/* statistics accelerator C extension: _statistics module. */ // Need limited C API version 3.12 for Py_MOD_PER_INTERPRETER_GIL_SUPPORTED #include "pyconfig.h" // Py_GIL_DISABLED #ifndef Py_GIL_DISABLED # define Py_LIMITED_API 0x030c0000 #endif #include "Python.h" #include "clinic/_statisticsmodule.c.h" /*[clinic input] module _statistics [clinic start generated code]*/ /*[clinic end generated code: output=da39a3ee5e6b4b0d input=864a6f59b76123b2]*/ /* * There is no closed-form solution to the inverse CDF for the normal * distribution, so we use a rational approximation instead: * Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the * Normal Distribution". Applied Statistics. Blackwell Publishing. 37 * (3): 477–484. doi:10.2307/2347330. JSTOR 2347330. */ /*[clinic input] _statistics._normal_dist_inv_cdf -> double p: double mu: double sigma: double / [clinic start generated code]*/ static double _statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu, double sigma) /*[clinic end generated code: output=02fd19ddaab36602 input=24715a74be15296a]*/ { double q, num, den, r, x; if (p <= 0.0 || p >= 1.0) { goto error; } q = p - 0.5; if(fabs(q) <= 0.425) { r = 0.180625 - q * q; // Hash sum-55.8831928806149014439 num = (((((((2.5090809287301226727e+3 * r + 3.3430575583588128105e+4) * r + 6.7265770927008700853e+4) * r + 4.5921953931549871457e+4) * r + 1.3731693765509461125e+4) * r + 1.9715909503065514427e+3) * r + 1.3314166789178437745e+2) * r + 3.3871328727963666080e+0) * q; den = (((((((5.2264952788528545610e+3 * r + 2.8729085735721942674e+4) * r + 3.9307895800092710610e+4) * r + 2.1213794301586595867e+4) * r + 5.3941960214247511077e+3) * r + 6.8718700749205790830e+2) * r + 4.2313330701600911252e+1) * r + 1.0); if (den == 0.0) { goto error; } x = num / den; return mu + (x * sigma); } r = (q <= 0.0) ? p : (1.0 - p); if (r <= 0.0 || r >= 1.0) { goto error; } r = sqrt(-log(r)); if (r <= 5.0) { r = r - 1.6; // Hash sum-49.33206503301610289036 num = (((((((7.74545014278341407640e-4 * r + 2.27238449892691845833e-2) * r + 2.41780725177450611770e-1) * r + 1.27045825245236838258e+0) * r + 3.64784832476320460504e+0) * r + 5.76949722146069140550e+0) * r + 4.63033784615654529590e+0) * r + 1.42343711074968357734e+0); den = (((((((1.05075007164441684324e-9 * r + 5.47593808499534494600e-4) * r + 1.51986665636164571966e-2) * r + 1.48103976427480074590e-1) * r + 6.89767334985100004550e-1) * r + 1.67638483018380384940e+0) * r + 2.05319162663775882187e+0) * r + 1.0); } else { r -= 5.0; // Hash sum-47.52583317549289671629 num = (((((((2.01033439929228813265e-7 * r + 2.71155556874348757815e-5) * r + 1.24266094738807843860e-3) * r + 2.65321895265761230930e-2) * r + 2.96560571828504891230e-1) * r + 1.78482653991729133580e+0) * r + 5.46378491116411436990e+0) * r + 6.65790464350110377720e+0); den = (((((((2.04426310338993978564e-15 * r + 1.42151175831644588870e-7) * r + 1.84631831751005468180e-5) * r + 7.86869131145613259100e-4) * r + 1.48753612908506148525e-2) * r + 1.36929880922735805310e-1) * r + 5.99832206555887937690e-1) * r + 1.0); } if (den == 0.0) { goto error; } x = num / den; if (q < 0.0) { x = -x; } return mu + (x * sigma); error: PyErr_SetString(PyExc_ValueError, "inv_cdf undefined for these parameters"); return -1.0; } static PyMethodDef statistics_methods[] = { _STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF {NULL, NULL, 0, NULL} }; PyDoc_STRVAR(statistics_doc, "Accelerators for the statistics module.\n"); static struct PyModuleDef_Slot _statisticsmodule_slots[] = { {Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED}, {0, NULL} }; static struct PyModuleDef statisticsmodule = { PyModuleDef_HEAD_INIT, "_statistics", statistics_doc, 0, statistics_methods, _statisticsmodule_slots, NULL, NULL, NULL }; PyMODINIT_FUNC PyInit__statistics(void) { return PyModuleDef_Init(&statisticsmodule); }