper_Lookup(cls, self, name, Py_TYPE(self)->tp_getattro == PyObject_GenericGetAttr ? &method_found : NULL); Py_DECREF(global_super); Py_DECREF(class); if (attr == NULL) { Py_DECREF(self); ERROR_IF(true, error); } if (method_found) { self_or_null = self; // transfer ownership } else { Py_DECREF(self); self_or_null = NULL; } } family(LOAD_ATTR, INLINE_CACHE_ENTRIES_LOAD_ATTR) = { LOAD_ATTR_INSTANCE_VALUE, LOAD_ATTR_MODULE, LOAD_ATTR_WITH_HINT, LOAD_ATTR_SLOT, LOAD_ATTR_CLASS, LOAD_ATTR_PROPERTY, LOAD_ATTR_GETATTRIBUTE_OVERRIDDEN, LOAD_ATTR_METHOD_WITH_VALUES, LOAD_ATTR_METHOD_NO_DICT, LOAD_ATTR_METHOD_LAZY_DICT, LOAD_ATTR_NONDESCRIPTOR_WITH_VALUES, LOAD_ATTR_NONDESCRIPTOR_NO_DICT, }; specializing op(_SPECIALIZE_LOAD_ATTR, (counter/1, owner -- owner)) { #if ENABLE_SPECIALIZATION if (ADAPTIVE_COUNTER_TRIGGERS(counter)) { PyObject *name = GETITEM(FRAME_CO_NAMES, oparg>>1); next_instr = this_instr; _Py_Specialize_LoadAttr(owner, next_instr, name); DISPATCH_SAME_OPARG(); } STAT_INC(LOAD_ATTR, deferred); ADVANCE_ADAPTIVE_COUNTER(this_instr[1].counter); #endif /* ENABLE_SPECIALIZATION */ } op(_LOAD_ATTR, (owner -- attr, self_or_null if (oparg & 1))) { PyObject *name = GETITEM(FRAME_CO_NAMES, oparg >> 1); if (oparg & 1) { /* Designed to work in tandem with CALL, pushes two values. */ attr = NULL; if (_PyObject_GetMethod(owner, name, &attr)) { /* We can bypass temporary bound method object. meth is unbound method and obj is self. meth | self | arg1 | ... | argN */ assert(attr != NULL); // No errors on this branch self_or_null = owner; // Transfer ownership } else { /* meth is not an unbound method (but a regular attr, or something was returned by a descriptor protocol). Set the second element of the stack to NULL, to signal CALL that it's not a method call. meth | NULL | arg1 | ... | argN */ DECREF_INPUTS(); ERROR_IF(attr == NULL, error); self_or_null = NULL; } } else { /* Classic, pushes one value. */ attr = PyObject_GetAttr(owner, name); DECREF_INPUTS(); ERROR_IF(attr == NULL, error); } } macro(LOAD_ATTR) = _SPECIALIZE_LOAD_ATTR + unused/8 + _LOAD_ATTR; pseudo(LOAD_METHOD) = { LOAD_ATTR, }; op(_GUARD_TYPE_VERSION, (type_version/2, owner -- owner)) { PyTypeObject *tp = Py_TYPE(owner); assert(type_version != 0); EXIT_IF(tp->tp_version_tag != type_version); } op(_CHECK_MANAGED_OBJECT_HAS_VALUES, (owner -- owner)) { assert(Py_TYPE(owner)->tp_dictoffset < 0); assert(Py_TYPE(owner)->tp_flags & Py_TPFLAGS_INLINE_VALUES); DEOPT_IF(!_PyObject_InlineValues(owner)->valid); } split op(_LOAD_ATTR_INSTANCE_VALUE, (index/1, owner -- attr, null if (oparg & 1))) { attr = _PyObject_InlineValues(owner)->values[index]; DEOPT_IF(attr == NULL); STAT_INC(LOAD_ATTR, hit); Py_INCREF(attr); null = NULL; DECREF_INPUTS(); } macro(LOAD_ATTR_INSTANCE_VALUE) = unused/1 + // Skip over the counter _GUARD_TYPE_VERSION + _CHECK_MANAGED_OBJECT_HAS_VALUES + _LOAD_ATTR_INSTANCE_VALUE + unused/5; // Skip over rest of cache op(_CHECK_ATTR_MODULE, (dict_version/2, owner -- owner)) { DEOPT_IF(!PyModule_CheckExact(owner)); PyDictObject *dict = (PyDictObject *)((PyModuleObject *)owner)->md_dict; assert(dict != NULL); DEOPT_IF(dict->ma_keys->dk_version != dict_version); } op(_LOAD_ATTR_MODULE, (index/1, owner -- attr, null if (oparg & 1))) { PyDictObject *dict = (PyDictObject *)((PyModuleObject *)owner)->md_dict; assert(dict->ma_keys->dk_kind == DICT_KEYS_UNICODE); assert(index < dict->ma_keys->dk_nentries); PyDictUnicodeEntry *ep = DK_UNICODE_ENTRIES(dict->ma_keys) + index; attr = ep->me_value; DEOPT_IF(attr == NULL); STAT_INC(LOAD_ATTR, hit); Py_INCREF(attr); null = NULL; DECREF_INPUTS(); } macro(LOAD_ATTR_MODULE) = unused/1 + _CHECK_ATTR_MODULE + _LOAD_ATTR_MODULE + unused/5; op(_CHECK_ATTR_WITH_HINT, (owner -- owner)) { assert(Py_TYPE(owner)->tp_flags & Py_TPFLAGS_MANAGED_DICT); PyDictObject *dict = _PyObject_GetManagedDict(owner); DEOPT_IF(dict == NULL); assert(PyDict_CheckExact((PyObject *)dict)); } op(_LOAD_ATTR_WITH_HINT, (hint/1, owner -- attr, null if (oparg & 1))) { PyDictObject *dict = _PyObject_GetManagedDict(owner); DEOPT_IF(hint >= (size_t)dict->ma_keys->dk_nentries); PyObject *name = GETITEM(FRAME_CO_NAMES, oparg>>1); if (DK_IS_UNICODE(dict->ma_keys)) { PyDictUnicodeEntry *ep = DK_UNICODE_ENTRIES(dict->ma_keys) + hint; DEOPT_IF(ep->me_key != name); attr = ep->me_value; } else { PyDictKeyEntry *ep = DK_ENTRIES(dict->ma_keys) + hint; DEOPT_IF(ep->me_key != name); attr = ep->me_value; } DEOPT_IF(attr == NULL); STAT_INC(LOAD_ATTR, hit); Py_INCREF(attr); null = NULL; DECREF_INPUTS(); } macro(LOAD_ATTR_WITH_HINT) = unused/1 + _GUARD_TYPE_VERSION + _CHECK_ATTR_WITH_HINT + _LOAD_ATTR_WITH_HINT + unused/5; split op(_LOAD_ATTR_SLOT, (index/1, owner -- attr, null if (oparg & 1))) { char *addr = (char *)owner + index; attr = *(PyObject **)addr; DEOPT_IF(attr == NULL); STAT_INC(LOAD_ATTR, hit); Py_INCREF(attr); null = NULL; DECREF_INPUTS(); } macro(LOAD_ATTR_SLOT) = unused/1 + _GUARD_TYPE_VERSION + _LOAD_ATTR_SLOT + // NOTE: This action may also deopt unused/5; op(_CHECK_ATTR_CLASS, (type_version/2, owner -- owner)) { DEOPT_IF(!PyType_Check(owner)); assert(type_version != 0); DEOPT_IF(((PyTypeObject *)owner)->tp_version_tag != type_version); } split op(_LOAD_ATTR_CLASS, (descr/4, owner -- attr, null if (oparg & 1))) { STAT_INC(LOAD_ATTR, hit); assert(descr != NULL); attr = Py_NewRef(descr); null = NULL; DECREF_INPUTS(); } macro(LOAD_ATTR_CLASS) = unused/1 + _CHECK_ATTR_CLASS + unused/2 + _LOAD_ATTR_CLASS; inst(LOAD_ATTR_PROPERTY, (unused/1, type_version/2, func_version/2, fget/4, owner -- unused, unused if (0))) { assert((oparg & 1) == 0); DEOPT_IF(tstate->interp->eval_frame); PyTypeObject *cls = Py_TYPE(owner); assert(type_version != 0); DEOPT_IF(cls->tp_version_tag != type_version); assert(Py_IS_TYPE(fget, &PyFunction_Type)); PyFunctionObject *f = (PyFunctionObject *)fget; assert(func_version != 0); DEOPT_IF(f->func_version != func_version); PyCodeObject *code = (PyCodeObject *)f->func_code; assert(code->co_argcount == 1); DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize)); STAT_INC(LOAD_ATTR, hit); Py_INCREF(fget); _PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, f, 1); // Manipulate stack directly because we exit with DISPATCH_INLINED(). STACK_SHRINK(1); new_frame->localsplus[0] = owner; frame->return_offset = (uint16_t)(next_instr - this_instr); DISPATCH_INLINED(new_frame); } inst(LOAD_ATTR_GETATTRIBUTE_OVERRIDDEN, (unused/1, type_version/2, func_version/2, getattribute/4, owner -- unused, unused if (0))) { assert((oparg & 1) == 0); DEOPT_IF(tstate->interp->eval_frame); PyTypeObject *cls = Py_TYPE(owner); assert(type_version != 0); DEOPT_IF(cls->tp_version_tag != type_version); assert(Py_IS_TYPE(getattribute, &PyFunction_Type)); PyFunctionObject *f = (PyFunctionObject *)getattribute; assert(func_version != 0); DEOPT_IF(f->func_version != func_version); PyCodeObject *code = (PyCodeObject *)f->func_code; assert(code->co_argcount == 2); DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize)); STAT_INC(LOAD_ATTR, hit); PyObject *name = GETITEM(FRAME_CO_NAMES, oparg >> 1); Py_INCREF(f); _PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, f, 2); // Manipulate stack directly because we exit with DISPATCH_INLINED(). STACK_SHRINK(1); new_frame->localsplus[0] = owner; new_frame->localsplus[1] = Py_NewRef(name); frame->return_offset = (uint16_t)(next_instr - this_instr); DISPATCH_INLINED(new_frame); } op(_GUARD_DORV_NO_DICT, (owner -- owner)) { assert(Py_TYPE(owner)->tp_dictoffset < 0); assert(Py_TYPE(owner)->tp_flags & Py_TPFLAGS_INLINE_VALUES); DEOPT_IF(_PyObject_GetManagedDict(owner)); DEOPT_IF(_PyObject_InlineValues(owner)->valid == 0); } op(_STORE_ATTR_INSTANCE_VALUE, (index/1, value, owner --)) { STAT_INC(STORE_ATTR, hit); assert(_PyObject_GetManagedDict(owner) == NULL); PyDictValues *values = _PyObject_InlineValues(owner); PyObject *old_value = values->values[index]; values->values[index] = value; if (old_value == NULL) { _PyDictValues_AddToInsertionOrder(values, index); } else { Py_DECREF(old_value); } Py_DECREF(owner); } macro(STORE_ATTR_INSTANCE_VALUE) = unused/1 + _GUARD_TYPE_VERSION + _GUARD_DORV_NO_DICT + _STORE_ATTR_INSTANCE_VALUE; inst(STORE_ATTR_WITH_HINT, (unused/1, type_version/2, hint/1, value, owner --)) { PyTypeObject *tp = Py_TYPE(owner); assert(type_version != 0); DEOPT_IF(tp->tp_version_tag != type_version); assert(tp->tp_flags & Py_TPFLAGS_MANAGED_DICT); PyDictObject *dict = _PyObject_GetManagedDict(owner); DEOPT_IF(dict == NULL); assert(PyDict_CheckExact((PyObject *)dict)); PyObject *name = GETITEM(FRAME_CO_NAMES, oparg); DEOPT_IF(hint >= (size_t)dict->ma_keys->dk_nentries); PyObject *old_value; uint64_t new_version; if (DK_IS_UNICODE(dict->ma_keys)) { PyDictUnicodeEntry *ep = DK_UNICODE_ENTRIES(dict->ma_keys) + hint; DEOPT_IF(ep->me_key != name); old_value = ep->me_value; DEOPT_IF(old_value == NULL); new_version = _PyDict_NotifyEvent(tstate->interp, PyDict_EVENT_MODIFIED, dict, name, value); ep->me_value = value; } else { PyDictKeyEntry *ep = DK_ENTRIES(dict->ma_keys) + hint; DEOPT_IF(ep->me_key != name); old_value = ep->me_value; DEOPT_IF(old_value == NULL); new_version = _PyDict_NotifyEvent(tstate->interp, PyDict_EVENT_MODIFIED, dict, name, value); ep->me_value = value; } /* Ensure dict is GC tracked if it needs to be */ if (!_PyObject_GC_IS_TRACKED(dict) && _PyObject_GC_MAY_BE_TRACKED(value)) { _PyObject_GC_TRACK(dict); } dict->ma_version_tag = new_version; // PEP 509 // old_value should be DECREFed after GC track checking is done, if not, it could raise a segmentation fault, // when dict only holds the strong reference to value in ep->me_value. Py_DECREF(old_value); STAT_INC(STORE_ATTR, hit); Py_DECREF(owner); } op(_STORE_ATTR_SLOT, (index/1, value, owner --)) { char *addr = (char *)owner + index; STAT_INC(STORE_ATTR, hit); PyObject *old_value = *(PyObject **)addr; *(PyObject **)addr = value; Py_XDECREF(old_value); Py_DECREF(owner); } macro(STORE_ATTR_SLOT) = unused/1 + _GUARD_TYPE_VERSION + _STORE_ATTR_SLOT; family(COMPARE_OP, INLINE_CACHE_ENTRIES_COMPARE_OP) = { COMPARE_OP_FLOAT, COMPARE_OP_INT, COMPARE_OP_STR, }; specializing op(_SPECIALIZE_COMPARE_OP, (counter/1, left, right -- left, right)) { #if ENABLE_SPECIALIZATION if (ADAPTIVE_COUNTER_TRIGGERS(counter)) { next_instr = this_instr; _Py_Specialize_CompareOp(left, right, next_instr, oparg); DISPATCH_SAME_OPARG(); } STAT_INC(COMPARE_OP, deferred); ADVANCE_ADAPTIVE_COUNTER(this_instr[1].counter); #endif /* ENABLE_SPECIALIZATION */ } op(_COMPARE_OP, (left, right -- res)) { assert((oparg >> 5) <= Py_GE); res = PyObject_RichCompare(left, right, oparg >> 5); DECREF_INPUTS(); ERROR_IF(res == NULL, error); if (oparg & 16) { int res_bool = PyObject_IsTrue(res); Py_DECREF(res); ERROR_IF(res_bool < 0, error); res = res_bool ? Py_True : Py_False; } } macro(COMPARE_OP) = _SPECIALIZE_COMPARE_OP + _COMPARE_OP; macro(COMPARE_OP_FLOAT) = _GUARD_BOTH_FLOAT + unused/1 + _COMPARE_OP_FLOAT; macro(COMPARE_OP_INT) = _GUARD_BOTH_INT + unused/1 + _COMPARE_OP_INT; macro(COMPARE_OP_STR) = _GUARD_BOTH_UNICODE + unused/1 + _COMPARE_OP_STR; op(_COMPARE_OP_FLOAT, (left, right -- res)) { STAT_INC(COMPARE_OP, hit); double dleft = PyFloat_AS_DOUBLE(left); double dright = PyFloat_AS_DOUBLE(right); // 1 if NaN, 2 if <, 4 if >, 8 if ==; this matches low four bits of the oparg int sign_ish = COMPARISON_BIT(dleft, dright); _Py_DECREF_SPECIALIZED(left, _PyFloat_ExactDealloc); _Py_DECREF_SPECIALIZED(right, _PyFloat_ExactDealloc); res = (sign_ish & oparg) ? Py_True : Py_False; // It's always a bool, so we don't care about oparg & 16. } // Similar to COMPARE_OP_FLOAT op(_COMPARE_OP_INT, (left, right -- res)) { DEOPT_IF(!_PyLong_IsCompact((PyLongObject *)left)); DEOPT_IF(!_PyLong_IsCompact((PyLongObject *)right)); STAT_INC(COMPARE_OP, hit); assert(_PyLong_DigitCount((PyLongObject *)left) <= 1 && _PyLong_DigitCount((PyLongObject *)right) <= 1); Py_ssize_t ileft = _PyLong_CompactValue((PyLongObject *)left); Py_ssize_t iright = _PyLong_CompactValue((PyLongObject *)right); // 2 if <, 4 if >, 8 if ==; this matches the low 4 bits of the oparg int sign_ish = COMPARISON_BIT(ileft, iright); _Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free); _Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free); res = (sign_ish & oparg) ? Py_True : Py_False; // It's always a bool, so we don't care about oparg & 16. } // Similar to COMPARE_OP_FLOAT, but for ==, != only op(_COMPARE_OP_STR, (left, right -- res)) { STAT_INC(COMPARE_OP, hit); int eq = _PyUnicode_Equal(left, right); assert((oparg >> 5) == Py_EQ || (oparg >> 5) == Py_NE); _Py_DECREF_SPECIALIZED(left, _PyUnicode_ExactDealloc); _Py_DECREF_SPECIALIZED(right, _PyUnicode_ExactDealloc); assert(eq == 0 || eq == 1); assert((oparg & 0xf) == COMPARISON_NOT_EQUALS || (oparg & 0xf) == COMPARISON_EQUALS); assert(COMPARISON_NOT_EQUALS + 1 == COMPARISON_EQUALS); res = ((COMPARISON_NOT_EQUALS + eq) & oparg) ? Py_True : Py_False; // It's always a bool, so we don't care about oparg & 16. } inst(IS_OP, (left, right -- b)) { int res = Py_Is(left, right) ^ oparg; DECREF_INPUTS(); b = res ? Py_True : Py_False; } family(CONTAINS_OP, INLINE_CACHE_ENTRIES_CONTAINS_OP) = { CONTAINS_OP_SET, CONTAINS_OP_DICT, }; op(_CONTAINS_OP, (left, right -- b)) { int res = PySequence_Contains(right, left); DECREF_INPUTS(); ERROR_IF(res < 0, error); b = (res ^ oparg) ? Py_True : Py_False; } specializing op(_SPECIALIZE_CONTAINS_OP, (counter/1, left, right -- left, right)) { #if ENABLE_SPECIALIZATION if (ADAPTIVE_COUNTER_TRIGGERS(counter)) { next_instr = this_instr; _Py_Specialize_ContainsOp(right, next_instr); DISPATCH_SAME_OPARG(); } STAT_INC(CONTAINS_OP, deferred); ADVANCE_ADAPTIVE_COUNTER(this_instr[1].counter); #endif /* ENABLE_SPECIALIZATION */ } macro(CONTAINS_OP) = _SPECIALIZE_CONTAINS_OP + _CONTAINS_OP; inst(CONTAINS_OP_SET, (unused/1, left, right -- b)) { DEOPT_IF(!(PySet_CheckExact(right) || PyFrozenSet_CheckExact(right))); STAT_INC(CONTAINS_OP, hit); // Note: both set and frozenset use the same seq_contains method! int res = _PySet_Contains((PySetObject *)right, left); DECREF_INPUTS(); ERROR_IF(res < 0, error); b = (res ^ oparg) ? Py_True : Py_False; } inst(CONTAINS_OP_DICT, (unused/1, left, right -- b)) { DEOPT_IF(!PyDict_CheckExact(right)); STAT_INC(CONTAINS_OP, hit); int res = PyDict_Contains(right, left); DECREF_INPUTS(); ERROR_IF(res < 0, error); b = (res ^ oparg) ? Py_True : Py_False; } inst(CHECK_EG_MATCH, (exc_value, match_type -- rest, match)) { if (_PyEval_CheckExceptStarTypeValid(tstate, match_type) < 0) { DECREF_INPUTS(); ERROR_IF(true, error); } match = NULL; rest = NULL; int res = _PyEval_ExceptionGroupMatch(exc_value, match_type, &match, &rest); DECREF_INPUTS(); ERROR_IF(res < 0, error); assert((match == NULL) == (rest == NULL)); ERROR_IF(match == NULL, error); if (!Py_IsNone(match)) { PyErr_SetHandledException(match); } } inst(CHECK_EXC_MATCH, (left, right -- left, b)) { assert(PyExceptionInstance_Check(left)); if (_PyEval_CheckExceptTypeValid(tstate, right) < 0) { DECREF_INPUTS(); ERROR_IF(true, error); } int res = PyErr_GivenExceptionMatches(left, right); DECREF_INPUTS(); b = res ? Py_True : Py_False; } tier1 inst(IMPORT_NAME, (level, fromlist -- res)) { PyObject *name = GETITEM(FRAME_CO_NAMES, oparg); res = import_name(tstate, frame, name, fromlist, level); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } tier1 inst(IMPORT_FROM, (from -- from, res)) { PyObject *name = GETITEM(FRAME_CO_NAMES, oparg); res = import_from(tstate, from, name); ERROR_IF(res == NULL, error); } tier1 inst(JUMP_FORWARD, (--)) { JUMPBY(oparg); } tier1 inst(JUMP_BACKWARD, (unused/1 --)) { CHECK_EVAL_BREAKER(); assert(oparg <= INSTR_OFFSET()); JUMPBY(-oparg); #ifdef _Py_TIER2 #if ENABLE_SPECIALIZATION _Py_BackoffCounter counter = this_instr[1].counter; if (backoff_counter_triggers(counter) && this_instr->op.code == JUMP_BACKWARD) { _Py_CODEUNIT *start = this_instr; /* Back up over EXTENDED_ARGs so optimizer sees the whole instruction */ while (oparg > 255) { oparg >>= 8; start--; } _PyExecutorObject *executor; int optimized = _PyOptimizer_Optimize(frame, start, stack_pointer, &executor); ERROR_IF(optimized < 0, error); if (optimized) { assert(tstate->previous_executor == NULL); tstate->previous_executor = Py_None; GOTO_TIER_TWO(executor); } else { this_instr[1].counter = restart_backoff_counter(counter); } } else { ADVANCE_ADAPTIVE_COUNTER(this_instr[1].counter); } #endif /* ENABLE_SPECIALIZATION */ #endif /* _Py_TIER2 */ } pseudo(JUMP) = { JUMP_FORWARD, JUMP_BACKWARD, }; pseudo(JUMP_NO_INTERRUPT) = { JUMP_FORWARD, JUMP_BACKWARD_NO_INTERRUPT, }; tier1 inst(ENTER_EXECUTOR, (--)) { #ifdef _Py_TIER2 PyCodeObject *code = _PyFrame_GetCode(frame); _PyExecutorObject *executor = code->co_executors->executors[oparg & 255]; assert(executor->vm_data.index == INSTR_OFFSET() - 1); assert(executor->vm_data.code == code); assert(executor->vm_data.valid); assert(tstate->previous_executor == NULL); /* If the eval breaker is set then stay in tier 1. * This avoids any potentially infinite loops * involving _RESUME_CHECK */ if (_Py_atomic_load_uintptr_relaxed(&tstate->eval_breaker) & _PY_EVAL_EVENTS_MASK) { opcode = executor->vm_data.opcode; oparg = (oparg & ~255) | executor->vm_data.oparg; next_instr = this_instr; if (_PyOpcode_Caches[_PyOpcode_Deopt[opcode]]) { PAUSE_ADAPTIVE_COUNTER(this_instr[1].counter); } DISPATCH_GOTO(); } tstate->previous_executor = Py_None; Py_INCREF(executor); GOTO_TIER_TWO(executor); #else Py_FatalError("ENTER_EXECUTOR is not supported in this build"); #endif /* _Py_TIER2 */ } replaced op(_POP_JUMP_IF_FALSE, (cond -- )) { assert(PyBool_Check(cond)); int flag = Py_IsFalse(cond); #if ENABLE_SPECIALIZATION this_instr[1].cache = (this_instr[1].cache << 1) | flag; #endif JUMPBY(oparg * flag); } replaced op(_POP_JUMP_IF_TRUE, (cond -- )) { assert(PyBool_Check(cond)); int flag = Py_IsTrue(cond); #if ENABLE_SPECIALIZATION this_instr[1].cache = (this_instr[1].cache << 1) | flag; #endif JUMPBY(oparg * flag); } op(_IS_NONE, (value -- b)) { if (Py_IsNone(value)) { b = Py_True; } else { b = Py_False; DECREF_INPUTS(); } } macro(POP_JUMP_IF_TRUE) = unused/1 + _POP_JUMP_IF_TRUE; macro(POP_JUMP_IF_FALSE) = unused/1 + _POP_JUMP_IF_FALSE; macro(POP_JUMP_IF_NONE) = unused/1 + _IS_NONE + _POP_JUMP_IF_TRUE; macro(POP_JUMP_IF_NOT_NONE) = unused/1 + _IS_NONE + _POP_JUMP_IF_FALSE; tier1 inst(JUMP_BACKWARD_NO_INTERRUPT, (--)) { /* This bytecode is used in the `yield from` or `await` loop. * If there is an interrupt, we want it handled in the innermost * generator or coroutine, so we deliberately do not check it here. * (see bpo-30039). */ JUMPBY(-oparg); } inst(GET_LEN, (obj -- obj, len_o)) { // PUSH(len(TOS)) Py_ssize_t len_i = PyObject_Length(obj); ERROR_IF(len_i < 0, error); len_o = PyLong_FromSsize_t(len_i); ERROR_IF(len_o == NULL, error); } inst(MATCH_CLASS, (subject, type, names -- attrs)) { // Pop TOS and TOS1. Set TOS to a tuple of attributes on success, or // None on failure. assert(PyTuple_CheckExact(names)); attrs = _PyEval_MatchClass(tstate, subject, type, oparg, names); DECREF_INPUTS(); if (attrs) { assert(PyTuple_CheckExact(attrs)); // Success! } else { ERROR_IF(_PyErr_Occurred(tstate), error); // Error! attrs = Py_None; // Failure! } } inst(MATCH_MAPPING, (subject -- subject, res)) { int match = Py_TYPE(subject)->tp_flags & Py_TPFLAGS_MAPPING; res = match ? Py_True : Py_False; } inst(MATCH_SEQUENCE, (subject -- subject, res)) { int match = Py_TYPE(subject)->tp_flags & Py_TPFLAGS_SEQUENCE; res = match ? Py_True : Py_False; } inst(MATCH_KEYS, (subject, keys -- subject, keys, values_or_none)) { // On successful match, PUSH(values). Otherwise, PUSH(None). values_or_none = _PyEval_MatchKeys(tstate, subject, keys); ERROR_IF(values_or_none == NULL, error); } inst(GET_ITER, (iterable -- iter)) { /* before: [obj]; after [getiter(obj)] */ iter = PyObject_GetIter(iterable); DECREF_INPUTS(); ERROR_IF(iter == NULL, error); } inst(GET_YIELD_FROM_ITER, (iterable -- iter)) { /* before: [obj]; after [getiter(obj)] */ if (PyCoro_CheckExact(iterable)) { /* `iterable` is a coroutine */ if (!(_PyFrame_GetCode(frame)->co_flags & (CO_COROUTINE | CO_ITERABLE_COROUTINE))) { /* and it is used in a 'yield from' expression of a regular generator. */ _PyErr_SetString(tstate, PyExc_TypeError, "cannot 'yield from' a coroutine object " "in a non-coroutine generator"); ERROR_NO_POP(); } iter = iterable; } else if (PyGen_CheckExact(iterable)) { iter = iterable; } else { /* `iterable` is not a generator. */ iter = PyObject_GetIter(iterable); if (iter == NULL) { ERROR_NO_POP(); } DECREF_INPUTS(); } } // Most members of this family are "secretly" super-instructions. // When the loop is exhausted, they jump, and the jump target is // always END_FOR, which pops two values off the stack. // This is optimized by skipping that instruction and combining // its effect (popping 'iter' instead of pushing 'next'.) family(FOR_ITER, INLINE_CACHE_ENTRIES_FOR_ITER) = { FOR_ITER_LIST, FOR_ITER_TUPLE, FOR_ITER_RANGE, FOR_ITER_GEN, }; specializing op(_SPECIALIZE_FOR_ITER, (counter/1, iter -- iter)) { #if ENABLE_SPECIALIZATION if (ADAPTIVE_COUNTER_TRIGGERS(counter)) { next_instr = this_instr; _Py_Specialize_ForIter(iter, next_instr, oparg); DISPATCH_SAME_OPARG(); } STAT_INC(FOR_ITER, deferred); ADVANCE_ADAPTIVE_COUNTER(this_instr[1].counter); #endif /* ENABLE_SPECIALIZATION */ } replaced op(_FOR_ITER, (iter -- iter, next)) { /* before: [iter]; after: [iter, iter()] *or* [] (and jump over END_FOR.) */ next = (*Py_TYPE(iter)->tp_iternext)(iter); if (next == NULL) { if (_PyErr_Occurred(tstate)) { if (!_PyErr_ExceptionMatches(tstate, PyExc_StopIteration)) { ERROR_NO_POP(); } _PyEval_MonitorRaise(tstate, frame, this_instr); _PyErr_Clear(tstate); } /* iterator ended normally */ assert(next_instr[oparg].op.code == END_FOR || next_instr[oparg].op.code == INSTRUMENTED_END_FOR); Py_DECREF(iter); STACK_SHRINK(1); /* Jump forward oparg, then skip following END_FOR and POP_TOP instruction */ JUMPBY(oparg + 2); DISPATCH(); } // Common case: no jump, leave it to the code generator } op(_FOR_ITER_TIER_TWO, (iter -- iter, next)) { /* before: [iter]; after: [iter, iter()] *or* [] (and jump over END_FOR.) */ next = (*Py_TYPE(iter)->tp_iternext)(iter); if (next == NULL) { if (_PyErr_Occurred(tstate)) { if (!_PyErr_ExceptionMatches(tstate, PyExc_StopIteration)) { ERROR_NO_POP(); } _PyEval_MonitorRaise(tstate, frame, frame->instr_ptr); _PyErr_Clear(tstate); } /* iterator ended normally */ /* The translator sets the deopt target just past the matching END_FOR */ DEOPT_IF(true); } // Common case: no jump, leave it to the code generator } macro(FOR_ITER) = _SPECIALIZE_FOR_ITER + _FOR_ITER; inst(INSTRUMENTED_FOR_ITER, (unused/1 -- )) { _Py_CODEUNIT *target; PyObject *iter = TOP(); PyObject *next = (*Py_TYPE(iter)->tp_iternext)(iter); if (next != NULL) { PUSH(next); target = next_instr; } else { if (_PyErr_Occurred(tstate)) { if (!_PyErr_ExceptionMatches(tstate, PyExc_StopIteration)) { ERROR_NO_POP(); } _PyEval_MonitorRaise(tstate, frame, this_instr); _PyErr_Clear(tstate); } /* iterator ended normally */ assert(next_instr[oparg].op.code == END_FOR || next_instr[oparg].op.code == INSTRUMENTED_END_FOR); STACK_SHRINK(1); Py_DECREF(iter); /* Skip END_FOR and POP_TOP */ target = next_instr + oparg + 2; } INSTRUMENTED_JUMP(this_instr, target, PY_MONITORING_EVENT_BRANCH); } op(_ITER_CHECK_LIST, (iter -- iter)) { EXIT_IF(Py_TYPE(iter) != &PyListIter_Type); } replaced op(_ITER_JUMP_LIST, (iter -- iter)) { _PyListIterObject *it = (_PyListIterObject *)iter; assert(Py_TYPE(iter) == &PyListIter_Type); STAT_INC(FOR_ITER, hit); PyListObject *seq = it->it_seq; if (seq == NULL || (size_t)it->it_index >= (size_t)PyList_GET_SIZE(seq)) { it->it_index = -1; #ifndef Py_GIL_DISABLED if (seq != NULL) { it->it_seq = NULL; Py_DECREF(seq); } #endif Py_DECREF(iter); STACK_SHRINK(1); /* Jump forward oparg, then skip following END_FOR and POP_TOP instructions */ JUMPBY(oparg + 2); DISPATCH(); } } // Only used by Tier 2 op(_GUARD_NOT_EXHAUSTED_LIST, (iter -- iter)) { _PyListIterObject *it = (_PyListIterObject *)iter; assert(Py_TYPE(iter) == &PyListIter_Type); PyListObject *seq = it->it_seq; EXIT_IF(seq == NULL); if ((size_t)it->it_index >= (size_t)PyList_GET_SIZE(seq)) { it->it_index = -1; EXIT_IF(1); } } op(_ITER_NEXT_LIST, (iter -- iter, next)) { _PyListIterObject *it = (_PyListIterObject *)iter; assert(Py_TYPE(iter) == &PyListIter_Type); PyListObject *seq = it->it_seq; assert(seq); assert(it->it_index < PyList_GET_SIZE(seq)); next = Py_NewRef(PyList_GET_ITEM(seq, it->it_index++)); } macro(FOR_ITER_LIST) = unused/1 + // Skip over the counter _ITER_CHECK_LIST + _ITER_JUMP_LIST + _ITER_NEXT_LIST; op(_ITER_CHECK_TUPLE, (iter -- iter)) { EXIT_IF(Py_TYPE(iter) != &PyTupleIter_Type); } replaced op(_ITER_JUMP_TUPLE, (iter -- iter)) { _PyTupleIterObject *it = (_PyTupleIterObject *)iter; assert(Py_TYPE(iter) == &PyTupleIter_Type); STAT_INC(FOR_ITER, hit); PyTupleObject *seq = it->it_seq; if (seq == NULL || it->it_index >= PyTuple_GET_SIZE(seq)) { if (seq != NULL) { it->it_seq = NULL; Py_DECREF(seq); } Py_DECREF(iter); STACK_SHRINK(1); /* Jump forward oparg, then skip following END_FOR and POP_TOP instructions */ JUMPBY(oparg + 2); DISPATCH(); } } // Only used by Tier 2 op(_GUARD_NOT_EXHAUSTED_TUPLE, (iter -- iter)) { _PyTupleIterObject *it = (_PyTupleIterObject *)iter; assert(Py_TYPE(iter) == &PyTupleIter_Type); PyTupleObject *seq = it->it_seq; EXIT_IF(seq == NULL); EXIT_IF(it->it_index >= PyTuple_GET_SIZE(seq)); } op(_ITER_NEXT_TUPLE, (iter -- iter, next)) { _PyTupleIterObject *it = (_PyTupleIterObject *)iter; assert(Py_TYPE(iter) == &PyTupleIter_Type); PyTupleObject *seq = it->it_seq; assert(seq); assert(it->it_index < PyTuple_GET_SIZE(seq)); next = Py_NewRef(PyTuple_GET_ITEM(seq, it->it_index++)); } macro(FOR_ITER_TUPLE) = unused/1 + // Skip over the counter _ITER_CHECK_TUPLE + _ITER_JUMP_TUPLE + _ITER_NEXT_TUPLE; op(_ITER_CHECK_RANGE, (iter -- iter)) { _PyRangeIterObject *r = (_PyRangeIterObject *)iter; EXIT_IF(Py_TYPE(r) != &PyRangeIter_Type); } replaced op(_ITER_JUMP_RANGE, (iter -- iter)) { _PyRangeIterObject *r = (_PyRangeIterObject *)iter; assert(Py_TYPE(r) == &PyRangeIter_Type); STAT_INC(FOR_ITER, hit); if (r->len <= 0) { STACK_SHRINK(1); Py_DECREF(r); // Jump over END_FOR and POP_TOP instructions. JUMPBY(oparg + 2); DISPATCH(); } } // Only used by Tier 2 op(_GUARD_NOT_EXHAUSTED_RANGE, (iter -- iter)) { _PyRangeIterObject *r = (_PyRangeIterObject *)iter; assert(Py_TYPE(r) == &PyRangeIter_Type); EXIT_IF(r->len <= 0); } op(_ITER_NEXT_RANGE, (iter -- iter, next)) { _PyRangeIterObject *r = (_PyRangeIterObject *)iter; assert(Py_TYPE(r) == &PyRangeIter_Type); assert(r->len > 0); long value = r->start; r->start = value + r->step; r->len--; next = PyLong_FromLong(value); ERROR_IF(next == NULL, error); } macro(FOR_ITER_RANGE) = unused/1 + // Skip over the counter _ITER_CHECK_RANGE + _ITER_JUMP_RANGE + _ITER_NEXT_RANGE; op(_FOR_ITER_GEN_FRAME, (iter -- iter, gen_frame: _PyInterpreterFrame*)) { PyGenObject *gen = (PyGenObject *)iter; DEOPT_IF(Py_TYPE(gen) != &PyGen_Type); DEOPT_IF(gen->gi_frame_state >= FRAME_EXECUTING); STAT_INC(FOR_ITER, hit); gen_frame = (_PyInterpreterFrame *)gen->gi_iframe; _PyFrame_StackPush(gen_frame, Py_None); gen->gi_frame_state = FRAME_EXECUTING; gen->gi_exc_state.previous_item = tstate->exc_info; tstate->exc_info = &gen->gi_exc_state; // oparg is the return offset from the next instruction. frame->return_offset = (uint16_t)(1 + INLINE_CACHE_ENTRIES_FOR_ITER + oparg); } macro(FOR_ITER_GEN) = unused/1 + _CHECK_PEP_523 + _FOR_ITER_GEN_FRAME + _PUSH_FRAME; inst(BEFORE_ASYNC_WITH, (mgr -- exit, res)) { PyObject *enter = _PyObject_LookupSpecial(mgr, &_Py_ID(__aenter__)); if (enter == NULL) { if (!_PyErr_Occurred(tstate)) { _PyErr_Format(tstate, PyExc_TypeError, "'%.200s' object does not support the " "asynchronous context manager protocol", Py_TYPE(mgr)->tp_name); } ERROR_NO_POP(); } exit = _PyObject_LookupSpecial(mgr, &_Py_ID(__aexit__)); if (exit == NULL) { if (!_PyErr_Occurred(tstate)) { _PyErr_Format(tstate, PyExc_TypeError, "'%.200s' object does not support the " "asynchronous context manager protocol " "(missed __aexit__ method)", Py_TYPE(mgr)->tp_name); } Py_DECREF(enter); ERROR_NO_POP(); } DECREF_INPUTS(); res = PyObject_CallNoArgs(enter); Py_DECREF(enter); if (res == NULL) { Py_DECREF(exit); ERROR_IF(true, error); } } inst(BEFORE_WITH, (mgr -- exit, res)) { /* pop the context manager, push its __exit__ and the * value returned from calling its __enter__ */ PyObject *enter = _PyObject_LookupSpecial(mgr, &_Py_ID(__enter__)); if (enter == NULL) { if (!_PyErr_Occurred(tstate)) { _PyErr_Format(tstate, PyExc_TypeError, "'%.200s' object does not support the " "context manager protocol", Py_TYPE(mgr)->tp_name); } ERROR_NO_POP(); } exit = _PyObject_LookupSpecial(mgr, &_Py_ID(__exit__)); if (exit == NULL) { if (!_PyErr_Occurred(tstate)) { _PyErr_Format(tstate, PyExc_TypeError, "'%.200s' object does not support the " "context manager protocol " "(missed __exit__ method)", Py_TYPE(mgr)->tp_name); } Py_DECREF(enter); ERROR_NO_POP(); } DECREF_INPUTS(); res = PyObject_CallNoArgs(enter); Py_DECREF(enter); if (res == NULL) { Py_DECREF(exit); ERROR_IF(true, error); } } inst(WITH_EXCEPT_START, (exit_func, lasti, unused, val -- exit_func, lasti, unused, val, res)) { /* At the top of the stack are 4 values: - val: TOP = exc_info() - unused: SECOND = previous exception - lasti: THIRD = lasti of exception in exc_info() - exit_func: FOURTH = the context.__exit__ bound method We call FOURTH(type(TOP), TOP, GetTraceback(TOP)). Then we push the __exit__ return value. */ PyObject *exc, *tb; assert(val && PyExceptionInstance_Check(val)); exc = PyExceptionInstance_Class(val); tb = PyException_GetTraceback(val); if (tb == NULL) { tb = Py_None; } else { Py_DECREF(tb); } assert(PyLong_Check(lasti)); (void)lasti; // Shut up compiler warning if asserts are off PyObject *stack[4] = {NULL, exc, val, tb}; res = PyObject_Vectorcall(exit_func, stack + 1, 3 | PY_VECTORCALL_ARGUMENTS_OFFSET, NULL); ERROR_IF(res == NULL, error); } pseudo(SETUP_FINALLY, (HAS_ARG)) = { NOP, }; pseudo(SETUP_CLEANUP, (HAS_ARG)) = { NOP, }; pseudo(SETUP_WITH, (HAS_ARG)) = { NOP, }; pseudo(POP_BLOCK) = { NOP, }; inst(PUSH_EXC_INFO, (new_exc -- prev_exc, new_exc)) { _PyErr_StackItem *exc_info = tstate->exc_info; if (exc_info->exc_value != NULL) { prev_exc = exc_info->exc_value; } else { prev_exc = Py_None; } assert(PyExceptionInstance_Check(new_exc)); exc_info->exc_value = Py_NewRef(new_exc); } op(_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT, (owner -- owner)) { assert(Py_TYPE(owner)->tp_flags & Py_TPFLAGS_INLINE_VALUES); DEOPT_IF(!_PyObject_InlineValues(owner)->valid); } op(_GUARD_KEYS_VERSION, (keys_version/2, owner -- owner)) { PyTypeObject *owner_cls = Py_TYPE(owner); PyHeapTypeObject *owner_heap_type = (PyHeapTypeObject *)owner_cls; DEOPT_IF(owner_heap_type->ht_cached_keys->dk_version != keys_version); } split op(_LOAD_ATTR_METHOD_WITH_VALUES, (descr/4, owner -- attr, self if (1))) { assert(oparg & 1); /* Cached method object */ STAT_INC(LOAD_ATTR, hit); assert(descr != NULL); attr = Py_NewRef(descr); assert(_PyType_HasFeature(Py_TYPE(attr), Py_TPFLAGS_METHOD_DESCRIPTOR)); self = owner; } macro(LOAD_ATTR_METHOD_WITH_VALUES) = unused/1 + _GUARD_TYPE_VERSION + _GUARD_DORV_VALUES_INST_ATTR_FROM_DICT + _GUARD_KEYS_VERSION + _LOAD_ATTR_METHOD_WITH_VALUES; op(_LOAD_ATTR_METHOD_NO_DICT, (descr/4, owner -- attr, self if (1))) { assert(oparg & 1); assert(Py_TYPE(owner)->tp_dictoffset == 0); STAT_INC(LOAD_ATTR, hit); assert(descr != NULL); assert(_PyType_HasFeature(Py_TYPE(descr), Py_TPFLAGS_METHOD_DESCRIPTOR)); attr = Py_NewRef(descr); self = owner; } macro(LOAD_ATTR_METHOD_NO_DICT) = unused/1 + _GUARD_TYPE_VERSION + unused/2 + _LOAD_ATTR_METHOD_NO_DICT; op(_LOAD_ATTR_NONDESCRIPTOR_WITH_VALUES, (descr/4, owner -- attr, unused if (0))) { assert((oparg & 1) == 0); STAT_INC(LOAD_ATTR, hit); assert(descr != NULL); DECREF_INPUTS(); attr = Py_NewRef(descr); } macro(LOAD_ATTR_NONDESCRIPTOR_WITH_VALUES) = unused/1 + _GUARD_TYPE_VERSION + _GUARD_DORV_VALUES_INST_ATTR_FROM_DICT + _GUARD_KEYS_VERSION + _LOAD_ATTR_NONDESCRIPTOR_WITH_VALUES; op(_LOAD_ATTR_NONDESCRIPTOR_NO_DICT, (descr/4, owner -- attr, unused if (0))) { assert((oparg & 1) == 0); assert(Py_TYPE(owner)->tp_dictoffset == 0); STAT_INC(LOAD_ATTR, hit); assert(descr != NULL); DECREF_INPUTS(); attr = Py_NewRef(descr); } macro(LOAD_ATTR_NONDESCRIPTOR_NO_DICT) = unused/1 + _GUARD_TYPE_VERSION + unused/2 + _LOAD_ATTR_NONDESCRIPTOR_NO_DICT; op(_CHECK_ATTR_METHOD_LAZY_DICT, (dictoffset/1, owner -- owner)) { char *ptr = ((char *)owner) + MANAGED_DICT_OFFSET + dictoffset; PyObject *dict = *(PyObject **)ptr; /* This object has a __dict__, just not yet created */ DEOPT_IF(dict != NULL); } op(_LOAD_ATTR_METHOD_LAZY_DICT, (descr/4, owner -- attr, self if (1))) { assert(oparg & 1); STAT_INC(LOAD_ATTR, hit); assert(descr != NULL); assert(_PyType_HasFeature(Py_TYPE(descr), Py_TPFLAGS_METHOD_DESCRIPTOR)); attr = Py_NewRef(descr); self = owner; } macro(LOAD_ATTR_METHOD_LAZY_DICT) = unused/1 + _GUARD_TYPE_VERSION + _CHECK_ATTR_METHOD_LAZY_DICT + unused/1 + _LOAD_ATTR_METHOD_LAZY_DICT; inst(INSTRUMENTED_CALL, (unused/3 -- )) { int is_meth = PEEK(oparg + 1) != NULL; int total_args = oparg + is_meth; PyObject *function = PEEK(oparg + 2); PyObject *arg = total_args == 0 ? &_PyInstrumentation_MISSING : PEEK(total_args); int err = _Py_call_instrumentation_2args( tstate, PY_MONITORING_EVENT_CALL, frame, this_instr, function, arg); ERROR_IF(err, error); PAUSE_ADAPTIVE_COUNTER(this_instr[1].counter); GO_TO_INSTRUCTION(CALL); } // Cache layout: counter/1, func_version/2 // CALL_INTRINSIC_1/2, CALL_KW, and CALL_FUNCTION_EX aren't members! family(CALL, INLINE_CACHE_ENTRIES_CALL) = { CALL_BOUND_METHOD_EXACT_ARGS, CALL_PY_EXACT_ARGS, CALL_TYPE_1, CALL_STR_1, CALL_TUPLE_1, CALL_BUILTIN_CLASS, CALL_BUILTIN_O, CALL_BUILTIN_FAST, CALL_BUILTIN_FAST_WITH_KEYWORDS, CALL_LEN, CALL_ISINSTANCE, CALL_LIST_APPEND, CALL_METHOD_DESCRIPTOR_O, CALL_METHOD_DESCRIPTOR_FAST_WITH_KEYWORDS, CALL_METHOD_DESCRIPTOR_NOARGS, CALL_METHOD_DESCRIPTOR_FAST, CALL_ALLOC_AND_ENTER_INIT, CALL_PY_GENERAL, CALL_BOUND_METHOD_GENERAL, CALL_NON_PY_GENERAL, }; specializing op(_SPECIALIZE_CALL, (counter/1, callable, self_or_null, args[oparg] -- callable, self_or_null, args[oparg])) { #if ENABLE_SPECIALIZATION if (ADAPTIVE_COUNTER_TRIGGERS(counter)) { next_instr = this_instr; _Py_Specialize_Call(callable, next_instr, oparg + (self_or_null != NULL)); DISPATCH_SAME_OPARG(); } STAT_INC(CALL, deferred); ADVANCE_ADAPTIVE_COUNTER(this_instr[1].counter); #endif /* ENABLE_SPECIALIZATION */ } // When calling Python, inline the call using DISPATCH_INLINED(). op(_CALL, (callable, self_or_null, args[oparg] -- res)) { // oparg counts all of the args, but *not* self: int total_args = oparg; if (self_or_null != NULL) { args--; total_args++; } else if (Py_TYPE(callable) == &PyMethod_Type) { args--; total_args++; PyObject *self = ((PyMethodObject *)callable)->im_self; args[0] = Py_NewRef(self); PyObject *method = ((PyMethodObject *)callable)->im_func; args[-1] = Py_NewRef(method); Py_DECREF(callable); callable = method; } // Check if the call can be inlined or not if (Py_TYPE(callable) == &PyFunction_Type && tstate->interp->eval_frame == NULL && ((PyFunctionObject *)callable)->vectorcall == _PyFunction_Vectorcall) { int code_flags = ((PyCodeObject*)PyFunction_GET_CODE(callable))->co_flags; PyObject *locals = code_flags & CO_OPTIMIZED ? NULL : Py_NewRef(PyFunction_GET_GLOBALS(callable)); _PyInterpreterFrame *new_frame = _PyEvalFramePushAndInit( tstate, (PyFunctionObject *)callable, locals, args, total_args, NULL ); // Manipulate stack directly since we leave using DISPATCH_INLINED(). STACK_SHRINK(oparg + 2); // The frame has stolen all the arguments from the stack, // so there is no need to clean them up. if (new_frame == NULL) { ERROR_NO_POP(); } frame->return_offset = (uint16_t)(next_instr - this_instr); DISPATCH_INLINED(new_frame); } /* Callable is not a normal Python function */ res = PyObject_Vectorcall( callable, args, total_args | PY_VECTORCALL_ARGUMENTS_OFFSET, NULL); if (opcode == INSTRUMENTED_CALL) { PyObject *arg = total_args == 0 ? &_PyInstrumentation_MISSING : args[0]; if (res == NULL) { _Py_call_instrumentation_exc2( tstate, PY_MONITORING_EVENT_C_RAISE, frame, this_instr, callable, arg); } else { int err = _Py_call_instrumentation_2args( tstate, PY_MONITORING_EVENT_C_RETURN, frame, this_instr, callable, arg); if (err < 0) { Py_CLEAR(res); } } } assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); Py_DECREF(callable); for (int i = 0; i < total_args; i++) { Py_DECREF(args[i]); } ERROR_IF(res == NULL, error); } op(_CHECK_PERIODIC, (--)) { CHECK_EVAL_BREAKER(); } macro(CALL) = _SPECIALIZE_CALL + unused/2 + _CALL + _CHECK_PERIODIC; op(_PY_FRAME_GENERAL, (callable, self_or_null, args[oparg] -- new_frame: _PyInterpreterFrame*)) { // oparg counts all of the args, but *not* self: int total_args = oparg; if (self_or_null != NULL) { args--; total_args++; } assert(Py_TYPE(callable) == &PyFunction_Type); int code_flags = ((PyCodeObject*)PyFunction_GET_CODE(callable))->co_flags; PyObject *locals = code_flags & CO_OPTIMIZED ? NULL : Py_NewRef(PyFunction_GET_GLOBALS(callable)); new_frame = _PyEvalFramePushAndInit( tstate, (PyFunctionObject *)callable, locals, args, total_args, NULL ); // The frame has stolen all the arguments from the stack, // so there is no need to clean them up. SYNC_SP(); if (new_frame == NULL) { ERROR_NO_POP(); } } op(_CHECK_FUNCTION_VERSION, (func_version/2, callable, unused, unused[oparg] -- callable, unused, unused[oparg])) { EXIT_IF(!PyFunction_Check(callable)); PyFunctionObject *func = (PyFunctionObject *)callable; EXIT_IF(func->func_version != func_version); } macro(CALL_PY_GENERAL) = unused/1 + // Skip over the counter _CHECK_PEP_523 + _CHECK_FUNCTION_VERSION + _PY_FRAME_GENERAL + _SAVE_RETURN_OFFSET + _PUSH_FRAME; op(_CHECK_METHOD_VERSION, (func_version/2, callable, null, unused[oparg] -- callable, null, unused[oparg])) { EXIT_IF(Py_TYPE(callable) != &PyMethod_Type); PyObject *func = ((PyMethodObject *)callable)->im_func; EXIT_IF(!PyFunction_Check(func)); EXIT_IF(((PyFunctionObject *)func)->func_version != func_version); EXIT_IF(null != NULL); } op(_EXPAND_METHOD, (callable, null, unused[oparg] -- method, self, unused[oparg])) { assert(null == NULL); assert(Py_TYPE(callable) == &PyMethod_Type); self = ((PyMethodObject *)callable)->im_self; Py_INCREF(self); stack_pointer[-1 - oparg] = self; // Patch stack as it is used by _PY_FRAME_GENERAL method = ((PyMethodObject *)callable)->im_func; assert(PyFunction_Check(method)); Py_INCREF(method); Py_DECREF(callable); } macro(CALL_BOUND_METHOD_GENERAL) = unused/1 + // Skip over the counter _CHECK_PEP_523 + _CHECK_METHOD_VERSION + _EXPAND_METHOD + _PY_FRAME_GENERAL + _SAVE_RETURN_OFFSET + _PUSH_FRAME; op(_CHECK_IS_NOT_PY_CALLABLE, (callable, unused, unused[oparg] -- callable, unused, unused[oparg])) { EXIT_IF(PyFunction_Check(callable)); EXIT_IF(Py_TYPE(callable) == &PyMethod_Type); } op(_CALL_NON_PY_GENERAL, (callable, self_or_null, args[oparg] -- res)) { #if TIER_ONE assert(opcode != INSTRUMENTED_CALL); #endif int total_args = oparg; if (self_or_null != NULL) { args--; total_args++; } /* Callable is not a normal Python function */ res = PyObject_Vectorcall( callable, args, total_args | PY_VECTORCALL_ARGUMENTS_OFFSET, NULL); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); Py_DECREF(callable); for (int i = 0; i < total_args; i++) { Py_DECREF(args[i]); } ERROR_IF(res == NULL, error); } macro(CALL_NON_PY_GENERAL) = unused/1 + // Skip over the counter unused/2 + _CHECK_IS_NOT_PY_CALLABLE + _CALL_NON_PY_GENERAL + _CHECK_PERIODIC; op(_CHECK_CALL_BOUND_METHOD_EXACT_ARGS, (callable, null, unused[oparg] -- callable, null, unused[oparg])) { EXIT_IF(null != NULL); EXIT_IF(Py_TYPE(callable) != &PyMethod_Type); } op(_INIT_CALL_BOUND_METHOD_EXACT_ARGS, (callable, unused, unused[oparg] -- func, self, unused[oparg])) { STAT_INC(CALL, hit); self = Py_NewRef(((PyMethodObject *)callable)->im_self); stack_pointer[-1 - oparg] = self; // Patch stack as it is used by _INIT_CALL_PY_EXACT_ARGS func = Py_NewRef(((PyMethodObject *)callable)->im_func); stack_pointer[-2 - oparg] = func; // This is used by CALL, upon deoptimization Py_DECREF(callable); } op(_CHECK_PEP_523, (--)) { DEOPT_IF(tstate->interp->eval_frame); } op(_CHECK_FUNCTION_EXACT_ARGS, (func_version/2, callable, self_or_null, unused[oparg] -- callable, self_or_null, unused[oparg])) { EXIT_IF(!PyFunction_Check(callable)); PyFunctionObject *func = (PyFunctionObject *)callable; EXIT_IF(func->func_version != func_version); PyCodeObject *code = (PyCodeObject *)func->func_code; EXIT_IF(code->co_argcount != oparg + (self_or_null != NULL)); } op(_CHECK_STACK_SPACE, (callable, unused, unused[oparg] -- callable, unused, unused[oparg])) { PyFunctionObject *func = (PyFunctionObject *)callable; PyCodeObject *code = (PyCodeObject *)func->func_code; DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize)); DEOPT_IF(tstate->py_recursion_remaining <= 1); } replicate(5) pure op(_INIT_CALL_PY_EXACT_ARGS, (callable, self_or_null, args[oparg] -- new_frame: _PyInterpreterFrame*)) { int has_self = (self_or_null != NULL); STAT_INC(CALL, hit); PyFunctionObject *func = (PyFunctionObject *)callable; new_frame = _PyFrame_PushUnchecked(tstate, func, oparg + has_self); PyObject **first_non_self_local = new_frame->localsplus + has_self; new_frame->localsplus[0] = self_or_null; for (int i = 0; i < oparg; i++) { first_non_self_local[i] = args[i]; } } op(_PUSH_FRAME, (new_frame: _PyInterpreterFrame* -- )) { // Write it out explicitly because it's subtly different. // Eventually this should be the only occurrence of this code. assert(tstate->interp->eval_frame == NULL); SYNC_SP(); _PyFrame_SetStackPointer(frame, stack_pointer); new_frame->previous = frame; CALL_STAT_INC(inlined_py_calls); frame = tstate->current_frame = new_frame; tstate->py_recursion_remaining--; LOAD_SP(); LOAD_IP(0); LLTRACE_RESUME_FRAME(); } macro(CALL_BOUND_METHOD_EXACT_ARGS) = unused/1 + // Skip over the counter _CHECK_PEP_523 + _CHECK_CALL_BOUND_METHOD_EXACT_ARGS + _INIT_CALL_BOUND_METHOD_EXACT_ARGS + _CHECK_FUNCTION_EXACT_ARGS + _CHECK_STACK_SPACE + _INIT_CALL_PY_EXACT_ARGS + _SAVE_RETURN_OFFSET + _PUSH_FRAME; macro(CALL_PY_EXACT_ARGS) = unused/1 + // Skip over the counter _CHECK_PEP_523 + _CHECK_FUNCTION_EXACT_ARGS + _CHECK_STACK_SPACE + _INIT_CALL_PY_EXACT_ARGS + _SAVE_RETURN_OFFSET + _PUSH_FRAME; inst(CALL_TYPE_1, (unused/1, unused/2, callable, null, arg -- res)) { assert(oparg == 1); DEOPT_IF(null != NULL); DEOPT_IF(callable != (PyObject *)&PyType_Type); STAT_INC(CALL, hit); res = Py_NewRef(Py_TYPE(arg)); Py_DECREF(arg); } op(_CALL_STR_1, (callable, null, arg -- res)) { assert(oparg == 1); DEOPT_IF(null != NULL); DEOPT_IF(callable != (PyObject *)&PyUnicode_Type); STAT_INC(CALL, hit); res = PyObject_Str(arg); Py_DECREF(arg); ERROR_IF(res == NULL, error); } macro(CALL_STR_1) = unused/1 + unused/2 + _CALL_STR_1 + _CHECK_PERIODIC; op(_CALL_TUPLE_1, (callable, null, arg -- res)) { assert(oparg == 1); DEOPT_IF(null != NULL); DEOPT_IF(callable != (PyObject *)&PyTuple_Type); STAT_INC(CALL, hit); res = PySequence_Tuple(arg); Py_DECREF(arg); ERROR_IF(res == NULL, error); } macro(CALL_TUPLE_1) = unused/1 + unused/2 + _CALL_TUPLE_1 + _CHECK_PERIODIC; inst(CALL_ALLOC_AND_ENTER_INIT, (unused/1, unused/2, callable, null, args[oparg] -- unused)) { /* This instruction does the following: * 1. Creates the object (by calling ``object.__new__``) * 2. Pushes a shim frame to the frame stack (to cleanup after ``__init__``) * 3. Pushes the frame for ``__init__`` to the frame stack * */ _PyCallCache *cache = (_PyCallCache *)&this_instr[1]; DEOPT_IF(null != NULL); DEOPT_IF(!PyType_Check(callable)); PyTypeObject *tp = (PyTypeObject *)callable; DEOPT_IF(tp->tp_version_tag != read_u32(cache->func_version)); assert(tp->tp_flags & Py_TPFLAGS_INLINE_VALUES); PyHeapTypeObject *cls = (PyHeapTypeObject *)callable; PyFunctionObject *init = (PyFunctionObject *)cls->_spec_cache.init; PyCodeObject *code = (PyCodeObject *)init->func_code; DEOPT_IF(code->co_argcount != oparg+1); DEOPT_IF((code->co_flags & (CO_VARKEYWORDS | CO_VARARGS | CO_OPTIMIZED)) != CO_OPTIMIZED); DEOPT_IF(code->co_kwonlyargcount); DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize + _Py_InitCleanup.co_framesize)); STAT_INC(CALL, hit); PyObject *self = _PyType_NewManagedObject(tp); if (self == NULL) { ERROR_NO_POP(); } Py_DECREF(tp); _PyInterpreterFrame *shim = _PyFrame_PushTrampolineUnchecked( tstate, (PyCodeObject *)&_Py_InitCleanup, 1); assert(_PyCode_CODE((PyCodeObject *)shim->f_executable)[0].op.code == EXIT_INIT_CHECK); /* Push self onto stack of shim */ Py_INCREF(self); shim->localsplus[0] = self; Py_INCREF(init); _PyInterpreterFrame *init_frame = _PyFrame_PushUnchecked(tstate, init, oparg+1); /* Copy self followed by args to __init__ frame */ init_frame->localsplus[0] = self; for (int i = 0; i < oparg; i++) { init_frame->localsplus[i+1] = args[i]; } frame->return_offset = (uint16_t)(next_instr - this_instr); STACK_SHRINK(oparg+2); _PyFrame_SetStackPointer(frame, stack_pointer); /* Link frames */ init_frame->previous = shim; shim->previous = frame; frame = tstate->current_frame = init_frame; CALL_STAT_INC(inlined_py_calls); /* Account for pushing the extra frame. * We don't check recursion depth here, * as it will be checked after start_frame */ tstate->py_recursion_remaining--; goto start_frame; } inst(EXIT_INIT_CHECK, (should_be_none -- )) { assert(STACK_LEVEL() == 2); if (should_be_none != Py_None) { PyErr_Format(PyExc_TypeError, "__init__() should return None, not '%.200s'", Py_TYPE(should_be_none)->tp_name); ERROR_NO_POP(); } } op(_CALL_BUILTIN_CLASS, (callable, self_or_null, args[oparg] -- res)) { int total_args = oparg; if (self_or_null != NULL) { args--; total_args++; } DEOPT_IF(!PyType_Check(callable)); PyTypeObject *tp = (PyTypeObject *)callable; DEOPT_IF(tp->tp_vectorcall == NULL); STAT_INC(CALL, hit); res = tp->tp_vectorcall((PyObject *)tp, args, total_args, NULL); /* Free the arguments. */ for (int i = 0; i < total_args; i++) { Py_DECREF(args[i]); } Py_DECREF(tp); ERROR_IF(res == NULL, error); } macro(CALL_BUILTIN_CLASS) = unused/1 + unused/2 + _CALL_BUILTIN_CLASS + _CHECK_PERIODIC; op(_CALL_BUILTIN_O, (callable, self_or_null, args[oparg] -- res)) { /* Builtin METH_O functions */ int total_args = oparg; if (self_or_null != NULL) { args--; total_args++; } DEOPT_IF(total_args != 1); DEOPT_IF(!PyCFunction_CheckExact(callable)); DEOPT_IF(PyCFunction_GET_FLAGS(callable) != METH_O); // CPython promises to check all non-vectorcall function calls. DEOPT_IF(tstate->c_recursion_remaining <= 0); STAT_INC(CALL, hit); PyCFunction cfunc = PyCFunction_GET_FUNCTION(callable); PyObject *arg = args[0]; _Py_EnterRecursiveCallTstateUnchecked(tstate); res = _PyCFunction_TrampolineCall(cfunc, PyCFunction_GET_SELF(callable), arg); _Py_LeaveRecursiveCallTstate(tstate); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); Py_DECREF(arg); Py_DECREF(callable); ERROR_IF(res == NULL, error); } macro(CALL_BUILTIN_O) = unused/1 + unused/2 + _CALL_BUILTIN_O + _CHECK_PERIODIC; op(_CALL_BUILTIN_FAST, (callable, self_or_null, args[oparg] -- res)) { /* Builtin METH_FASTCALL functions, without keywords */ int total_args = oparg; if (self_or_null != NULL) { args--; total_args++; } DEOPT_IF(!PyCFunction_CheckExact(callable)); DEOPT_IF(PyCFunction_GET_FLAGS(callable) != METH_FASTCALL); STAT_INC(CALL, hit); PyCFunction cfunc = PyCFunction_GET_FUNCTION(callable); /* res = func(self, args, nargs) */ res = ((PyCFunctionFast)(void(*)(void))cfunc)( PyCFunction_GET_SELF(callable), args, total_args); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); /* Free the arguments. */ for (int i = 0; i < total_args; i++) { Py_DECREF(args[i]); } Py_DECREF(callable); ERROR_IF(res == NULL, error); } macro(CALL_BUILTIN_FAST) = unused/1 + unused/2 + _CALL_BUILTIN_FAST + _CHECK_PERIODIC; op(_CALL_BUILTIN_FAST_WITH_KEYWORDS, (callable, self_or_null, args[oparg] -- res)) { /* Builtin METH_FASTCALL | METH_KEYWORDS functions */ int total_args = oparg; if (self_or_null != NULL) { args--; total_args++; } DEOPT_IF(!PyCFunction_CheckExact(callable)); DEOPT_IF(PyCFunction_GET_FLAGS(callable) != (METH_FASTCALL | METH_KEYWORDS)); STAT_INC(CALL, hit); /* res = func(self, args, nargs, kwnames) */ PyCFunctionFastWithKeywords cfunc = (PyCFunctionFastWithKeywords)(void(*)(void)) PyCFunction_GET_FUNCTION(callable); res = cfunc(PyCFunction_GET_SELF(callable), args, total_args, NULL); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); /* Free the arguments. */ for (int i = 0; i < total_args; i++) { Py_DECREF(args[i]); } Py_DECREF(callable); ERROR_IF(res == NULL, error); } macro(CALL_BUILTIN_FAST_WITH_KEYWORDS) = unused/1 + unused/2 + _CALL_BUILTIN_FAST_WITH_KEYWORDS + _CHECK_PERIODIC; inst(CALL_LEN, (unused/1, unused/2, callable, self_or_null, args[oparg] -- res)) { /* len(o) */ int total_args = oparg; if (self_or_null != NULL) { args--; total_args++; } DEOPT_IF(total_args != 1); PyInterpreterState *interp = tstate->interp; DEOPT_IF(callable != interp->callable_cache.len); STAT_INC(CALL, hit); PyObject *arg = args[0]; Py_ssize_t len_i = PyObject_Length(arg); if (len_i < 0) { ERROR_NO_POP(); } res = PyLong_FromSsize_t(len_i); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); if (res == NULL) { GOTO_ERROR(error); } Py_DECREF(callable); Py_DECREF(arg); } inst(CALL_ISINSTANCE, (unused/1, unused/2, callable, self_or_null, args[oparg] -- res)) { /* isinstance(o, o2) */ int total_args = oparg; if (self_or_null != NULL) { args--; total_args++; } DEOPT_IF(total_args != 2); PyInterpreterState *interp = tstate->interp; DEOPT_IF(callable != interp->callable_cache.isinstance); STAT_INC(CALL, hit); PyObject *cls = args[1]; PyObject *inst = args[0]; int retval = PyObject_IsInstance(inst, cls); if (retval < 0) { ERROR_NO_POP(); } res = PyBool_FromLong(retval); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); if (res == NULL) { GOTO_ERROR(error); } Py_DECREF(inst); Py_DECREF(cls); Py_DECREF(callable); } // This is secretly a super-instruction tier1 inst(CALL_LIST_APPEND, (unused/1, unused/2, callable, self, arg -- unused)) { assert(oparg == 1); PyInterpreterState *interp = tstate->interp; DEOPT_IF(callable != interp->callable_cache.list_append); assert(self != NULL); DEOPT_IF(!PyList_Check(self)); STAT_INC(CALL, hit); if (_PyList_AppendTakeRef((PyListObject *)self, arg) < 0) { goto pop_1_error; // Since arg is DECREF'ed already } Py_DECREF(self); Py_DECREF(callable); STACK_SHRINK(3); // Skip POP_TOP assert(next_instr->op.code == POP_TOP); SKIP_OVER(1); DISPATCH(); } op(_CALL_METHOD_DESCRIPTOR_O, (callable, self_or_null, args[oparg] -- res)) { int total_args = oparg; if (self_or_null != NULL) { args--; total_args++; } PyMethodDescrObject *method = (PyMethodDescrObject *)callable; DEOPT_IF(total_args != 2); DEOPT_IF(!Py_IS_TYPE(method, &PyMethodDescr_Type)); PyMethodDef *meth = method->d_method; DEOPT_IF(meth->ml_flags != METH_O); // CPython promises to check all non-vectorcall function calls. DEOPT_IF(tstate->c_recursion_remaining <= 0); PyObject *arg = args[1]; PyObject *self = args[0]; DEOPT_IF(!Py_IS_TYPE(self, method->d_common.d_type)); STAT_INC(CALL, hit); PyCFunction cfunc = meth->ml_meth; _Py_EnterRecursiveCallTstateUnchecked(tstate); res = _PyCFunction_TrampolineCall(cfunc, self, arg); _Py_LeaveRecursiveCallTstate(tstate); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); Py_DECREF(self); Py_DECREF(arg); Py_DECREF(callable); ERROR_IF(res == NULL, error); } macro(CALL_METHOD_DESCRIPTOR_O) = unused/1 + unused/2 + _CALL_METHOD_DESCRIPTOR_O + _CHECK_PERIODIC; op(_CALL_METHOD_DESCRIPTOR_FAST_WITH_KEYWORDS, (callable, self_or_null, args[oparg] -- res)) { int total_args = oparg; if (self_or_null != NULL) { args--; total_args++; } PyMethodDescrObject *method = (PyMethodDescrObject *)callable; DEOPT_IF(!Py_IS_TYPE(method, &PyMethodDescr_Type)); PyMethodDef *meth = method->d_method; DEOPT_IF(meth->ml_flags != (METH_FASTCALL|METH_KEYWORDS)); PyTypeObject *d_type = method->d_common.d_type; PyObject *self = args[0]; DEOPT_IF(!Py_IS_TYPE(self, d_type)); STAT_INC(CALL, hit); int nargs = total_args - 1; PyCFunctionFastWithKeywords cfunc = (PyCFunctionFastWithKeywords)(void(*)(void))meth->ml_meth; res = cfunc(self, args + 1, nargs, NULL); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); /* Free the arguments. */ for (int i = 0; i < total_args; i++) { Py_DECREF(args[i]); } Py_DECREF(callable); ERROR_IF(res == NULL, error); } macro(CALL_METHOD_DESCRIPTOR_FAST_WITH_KEYWORDS) = unused/1 + unused/2 + _CALL_METHOD_DESCRIPTOR_FAST_WITH_KEYWORDS + _CHECK_PERIODIC; op(_CALL_METHOD_DESCRIPTOR_NOARGS, (callable, self_or_null, args[oparg] -- res)) { assert(oparg == 0 || oparg == 1); int total_args = oparg; if (self_or_null != NULL) { args--; total_args++; } DEOPT_IF(total_args != 1); PyMethodDescrObject *method = (PyMethodDescrObject *)callable; DEOPT_IF(!Py_IS_TYPE(method, &PyMethodDescr_Type)); PyMethodDef *meth = method->d_method; PyObject *self = args[0]; DEOPT_IF(!Py_IS_TYPE(self, method->d_common.d_type)); DEOPT_IF(meth->ml_flags != METH_NOARGS); // CPython promises to check all non-vectorcall function calls. DEOPT_IF(tstate->c_recursion_remaining <= 0); STAT_INC(CALL, hit); PyCFunction cfunc = meth->ml_meth; _Py_EnterRecursiveCallTstateUnchecked(tstate); res = _PyCFunction_TrampolineCall(cfunc, self, NULL); _Py_LeaveRecursiveCallTstate(tstate); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); Py_DECREF(self); Py_DECREF(callable); ERROR_IF(res == NULL, error); } macro(CALL_METHOD_DESCRIPTOR_NOARGS) = unused/1 + unused/2 + _CALL_METHOD_DESCRIPTOR_NOARGS + _CHECK_PERIODIC; op(_CALL_METHOD_DESCRIPTOR_FAST, (callable, self_or_null, args[oparg] -- res)) { int total_args = oparg; if (self_or_null != NULL) { args--; total_args++; } PyMethodDescrObject *method = (PyMethodDescrObject *)callable; /* Builtin METH_FASTCALL methods, without keywords */ DEOPT_IF(!Py_IS_TYPE(method, &PyMethodDescr_Type)); PyMethodDef *meth = method->d_method; DEOPT_IF(meth->ml_flags != METH_FASTCALL); PyObject *self = args[0]; DEOPT_IF(!Py_IS_TYPE(self, method->d_common.d_type)); STAT_INC(CALL, hit); PyCFunctionFast cfunc = (PyCFunctionFast)(void(*)(void))meth->ml_meth; int nargs = total_args - 1; res = cfunc(self, args + 1, nargs); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); /* Clear the stack of the arguments. */ for (int i = 0; i < total_args; i++) { Py_DECREF(args[i]); } Py_DECREF(callable); ERROR_IF(res == NULL, error); } macro(CALL_METHOD_DESCRIPTOR_FAST) = unused/1 + unused/2 + _CALL_METHOD_DESCRIPTOR_FAST + _CHECK_PERIODIC; inst(INSTRUMENTED_CALL_KW, ( -- )) { int is_meth = PEEK(oparg + 2) != NULL; int total_args = oparg + is_meth; PyObject *function = PEEK(oparg + 3); PyObject *arg = total_args == 0 ? &_PyInstrumentation_MISSING : PEEK(total_args + 1); int err = _Py_call_instrumentation_2args( tstate, PY_MONITORING_EVENT_CALL, frame, this_instr, function, arg); ERROR_IF(err, error); GO_TO_INSTRUCTION(CALL_KW); } inst(CALL_KW, (callable, self_or_null, args[oparg], kwnames -- res)) { // oparg counts all of the args, but *not* self: int total_args = oparg; if (self_or_null != NULL) { args--; total_args++; } if (self_or_null == NULL && Py_TYPE(callable) == &PyMethod_Type) { args--; total_args++; PyObject *self = ((PyMethodObject *)callable)->im_self; args[0] = Py_NewRef(self); PyObject *method = ((PyMethodObject *)callable)->im_func; args[-1] = Py_NewRef(method); Py_DECREF(callable); callable = method; } int positional_args = total_args - (int)PyTuple_GET_SIZE(kwnames); // Check if the call can be inlined or not if (Py_TYPE(callable) == &PyFunction_Type && tstate->interp->eval_frame == NULL && ((PyFunctionObject *)callable)->vectorcall == _PyFunction_Vectorcall) { int code_flags = ((PyCodeObject*)PyFunction_GET_CODE(callable))->co_flags; PyObject *locals = code_flags & CO_OPTIMIZED ? NULL : Py_NewRef(PyFunction_GET_GLOBALS(callable)); _PyInterpreterFrame *new_frame = _PyEvalFramePushAndInit( tstate, (PyFunctionObject *)callable, locals, args, positional_args, kwnames ); Py_DECREF(kwnames); // Manipulate stack directly since we leave using DISPATCH_INLINED(). STACK_SHRINK(oparg + 3); // The frame has stolen all the arguments from the stack, // so there is no need to clean them up. if (new_frame == NULL) { ERROR_NO_POP(); } assert(next_instr - this_instr == 1); frame->return_offset = 1; DISPATCH_INLINED(new_frame); } /* Callable is not a normal Python function */ res = PyObject_Vectorcall( callable, args, positional_args | PY_VECTORCALL_ARGUMENTS_OFFSET, kwnames); if (opcode == INSTRUMENTED_CALL_KW) { PyObject *arg = total_args == 0 ? &_PyInstrumentation_MISSING : args[0]; if (res == NULL) { _Py_call_instrumentation_exc2( tstate, PY_MONITORING_EVENT_C_RAISE, frame, this_instr, callable, arg); } else { int err = _Py_call_instrumentation_2args( tstate, PY_MONITORING_EVENT_C_RETURN, frame, this_instr, callable, arg); if (err < 0) { Py_CLEAR(res); } } } Py_DECREF(kwnames); assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL)); Py_DECREF(callable); for (int i = 0; i < total_args; i++) { Py_DECREF(args[i]); } ERROR_IF(res == NULL, error); CHECK_EVAL_BREAKER(); } inst(INSTRUMENTED_CALL_FUNCTION_EX, ( -- )) { GO_TO_INSTRUCTION(CALL_FUNCTION_EX); } inst(CALL_FUNCTION_EX, (func, unused, callargs, kwargs if (oparg & 1) -- result)) { // DICT_MERGE is called before this opcode if there are kwargs. // It converts all dict subtypes in kwargs into regular dicts. assert(kwargs == NULL || PyDict_CheckExact(kwargs)); if (!PyTuple_CheckExact(callargs)) { if (check_args_iterable(tstate, func, callargs) < 0) { ERROR_NO_POP(); } PyObject *tuple = PySequence_Tuple(callargs); if (tuple == NULL) { ERROR_NO_POP(); } Py_SETREF(callargs, tuple); } assert(PyTuple_CheckExact(callargs)); EVAL_CALL_STAT_INC_IF_FUNCTION(EVAL_CALL_FUNCTION_EX, func); if (opcode == INSTRUMENTED_CALL_FUNCTION_EX) { PyObject *arg = PyTuple_GET_SIZE(callargs) > 0 ? PyTuple_GET_ITEM(callargs, 0) : &_PyInstrumentation_MISSING; int err = _Py_call_instrumentation_2args( tstate, PY_MONITORING_EVENT_CALL, frame, this_instr, func, arg); if (err) ERROR_NO_POP(); result = PyObject_Call(func, callargs, kwargs); if (!PyFunction_Check(func) && !PyMethod_Check(func)) { if (result == NULL) { _Py_call_instrumentation_exc2( tstate, PY_MONITORING_EVENT_C_RAISE, frame, this_instr, func, arg); } else { int err = _Py_call_instrumentation_2args( tstate, PY_MONITORING_EVENT_C_RETURN, frame, this_instr, func, arg); if (err < 0) { Py_CLEAR(result); } } } } else { if (Py_TYPE(func) == &PyFunction_Type && tstate->interp->eval_frame == NULL && ((PyFunctionObject *)func)->vectorcall == _PyFunction_Vectorcall) { assert(PyTuple_CheckExact(callargs)); Py_ssize_t nargs = PyTuple_GET_SIZE(callargs); int code_flags = ((PyCodeObject *)PyFunction_GET_CODE(func))->co_flags; PyObject *locals = code_flags & CO_OPTIMIZED ? NULL : Py_NewRef(PyFunction_GET_GLOBALS(func)); _PyInterpreterFrame *new_frame = _PyEvalFramePushAndInit_Ex(tstate, (PyFunctionObject *)func, locals, nargs, callargs, kwargs); // Need to manually shrink the stack since we exit with DISPATCH_INLINED. STACK_SHRINK(oparg + 3); if (new_frame == NULL) { ERROR_NO_POP(); } assert(next_instr - this_instr == 1); frame->return_offset = 1; DISPATCH_INLINED(new_frame); } result = PyObject_Call(func, callargs, kwargs); } DECREF_INPUTS(); assert(PEEK(2 + (oparg & 1)) == NULL); ERROR_IF(result == NULL, error); CHECK_EVAL_BREAKER(); } inst(MAKE_FUNCTION, (codeobj -- func)) { PyFunctionObject *func_obj = (PyFunctionObject *) PyFunction_New(codeobj, GLOBALS()); Py_DECREF(codeobj); if (func_obj == NULL) { ERROR_NO_POP(); } _PyFunction_SetVersion( func_obj, ((PyCodeObject *)codeobj)->co_version); func = (PyObject *)func_obj; } inst(SET_FUNCTION_ATTRIBUTE, (attr, func -- func)) { assert(PyFunction_Check(func)); PyFunctionObject *func_obj = (PyFunctionObject *)func; switch(oparg) { case MAKE_FUNCTION_CLOSURE: assert(func_obj->func_closure == NULL); func_obj->func_closure = attr; break; case MAKE_FUNCTION_ANNOTATIONS: assert(func_obj->func_annotations == NULL); func_obj->func_annotations = attr; break; case MAKE_FUNCTION_KWDEFAULTS: assert(PyDict_CheckExact(attr)); assert(func_obj->func_kwdefaults == NULL); func_obj->func_kwdefaults = attr; break; case MAKE_FUNCTION_DEFAULTS: assert(PyTuple_CheckExact(attr)); assert(func_obj->func_defaults == NULL); func_obj->func_defaults = attr; break; default: Py_UNREACHABLE(); } } inst(RETURN_GENERATOR, (-- res)) { assert(PyFunction_Check(frame->f_funcobj)); PyFunctionObject *func = (PyFunctionObject *)frame->f_funcobj; PyGenObject *gen = (PyGenObject *)_Py_MakeCoro(func); if (gen == NULL) { ERROR_NO_POP(); } assert(EMPTY()); _PyFrame_SetStackPointer(frame, stack_pointer); _PyInterpreterFrame *gen_frame = (_PyInterpreterFrame *)gen->gi_iframe; frame->instr_ptr++; _PyFrame_Copy(frame, gen_frame); assert(frame->frame_obj == NULL); gen->gi_frame_state = FRAME_CREATED; gen_frame->owner = FRAME_OWNED_BY_GENERATOR; _Py_LeaveRecursiveCallPy(tstate); res = (PyObject *)gen; _PyInterpreterFrame *prev = frame->previous; _PyThreadState_PopFrame(tstate, frame); frame = tstate->current_frame = prev; LOAD_IP(frame->return_offset); LOAD_SP(); LLTRACE_RESUME_FRAME(); } inst(BUILD_SLICE, (start, stop, step if (oparg == 3) -- slice)) { slice = PySlice_New(start, stop, step); DECREF_INPUTS(); ERROR_IF(slice == NULL, error); } inst(CONVERT_VALUE, (value -- result)) { conversion_func conv_fn; assert(oparg >= FVC_STR && oparg <= FVC_ASCII); conv_fn = _PyEval_ConversionFuncs[oparg]; result = conv_fn(value); Py_DECREF(value); ERROR_IF(result == NULL, error); } inst(FORMAT_SIMPLE, (value -- res)) { /* If value is a unicode object, then we know the result * of format(value) is value itself. */ if (!PyUnicode_CheckExact(value)) { res = PyObject_Format(value, NULL); Py_DECREF(value); ERROR_IF(res == NULL, error); } else { res = value; } } inst(FORMAT_WITH_SPEC, (value, fmt_spec -- res)) { res = PyObject_Format(value, fmt_spec); Py_DECREF(value); Py_DECREF(fmt_spec); ERROR_IF(res == NULL, error); } pure inst(COPY, (bottom, unused[oparg-1] -- bottom, unused[oparg-1], top)) { assert(oparg > 0); top = Py_NewRef(bottom); } specializing op(_SPECIALIZE_BINARY_OP, (counter/1, lhs, rhs -- lhs, rhs)) { #if ENABLE_SPECIALIZATION if (ADAPTIVE_COUNTER_TRIGGERS(counter)) { next_instr = this_instr; _Py_Specialize_BinaryOp(lhs, rhs, next_instr, oparg, LOCALS_ARRAY); DISPATCH_SAME_OPARG(); } STAT_INC(BINARY_OP, deferred); ADVANCE_ADAPTIVE_COUNTER(this_instr[1].counter); #endif /* ENABLE_SPECIALIZATION */ assert(NB_ADD <= oparg); assert(oparg <= NB_INPLACE_XOR); } op(_BINARY_OP, (lhs, rhs -- res)) { assert(_PyEval_BinaryOps[oparg]); res = _PyEval_BinaryOps[oparg](lhs, rhs); DECREF_INPUTS(); ERROR_IF(res == NULL, error); } macro(BINARY_OP) = _SPECIALIZE_BINARY_OP + _BINARY_OP; pure inst(SWAP, (bottom, unused[oparg-2], top -- top, unused[oparg-2], bottom)) { assert(oparg >= 2); } inst(INSTRUMENTED_INSTRUCTION, ( -- )) { int next_opcode = _Py_call_instrumentation_instruction( tstate, frame, this_instr); ERROR_IF(next_opcode < 0, error); next_instr = this_instr; if (_PyOpcode_Caches[next_opcode]) { PAUSE_ADAPTIVE_COUNTER(next_instr[1].counter); } assert(next_opcode > 0 && next_opcode < 256); opcode = next_opcode; DISPATCH_GOTO(); } inst(INSTRUMENTED_JUMP_FORWARD, ( -- )) { INSTRUMENTED_JUMP(this_instr, next_instr + oparg, PY_MONITORING_EVENT_JUMP); } inst(INSTRUMENTED_JUMP_BACKWARD, (unused/1 -- )) { CHECK_EVAL_BREAKER(); INSTRUMENTED_JUMP(this_instr, next_instr - oparg, PY_MONITORING_EVENT_JUMP); } inst(INSTRUMENTED_POP_JUMP_IF_TRUE, (unused/1 -- )) { PyObject *cond = POP(); assert(PyBool_Check(cond)); int flag = Py_IsTrue(cond); int offset = flag * oparg; #if ENABLE_SPECIALIZATION this_instr[1].cache = (this_instr[1].cache << 1) | flag; #endif INSTRUMENTED_JUMP(this_instr, next_instr + offset, PY_MONITORING_EVENT_BRANCH); } inst(INSTRUMENTED_POP_JUMP_IF_FALSE, (unused/1 -- )) { PyObject *cond = POP(); assert(PyBool_Check(cond)); int flag = Py_IsFalse(cond); int offset = flag * oparg; #if ENABLE_SPECIALIZATION this_instr[1].cache = (this_instr[1].cache << 1) | flag; #endif INSTRUMENTED_JUMP(this_instr, next_instr + offset, PY_MONITORING_EVENT_BRANCH); } inst(INSTRUMENTED_POP_JUMP_IF_NONE, (unused/1 -- )) { PyObject *value = POP(); int flag = Py_IsNone(value); int offset; if (flag) { offset = oparg; } else { Py_DECREF(value); offset = 0; } #if ENABLE_SPECIALIZATION this_instr[1].cache = (this_instr[1].cache << 1) | flag; #endif INSTRUMENTED_JUMP(this_instr, next_instr + offset, PY_MONITORING_EVENT_BRANCH); } inst(INSTRUMENTED_POP_JUMP_IF_NOT_NONE, (unused/1 -- )) { PyObject *value = POP(); int offset; int nflag = Py_IsNone(value); if (nflag) { offset = 0; } else { Py_DECREF(value); offset = oparg; } #if ENABLE_SPECIALIZATION this_instr[1].cache = (this_instr[1].cache << 1) | !nflag; #endif INSTRUMENTED_JUMP(this_instr, next_instr + offset, PY_MONITORING_EVENT_BRANCH); } tier1 inst(EXTENDED_ARG, ( -- )) { assert(oparg); opcode = next_instr->op.code; oparg = oparg << 8 | next_instr->op.arg; PRE_DISPATCH_GOTO(); DISPATCH_GOTO(); } tier1 inst(CACHE, (--)) { assert(0 && "Executing a cache."); Py_FatalError("Executing a cache."); } tier1 inst(RESERVED, (--)) { assert(0 && "Executing RESERVED instruction."); Py_FatalError("Executing RESERVED instruction."); } ///////// Tier-2 only opcodes ///////// op (_GUARD_IS_TRUE_POP, (flag -- )) { SYNC_SP(); EXIT_IF(!Py_IsTrue(flag)); assert(Py_IsTrue(flag)); } op (_GUARD_IS_FALSE_POP, (flag -- )) { SYNC_SP(); EXIT_IF(!Py_IsFalse(flag)); assert(Py_IsFalse(flag)); } op (_GUARD_IS_NONE_POP, (val -- )) { SYNC_SP(); if (!Py_IsNone(val)) { Py_DECREF(val); EXIT_IF(1); } } op (_GUARD_IS_NOT_NONE_POP, (val -- )) { SYNC_SP(); EXIT_IF(Py_IsNone(val)); Py_DECREF(val); } op(_JUMP_TO_TOP, (--)) { #ifndef _Py_JIT next_uop = ¤t_executor->trace[1]; #endif } tier2 op(_SET_IP, (instr_ptr/4 --)) { frame->instr_ptr = (_Py_CODEUNIT *)instr_ptr; } tier2 op(_CHECK_STACK_SPACE_OPERAND, (framesize/2 --)) { assert(framesize <= INT_MAX); DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, framesize)); DEOPT_IF(tstate->py_recursion_remaining <= 1); } op(_SAVE_RETURN_OFFSET, (--)) { #if TIER_ONE frame->return_offset = (uint16_t)(next_instr - this_instr); #endif #if TIER_TWO frame->return_offset = oparg; #endif } tier2 op(_EXIT_TRACE, (--)) { EXIT_TO_TRACE(); } tier2 op(_CHECK_VALIDITY, (--)) { DEOPT_IF(!current_executor->vm_data.valid); } tier2 pure op(_LOAD_CONST_INLINE, (ptr/4 -- value)) { value = Py_NewRef(ptr); } tier2 pure op(_LOAD_CONST_INLINE_BORROW, (ptr/4 -- value)) { value = ptr; } tier2 pure op (_POP_TOP_LOAD_CONST_INLINE_BORROW, (ptr/4, pop -- value)) { Py_DECREF(pop); value = ptr; } tier2 pure op(_LOAD_CONST_INLINE_WITH_NULL, (ptr/4 -- value, null)) { value = Py_NewRef(ptr); null = NULL; } tier2 pure op(_LOAD_CONST_INLINE_BORROW_WITH_NULL, (ptr/4 -- value, null)) { value = ptr; null = NULL; } tier2 op(_CHECK_FUNCTION, (func_version/2 -- )) { assert(PyFunction_Check(frame->f_funcobj)); DEOPT_IF(((PyFunctionObject *)frame->f_funcobj)->func_version != func_version); } /* Internal -- for testing executors */ op(_INTERNAL_INCREMENT_OPT_COUNTER, (opt --)) { _PyCounterOptimizerObject *exe = (_PyCounterOptimizerObject *)opt; exe->count++; } /* Only used for handling cold side exits, should never appear in * a normal trace or as part of an instruction. */ tier2 op(_COLD_EXIT, (--)) { _PyExecutorObject *previous = (_PyExecutorObject *)tstate->previous_executor; _PyExitData *exit = &previous->exits[oparg]; PyCodeObject *code = _PyFrame_GetCode(frame); _Py_CODEUNIT *target = _PyCode_CODE(code) + exit->target; _Py_BackoffCounter temperature = exit->temperature; if (!backoff_counter_triggers(temperature)) { exit->temperature = advance_backoff_counter(temperature); GOTO_TIER_ONE(target); } _PyExecutorObject *executor; if (target->op.code == ENTER_EXECUTOR) { executor = code->co_executors->executors[target->op.arg]; Py_INCREF(executor); } else { int optimized = _PyOptimizer_Optimize(frame, target, stack_pointer, &executor); if (optimized <= 0) { exit->temperature = restart_backoff_counter(temperature); if (optimized < 0) { Py_DECREF(previous); tstate->previous_executor = Py_None; GOTO_UNWIND(); } GOTO_TIER_ONE(target); } } /* We need two references. One to store in exit->executor and * one to keep the executor alive when executing. */ Py_INCREF(executor); exit->executor = executor; GOTO_TIER_TWO(executor); } tier2 op(_DYNAMIC_EXIT, (--)) { tstate->previous_executor = (PyObject *)current_executor; _PyExitData *exit = (_PyExitData *)¤t_executor->exits[oparg]; _Py_CODEUNIT *target = frame->instr_ptr; _PyExecutorObject *executor; if (target->op.code == ENTER_EXECUTOR) { PyCodeObject *code = (PyCodeObject *)frame->f_executable; executor = code->co_executors->executors[target->op.arg]; Py_INCREF(executor); } else { if (!backoff_counter_triggers(exit->temperature)) { exit->temperature = advance_backoff_counter(exit->temperature); GOTO_TIER_ONE(target); } int optimized = _PyOptimizer_Optimize(frame, target, stack_pointer, &executor); if (optimized <= 0) { exit->temperature = restart_backoff_counter(exit->temperature); if (optimized < 0) { Py_DECREF(current_executor); tstate->previous_executor = Py_None; GOTO_UNWIND(); } GOTO_TIER_ONE(target); } else { exit->temperature = initial_temperature_backoff_counter(); } } GOTO_TIER_TWO(executor); } tier2 op(_START_EXECUTOR, (executor/4 --)) { Py_DECREF(tstate->previous_executor); tstate->previous_executor = NULL; #ifndef _Py_JIT current_executor = (_PyExecutorObject*)executor; #endif DEOPT_IF(!((_PyExecutorObject *)executor)->vm_data.valid); } tier2 op(_FATAL_ERROR, (--)) { assert(0); Py_FatalError("Fatal error uop executed."); } tier2 op(_CHECK_VALIDITY_AND_SET_IP, (instr_ptr/4 --)) { DEOPT_IF(!current_executor->vm_data.valid); frame->instr_ptr = (_Py_CODEUNIT *)instr_ptr; } tier2 op(_DEOPT, (--)) { EXIT_TO_TIER1(); } tier2 op(_ERROR_POP_N, (target/2, unused[oparg] --)) { frame->instr_ptr = ((_Py_CODEUNIT *)_PyFrame_GetCode(frame)->co_code_adaptive) + target; SYNC_SP(); GOTO_UNWIND(); } /* Progress is guaranteed if we DEOPT on the eval breaker, because * ENTER_EXECUTOR will not re-enter tier 2 with the eval breaker set. */ tier2 op(_TIER2_RESUME_CHECK, (--)) { #if defined(__EMSCRIPTEN__) DEOPT_IF(_Py_emscripten_signal_clock == 0); _Py_emscripten_signal_clock -= Py_EMSCRIPTEN_SIGNAL_HANDLING; #endif uintptr_t eval_breaker = _Py_atomic_load_uintptr_relaxed(&tstate->eval_breaker); DEOPT_IF(eval_breaker & _PY_EVAL_EVENTS_MASK); assert(tstate->tracing || eval_breaker == FT_ATOMIC_LOAD_UINTPTR_ACQUIRE(_PyFrame_GetCode(frame)->_co_instrumentation_version)); } // END BYTECODES // } dispatch_opcode: error: exception_unwind: exit_unwind: handle_eval_breaker: resume_frame: resume_with_error: start_frame: unbound_local_error: ; } // Future families go below this point //