#include "Python.h" #include "pycore_object.h" #include "pycore_pyerrors.h" #include "pycore_pystate.h" #include "pycore_tupleobject.h" #include "frameobject.h" static PyObject *const * _PyStack_UnpackDict(PyThreadState *tstate, PyObject *const *args, Py_ssize_t nargs, PyObject *kwargs, PyObject **p_kwnames); static void _PyStack_UnpackDict_Free(PyObject *const *stack, Py_ssize_t nargs, PyObject *kwnames); static PyObject * null_error(void) { if (!PyErr_Occurred()) PyErr_SetString(PyExc_SystemError, "null argument to internal routine"); return NULL; } PyObject* _Py_CheckFunctionResult(PyThreadState *tstate, PyObject *callable, PyObject *result, const char *where) { assert((callable != NULL) ^ (where != NULL)); if (result == NULL) { if (!_PyErr_Occurred(tstate)) { if (callable) _PyErr_Format(tstate, PyExc_SystemError, "%R returned NULL without setting an error", callable); else _PyErr_Format(tstate, PyExc_SystemError, "%s returned NULL without setting an error", where); #ifdef Py_DEBUG /* Ensure that the bug is caught in debug mode */ Py_FatalError("a function returned NULL without setting an error"); #endif return NULL; } } else { if (_PyErr_Occurred(tstate)) { Py_DECREF(result); if (callable) { _PyErr_FormatFromCauseTstate( tstate, PyExc_SystemError, "%R returned a result with an error set", callable); } else { _PyErr_FormatFromCauseTstate( tstate, PyExc_SystemError, "%s returned a result with an error set", where); } #ifdef Py_DEBUG /* Ensure that the bug is caught in debug mode */ Py_FatalError("a function returned a result with an error set"); #endif return NULL; } } return result; } /* --- Core PyObject call functions ------------------------------- */ /* Call a callable Python object without any arguments */ PyObject * PyObject_CallNoArgs(PyObject *func) { return _PyObject_CallNoArg(func); } PyObject * _PyObject_FastCallDict(PyObject *callable, PyObject *const *args, size_t nargsf, PyObject *kwargs) { assert(callable != NULL); PyThreadState *tstate = _PyThreadState_GET(); /* _PyObject_FastCallDict() must not be called with an exception set, because it can clear it (directly or indirectly) and so the caller loses its exception */ assert(!_PyErr_Occurred(tstate)); Py_ssize_t nargs = PyVectorcall_NARGS(nargsf); assert(nargs >= 0); assert(nargs == 0 || args != NULL); assert(kwargs == NULL || PyDict_Check(kwargs)); vectorcallfunc func = _PyVectorcall_Function(callable); if (func == NULL) { /* Use tp_call instead */ return _PyObject_MakeTpCall(tstate, callable, args, nargs, kwargs); } PyObject *res; if (kwargs == NULL || PyDict_GET_SIZE(kwargs) == 0) { res = func(callable, args, nargsf, NULL); } else { PyObject *kwnames; PyObject *const *newargs; newargs = _PyStack_UnpackDict(tstate, args, nargs, kwargs, &kwnames); if (newargs == NULL) { return NULL; } res = func(callable, newargs, nargs | PY_VECTORCALL_ARGUMENTS_OFFSET, kwnames); _PyStack_UnpackDict_Free(newargs, nargs, kwnames); } return _Py_CheckFunctionResult(tstate, callable, res, NULL); } PyObject * _PyObject_MakeTpCall(PyThreadState *tstate, PyObject *callable, PyObject *const *args, Py_ssize_t nargs, PyObject *keywords) { /* Slow path: build a temporary tuple for positional arguments and a * temporary dictionary for keyword arguments (if any) */ ternaryfunc call = Py_TYPE(callable)->tp_call; if (call == NULL) { _PyErr_Format(tstate, PyExc_TypeError, "'%.200s' object is not callable", Py_TYPE(callable)->tp_name); return NULL; } assert(nargs >= 0); assert(nargs == 0 || args != NULL); assert(keywords == NULL || PyTuple_Check(keywords) || PyDict_Check(keywords)); PyObject *argstuple = _PyTuple_FromArray(args, nargs); if (argstuple == NULL) { return NULL; } PyObject *kwdict; if (keywords == NULL || PyDict_Check(keywords)) { kwdict = keywords; } else { if (PyTuple_GET_SIZE(keywords)) { assert(args != NULL); kwdict = _PyStack_AsDict(args + nargs, keywords); if (kwdict == NULL) { Py_DECREF(argstuple); return NULL; } } else { keywords = kwdict = NULL; } } PyObject *result = NULL; if (_Py_EnterRecursiveCall(tstate, " while calling a Python object") == 0) { result = call(callable, argstuple, kwdict); _Py_LeaveRecursiveCall(tstate); } Py_DECREF(argstuple); if (kwdict != keywords) { Py_DECREF(kwdict); } result = _Py_CheckFunctionResult(tstate, callable, result, NULL); return result; } PyObject * PyVectorcall_Call(PyObject *callable, PyObject *tuple, PyObject *kwargs) { PyThreadState *tstate = _PyThreadState_GET(); /* get vectorcallfunc as in _PyVectorcall_Function, but without * the _Py_TPFLAGS_HAVE_VECTORCALL check */ Py_ssize_t offset = Py_TYPE(callable)->tp_vectorcall_offset; if (offset <= 0) { _PyErr_Format(tstate, PyExc_TypeError, "'%.200s' object does not support vectorcall", Py_TYPE(callable)->tp_name); return NULL; } vectorcallfunc func = *(vectorcallfunc *)(((char *)callable) + offset); if (func == NULL) { _PyErr_Format(tstate, PyExc_TypeError, "'%.200s' object does not support vectorcall", Py_TYPE(callable)->tp_name); return NULL; } Py_ssize_t nargs = PyTuple_GET_SIZE(tuple); /* Fast path for no keywords */ if (kwargs == NULL || PyDict_GET_SIZE(kwargs) == 0) { return func(callable, _PyTuple_ITEMS(tuple), nargs, NULL); } /* Convert arguments & call */ PyObject *const *args; PyObject *kwnames; args = _PyStack_UnpackDict(tstate, _PyTuple_ITEMS(tuple), nargs, kwargs, &kwnames); if (args == NULL) { return NULL; } PyObject *result = func(callable, args, nargs | PY_VECTORCALL_ARGUMENTS_OFFSET, kwnames); _PyStack_UnpackDict_Free(args, nargs, kwnames); return _Py_CheckFunctionResult(tstate, callable, result, NULL); } PyObject * PyObject_Call(PyObject *callable, PyObject *args, PyObject *kwargs) { PyThreadState *tstate = _PyThreadState_GET(); ternaryfunc call; PyObject *result; /* PyObject_Call() must not be called with an exception set, because it can clear it (directly or indirectly) and so the caller loses its exception */ assert(!_PyErr_Occurred(tstate)); assert(PyTuple_Check(args)); assert(kwargs == NULL || PyDict_Check(kwargs)); if (_PyVectorcall_Function(callable) != NULL) { return PyVectorcall_Call(callable, args, kwargs); } else { call = callable->ob_type->tp_call; if (call == NULL) { _PyErr_Format(tstate, PyExc_TypeError, "'%.200s' object is not callable", callable->ob_type->tp_name); return NULL; } if (_Py_EnterRecursiveCall(tstate, " while calling a Python object")) { return NULL; } result = (*call)(callable, args, kwargs); _Py_LeaveRecursiveCall(tstate); return _Py_CheckFunctionResult(tstate, callable, result, NULL); } } PyObject * PyCFunction_Call(PyObject *callable, PyObject *args, PyObject *kwargs) { return PyObject_Call(callable, args, kwargs); } /* --- PyFunction call functions ---------------------------------- */ static PyObject* _Py_HOT_FUNCTION function_code_fastcall(PyCodeObject *co, PyObject *const *args, Py_ssize_t nargs, PyObject *globals) { assert(globals != NULL); PyThreadState *tstate = _PyThreadState_GET(); assert(tstate != NULL); /* XXX Perhaps we should create a specialized _PyFrame_New_NoTrack() that doesn't take locals, but does take builtins without sanity checking them. */ PyFrameObject *f = _PyFrame_New_NoTrack(tstate, co, globals, NULL); if (f == NULL) { return NULL; } PyObject **fastlocals = f->f_localsplus; for (Py_ssize_t i = 0; i < nargs; i++) { Py_INCREF(*args); fastlocals[i] = *args++; } PyObject *result = PyEval_EvalFrameEx(f, 0); if (Py_REFCNT(f) > 1) { Py_DECREF(f); _PyObject_GC_TRACK(f); } else { ++tstate->recursion_depth; Py_DECREF(f); --tstate->recursion_depth; } return result; } PyObject * _PyFunction_Vectorcall(PyObject *func, PyObject* const* stack, size_t nargsf, PyObject *kwnames) { PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func); PyObject *globals = PyFunction_GET_GLOBALS(func); PyObject *argdefs = PyFunction_GET_DEFAULTS(func); PyObject *kwdefs, *closure, *name, *qualname; PyObject **d; Py_ssize_t nkwargs = (kwnames == NULL) ? 0 : PyTuple_GET_SIZE(kwnames); Py_ssize_t nd; assert(PyFunction_Check(func)); Py_ssize_t nargs = PyVectorcall_NARGS(nargsf); assert(nargs >= 0); assert(kwnames == NULL || PyTuple_CheckExact(kwnames)); assert((nargs == 0 && nkwargs == 0) || stack != NULL); /* kwnames must only contain strings and all keys must be unique */ if (co->co_kwonlyargcount == 0 && nkwargs == 0 && (co->co_flags & ~PyCF_MASK) == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) { if (argdefs == NULL && co->co_argcount == nargs) { return function_code_fastcall(co, stack, nargs, globals); } else if (nargs == 0 && argdefs != NULL && co->co_argcount == PyTuple_GET_SIZE(argdefs)) { /* function called with no arguments, but all parameters have a default value: use default values as arguments .*/ stack = _PyTuple_ITEMS(argdefs); return function_code_fastcall(co, stack, PyTuple_GET_SIZE(argdefs), globals); } } kwdefs = PyFunction_GET_KW_DEFAULTS(func); closure = PyFunction_GET_CLOSURE(func); name = ((PyFunctionObject *)func) -> func_name; qualname = ((PyFunctionObject *)func) -> func_qualname; if (argdefs != NULL) { d = _PyTuple_ITEMS(argdefs); nd = PyTuple_GET_SIZE(argdefs); } else { d = NULL; nd = 0; } return _PyEval_EvalCodeWithName((PyObject*)co, globals, (PyObject *)NULL, stack, nargs, nkwargs ? _PyTuple_ITEMS(kwnames) : NULL, stack + nargs, nkwargs, 1, d, (int)nd, kwdefs, closure, name, qualname); } /* --- More complex call functions -------------------------------- */ /* External interface to call any callable object. The args must be a tuple or NULL. The kwargs must be a dict or NULL. */ PyObject * PyEval_CallObjectWithKeywords(PyObject *callable, PyObject *args, PyObject *kwargs) { #ifdef Py_DEBUG /* PyEval_CallObjectWithKeywords() must not be called with an exception set. It raises a new exception if parameters are invalid or if PyTuple_New() fails, and so the original exception is lost. */ assert(!PyErr_Occurred()); #endif if (args != NULL && !PyTuple_Check(args)) { PyErr_SetString(PyExc_TypeError, "argument list must be a tuple"); return NULL; } if (kwargs != NULL && !PyDict_Check(kwargs)) { PyErr_SetString(PyExc_TypeError, "keyword list must be a dictionary"); return NULL; } if (args == NULL) { return _PyObject_FastCallDict(callable, NULL, 0, kwargs); } else { return PyObject_Call(callable, args, kwargs); } } PyObject * PyObject_CallObject(PyObject *callable, PyObject *args) { assert(!PyErr_Occurred()); if (args == NULL) { return _PyObject_CallNoArg(callable); } if (!PyTuple_Check(args)) { PyErr_SetString(PyExc_TypeError, "argument list must be a tuple"); return NULL; } return PyObject_Call(callable, args, NULL); } /* Call callable(obj, *args, **kwargs). */ PyObject * _PyObject_Call_Prepend(PyObject *callable, PyObject *obj, PyObject *args, PyObject *kwargs) { PyObject *small_stack[_PY_FASTCALL_SMALL_STACK]; PyObject **stack; Py_ssize_t argcount; PyObject *result; assert(PyTuple_Check(args)); argcount = PyTuple_GET_SIZE(args); if (argcount + 1 <= (Py_ssize_t)Py_ARRAY_LENGTH(small_stack)) { stack = small_stack; } else { stack = PyMem_Malloc((argcount + 1) * sizeof(PyObject *)); if (stack == NULL) { PyErr_NoMemory(); return NULL; } } /* use borrowed references */ stack[0] = obj; memcpy(&stack[1], _PyTuple_ITEMS(args), argcount * sizeof(PyObject *)); result = _PyObject_FastCallDict(callable, stack, argcount + 1, kwargs); if (stack != small_stack) { PyMem_Free(stack); } return result; } /* --- Call with a format string ---------------------------------- */ static PyObject * _PyObject_CallFunctionVa(PyObject *callable, const char *format, va_list va, int is_size_t) { PyObject* small_stack[_PY_FASTCALL_SMALL_STACK]; const Py_ssize_t small_stack_len = Py_ARRAY_LENGTH(small_stack); PyObject **stack; Py_ssize_t nargs, i; PyObject *result; if (callable == NULL) { return null_error(); } if (!format || !*format) { return _PyObject_CallNoArg(callable); } if (is_size_t) { stack = _Py_VaBuildStack_SizeT(small_stack, small_stack_len, format, va, &nargs); } else { stack = _Py_VaBuildStack(small_stack, small_stack_len, format, va, &nargs); } if (stack == NULL) { return NULL; } if (nargs == 1 && PyTuple_Check(stack[0])) { /* Special cases for backward compatibility: - PyObject_CallFunction(func, "O", tuple) calls func(*tuple) - PyObject_CallFunction(func, "(OOO)", arg1, arg2, arg3) calls func(*(arg1, arg2, arg3)): func(arg1, arg2, arg3) */ PyObject *args = stack[0]; result = _PyObject_FastCall(callable, _PyTuple_ITEMS(args), PyTuple_GET_SIZE(args)); } else { result = _PyObject_FastCall(callable, stack, nargs); } for (i = 0; i < nargs; ++i) { Py_DECREF(stack[i]); } if (stack != small_stack) { PyMem_Free(stack); } return result; } PyObject * PyObject_CallFunction(PyObject *callable, const char *format, ...) { va_list va; PyObject *result; va_start(va, format); result = _PyObject_CallFunctionVa(callable, format, va, 0); va_end(va); return result; } /* PyEval_CallFunction is exact copy of PyObject_CallFunction. * This function is kept for backward compatibility. */ PyObject * PyEval_CallFunction(PyObject *callable, const char *format, ...) { va_list va; PyObject *result; va_start(va, format); result = _PyObject_CallFunctionVa(callable, format, va, 0); va_end(va); return result; } PyObject * _PyObject_CallFunction_SizeT(PyObject *callable, const char *format, ...) { va_list va; PyObject *result; va_start(va, format); result = _PyObject_CallFunctionVa(callable, format, va, 1); va_end(va); return result; } static PyObject* callmethod(PyObject* callable, const char *format, va_list va, int is_size_t) { assert(callable != NULL); if (!PyCallable_Check(callable)) { PyErr_Format(PyExc_TypeError, "attribute of type '%.200s' is not callable", Py_TYPE(callable)->tp_name); return NULL; } return _PyObject_CallFunctionVa(callable, format, va, is_size_t); } PyObject * PyObject_CallMethod(PyObject *obj, const char *name, const char *format, ...) { va_list va; PyObject *callable, *retval; if (obj == NULL || name == NULL) { return null_error(); } callable = PyObject_GetAttrString(obj, name); if (callable == NULL) return NULL; va_start(va, format); retval = callmethod(callable, format, va, 0); va_end(va); Py_DECREF(callable); return retval; } /* PyEval_CallMethod is exact copy of PyObject_CallMethod. * This function is kept for backward compatibility. */ PyObject * PyEval_CallMethod(PyObject *obj, const char *name, const char *format, ...) { va_list va; PyObject *callable, *retval; if (obj == NULL || name == NULL) { return null_error(); } callable = PyObject_GetAttrString(obj, name); if (callable == NULL) return NULL; va_start(va, format); retval = callmethod(callable, format, va, 0); va_end(va); Py_DECREF(callable); return retval; } PyObject * _PyObject_CallMethodId(PyObject *obj, _Py_Identifier *name, const char *format, ...) { va_list va; PyObject *callable, *retval; if (obj == NULL || name == NULL) { return null_error(); } callable = _PyObject_GetAttrId(obj, name); if (callable == NULL) return NULL; va_start(va, format); retval = callmethod(callable, format, va, 0); va_end(va); Py_DECREF(callable); return retval; } PyObject * _PyObject_CallMethod_SizeT(PyObject *obj, const char *name, const char *format, ...) { va_list va; PyObject *callable, *retval; if (obj == NULL || name == NULL) { return null_error(); } callable = PyObject_GetAttrString(obj, name); if (callable == NULL) return NULL; va_start(va, format); retval = callmethod(callable, format, va, 1); va_end(va); Py_DECREF(callable); return retval; } PyObject * _PyObject_CallMethodId_SizeT(PyObject *obj, _Py_Identifier *name, const char *format, ...) { va_list va; PyObject *callable, *retval; if (obj == NULL || name == NULL) { return null_error(); } callable = _PyObject_GetAttrId(obj, name); if (callable == NULL) { return NULL; } va_start(va, format); retval = callmethod(callable, format, va, 1); va_end(va); Py_DECREF(callable); return retval; } /* --- Call with "..." arguments ---------------------------------- */ static PyObject * object_vacall(PyObject *base, PyObject *callable, va_list vargs) { PyObject *small_stack[_PY_FASTCALL_SMALL_STACK]; PyObject **stack; Py_ssize_t nargs; PyObject *result; Py_ssize_t i; va_list countva; if (callable == NULL) { return null_error(); } /* Count the number of arguments */ va_copy(countva, vargs); nargs = base ? 1 : 0; while (1) { PyObject *arg = va_arg(countva, PyObject *); if (arg == NULL) { break; } nargs++; } va_end(countva); /* Copy arguments */ if (nargs <= (Py_ssize_t)Py_ARRAY_LENGTH(small_stack)) { stack = small_stack; } else { stack = PyMem_Malloc(nargs * sizeof(stack[0])); if (stack == NULL) { PyErr_NoMemory(); return NULL; } } i = 0; if (base) { stack[i++] = base; } for (; i < nargs; ++i) { stack[i] = va_arg(vargs, PyObject *); } /* Call the function */ result = _PyObject_FastCall(callable, stack, nargs); if (stack != small_stack) { PyMem_Free(stack); } return result; } PyObject * _PyObject_VectorcallMethod(PyObject *name, PyObject *const *args, size_t nargsf, PyObject *kwnames) { assert(name != NULL); assert(args != NULL); assert(PyVectorcall_NARGS(nargsf) >= 1); PyThreadState *tstate = _PyThreadState_GET(); PyObject *callable = NULL; /* Use args[0] as "self" argument */ int unbound = _PyObject_GetMethod(args[0], name, &callable); if (callable == NULL) { return NULL; } if (unbound) { /* We must remove PY_VECTORCALL_ARGUMENTS_OFFSET since * that would be interpreted as allowing to change args[-1] */ nargsf &= ~PY_VECTORCALL_ARGUMENTS_OFFSET; } else { /* Skip "self". We can keep PY_VECTORCALL_ARGUMENTS_OFFSET since * args[-1] in the onward call is args[0] here. */ args++; nargsf--; } PyObject *result = _PyObject_VectorcallTstate(tstate, callable, args, nargsf, kwnames); Py_DECREF(callable); return result; } PyObject * PyObject_CallMethodObjArgs(PyObject *obj, PyObject *name, ...) { if (obj == NULL || name == NULL) { return null_error(); } PyObject *callable = NULL; int is_method = _PyObject_GetMethod(obj, name, &callable); if (callable == NULL) { return NULL; } obj = is_method ? obj : NULL; va_list vargs; va_start(vargs, name); PyObject *result = object_vacall(obj, callable, vargs); va_end(vargs); Py_DECREF(callable); return result; } PyObject * _PyObject_CallMethodIdObjArgs(PyObject *obj, struct _Py_Identifier *name, ...) { if (obj == NULL || name == NULL) { return null_error(); } PyObject *oname = _PyUnicode_FromId(name); /* borrowed */ if (!oname) { return NULL; } PyObject *callable = NULL; int is_method = _PyObject_GetMethod(obj, oname, &callable); if (callable == NULL) { return NULL; } obj = is_method ? obj : NULL; va_list vargs; va_start(vargs, name); PyObject *result = object_vacall(obj, callable, vargs); va_end(vargs); Py_DECREF(callable); return result; } PyObject * PyObject_CallFunctionObjArgs(PyObject *callable, ...) { va_list vargs; PyObject *result; va_start(vargs, callable); result = object_vacall(NULL, callable, vargs); va_end(vargs); return result; } /* --- PyStack functions ------------------------------------------ */ PyObject * _PyStack_AsDict(PyObject *const *values, PyObject *kwnames) { Py_ssize_t nkwargs; PyObject *kwdict; Py_ssize_t i; assert(kwnames != NULL); nkwargs = PyTuple_GET_SIZE(kwnames); kwdict = _PyDict_NewPresized(nkwargs); if (kwdict == NULL) { return NULL; } for (i = 0; i < nkwargs; i++) { PyObject *key = PyTuple_GET_ITEM(kwnames, i); PyObject *value = *values++; /* If key already exists, replace it with the new value */ if (PyDict_SetItem(kwdict, key, value)) { Py_DECREF(kwdict); return NULL; } } return kwdict; } /* Convert (args, nargs, kwargs: dict) into a (stack, nargs, kwnames: tuple). Allocate a new argument vector and keyword names tuple. Return the argument vector; return NULL with exception set on error. Return the keyword names tuple in *p_kwnames. This also checks that all keyword names are strings. If not, a TypeError is raised. The newly allocated argument vector supports PY_VECTORCALL_ARGUMENTS_OFFSET. When done, you must call _PyStack_UnpackDict_Free(stack, nargs, kwnames) */ static PyObject *const * _PyStack_UnpackDict(PyThreadState *tstate, PyObject *const *args, Py_ssize_t nargs, PyObject *kwargs, PyObject **p_kwnames) { assert(nargs >= 0); assert(kwargs != NULL); assert(PyDict_Check(kwargs)); Py_ssize_t nkwargs = PyDict_GET_SIZE(kwargs); /* Check for overflow in the PyMem_Malloc() call below. The subtraction * in this check cannot overflow: both maxnargs and nkwargs are * non-negative signed integers, so their difference fits in the type. */ Py_ssize_t maxnargs = PY_SSIZE_T_MAX / sizeof(args[0]) - 1; if (nargs > maxnargs - nkwargs) { _PyErr_NoMemory(tstate); return NULL; } /* Add 1 to support PY_VECTORCALL_ARGUMENTS_OFFSET */ PyObject **stack = PyMem_Malloc((1 + nargs + nkwargs) * sizeof(args[0])); if (stack == NULL) { _PyErr_NoMemory(tstate); return NULL; } PyObject *kwnames = PyTuple_New(nkwargs); if (kwnames == NULL) { PyMem_Free(stack); return NULL; } stack++; /* For PY_VECTORCALL_ARGUMENTS_OFFSET */ /* Copy positional arguments */ for (Py_ssize_t i = 0; i < nargs; i++) { Py_INCREF(args[i]); stack[i] = args[i]; } PyObject **kwstack = stack + nargs; /* This loop doesn't support lookup function mutating the dictionary to change its size. It's a deliberate choice for speed, this function is called in the performance critical hot code. */ Py_ssize_t pos = 0, i = 0; PyObject *key, *value; unsigned long keys_are_strings = Py_TPFLAGS_UNICODE_SUBCLASS; while (PyDict_Next(kwargs, &pos, &key, &value)) { keys_are_strings &= Py_TYPE(key)->tp_flags; Py_INCREF(key); Py_INCREF(value); PyTuple_SET_ITEM(kwnames, i, key); kwstack[i] = value; i++; } /* keys_are_strings has the value Py_TPFLAGS_UNICODE_SUBCLASS if that * flag is set for all keys. Otherwise, keys_are_strings equals 0. * We do this check once at the end instead of inside the loop above * because it simplifies the deallocation in the failing case. * It happens to also make the loop above slightly more efficient. */ if (!keys_are_strings) { _PyErr_SetString(tstate, PyExc_TypeError, "keywords must be strings"); _PyStack_UnpackDict_Free(stack, nargs, kwnames); return NULL; } *p_kwnames = kwnames; return stack; } static void _PyStack_UnpackDict_Free(PyObject *const *stack, Py_ssize_t nargs, PyObject *kwnames) { Py_ssize_t n = PyTuple_GET_SIZE(kwnames) + nargs; for (Py_ssize_t i = 0; i < n; i++) { Py_DECREF(stack[i]); } PyMem_Free((PyObject **)stack - 1); Py_DECREF(kwnames); }