/* MIT License * * Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation * Copyright (c) 2022-2023 HACL* Contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "internal/Hacl_Hash_SHA1.h" static uint32_t _h0[5U] = { 0x67452301U, 0xefcdab89U, 0x98badcfeU, 0x10325476U, 0xc3d2e1f0U }; void Hacl_Hash_SHA1_init(uint32_t *s) { KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i] = _h0[i];); } static void update(uint32_t *h, uint8_t *l) { uint32_t ha = h[0U]; uint32_t hb = h[1U]; uint32_t hc = h[2U]; uint32_t hd = h[3U]; uint32_t he = h[4U]; uint32_t _w[80U] = { 0U }; for (uint32_t i = 0U; i < 80U; i++) { uint32_t v; if (i < 16U) { uint8_t *b = l + i * 4U; uint32_t u = load32_be(b); v = u; } else { uint32_t wmit3 = _w[i - 3U]; uint32_t wmit8 = _w[i - 8U]; uint32_t wmit14 = _w[i - 14U]; uint32_t wmit16 = _w[i - 16U]; v = (wmit3 ^ (wmit8 ^ (wmit14 ^ wmit16))) << 1U | (wmit3 ^ (wmit8 ^ (wmit14 ^ wmit16))) >> 31U; } _w[i] = v; } for (uint32_t i = 0U; i < 80U; i++) { uint32_t _a = h[0U]; uint32_t _b = h[1U]; uint32_t _c = h[2U]; uint32_t _d = h[3U]; uint32_t _e = h[4U]; uint32_t wmit = _w[i]; uint32_t ite0; if (i < 20U) { ite0 = (_b & _c) ^ (~_b & _d); } else if (39U < i && i < 60U) { ite0 = (_b & _c) ^ ((_b & _d) ^ (_c & _d)); } else { ite0 = _b ^ (_c ^ _d); } uint32_t ite; if (i < 20U) { ite = 0x5a827999U; } else if (i < 40U) { ite = 0x6ed9eba1U; } else if (i < 60U) { ite = 0x8f1bbcdcU; } else { ite = 0xca62c1d6U; } uint32_t _T = (_a << 5U | _a >> 27U) + ite0 + _e + ite + wmit; h[0U] = _T; h[1U] = _a; h[2U] = _b << 30U | _b >> 2U; h[3U] = _c; h[4U] = _d; } for (uint32_t i = 0U; i < 80U; i++) { _w[i] = 0U; } uint32_t sta = h[0U]; uint32_t stb = h[1U]; uint32_t stc = h[2U]; uint32_t std = h[3U]; uint32_t ste = h[4U]; h[0U] = sta + ha; h[1U] = stb + hb; h[2U] = stc + hc; h[3U] = std + hd; h[4U] = ste + he; } static void pad(uint64_t len, uint8_t *dst) { uint8_t *dst1 = dst; dst1[0U] = 0x80U; uint8_t *dst2 = dst + 1U; for (uint32_t i = 0U; i < (128U - (9U + (uint32_t)(len % (uint64_t)64U))) % 64U; i++) { dst2[i] = 0U; } uint8_t *dst3 = dst + 1U + (128U - (9U + (uint32_t)(len % (uint64_t)64U))) % 64U; store64_be(dst3, len << 3U); } void Hacl_Hash_SHA1_finish(uint32_t *s, uint8_t *dst) { KRML_MAYBE_FOR5(i, 0U, 5U, 1U, store32_be(dst + i * 4U, s[i]);); } void Hacl_Hash_SHA1_update_multi(uint32_t *s, uint8_t *blocks, uint32_t n_blocks) { for (uint32_t i = 0U; i < n_blocks; i++) { uint32_t sz = 64U; uint8_t *block = blocks + sz * i; update(s, block); } } void Hacl_Hash_SHA1_update_last(uint32_t *s, uint64_t prev_len, uint8_t *input, uint32_t input_len) { uint32_t blocks_n = input_len / 64U; uint32_t blocks_len = blocks_n * 64U; uint8_t *blocks = input; uint32_t rest_len = input_len - blocks_len; uint8_t *rest = input + blocks_len; Hacl_Hash_SHA1_update_multi(s, blocks, blocks_n); uint64_t total_input_len = prev_len + (uint64_t)input_len; uint32_t pad_len = 1U + (128U - (9U + (uint32_t)(total_input_len % (uint64_t)64U))) % 64U + 8U; uint32_t tmp_len = rest_len + pad_len; uint8_t tmp_twoblocks[128U] = { 0U }; uint8_t *tmp = tmp_twoblocks; uint8_t *tmp_rest = tmp; uint8_t *tmp_pad = tmp + rest_len; memcpy(tmp_rest, rest, rest_len * sizeof (uint8_t)); pad(total_input_len, tmp_pad); Hacl_Hash_SHA1_update_multi(s, tmp, tmp_len / 64U); } void Hacl_Hash_SHA1_hash_oneshot(uint8_t *output, uint8_t *input, uint32_t input_len) { uint32_t s[5U] = { 0x67452301U, 0xefcdab89U, 0x98badcfeU, 0x10325476U, 0xc3d2e1f0U }; uint32_t blocks_n0 = input_len / 64U; uint32_t blocks_n1; if (input_len % 64U == 0U && blocks_n0 > 0U) { blocks_n1 = blocks_n0 - 1U; } else { blocks_n1 = blocks_n0; } uint32_t blocks_len0 = blocks_n1 * 64U; uint8_t *blocks0 = input; uint32_t rest_len0 = input_len - blocks_len0; uint8_t *rest0 = input + blocks_len0; uint32_t blocks_n = blocks_n1; uint32_t blocks_len = blocks_len0; uint8_t *blocks = blocks0; uint32_t rest_len = rest_len0; uint8_t *rest = rest0; Hacl_Hash_SHA1_update_multi(s, blocks, blocks_n); Hacl_Hash_SHA1_update_last(s, (uint64_t)blocks_len, rest, rest_len); Hacl_Hash_SHA1_finish(s, output); } Hacl_Streaming_MD_state_32 *Hacl_Hash_SHA1_malloc(void) { uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC(64U, sizeof (uint8_t)); uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC(5U, sizeof (uint32_t)); Hacl_Streaming_MD_state_32 s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)0U }; Hacl_Streaming_MD_state_32 *p = (Hacl_Streaming_MD_state_32 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_32)); p[0U] = s; Hacl_Hash_SHA1_init(block_state); return p; } void Hacl_Hash_SHA1_reset(Hacl_Streaming_MD_state_32 *state) { Hacl_Streaming_MD_state_32 scrut = *state; uint8_t *buf = scrut.buf; uint32_t *block_state = scrut.block_state; Hacl_Hash_SHA1_init(block_state); Hacl_Streaming_MD_state_32 tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)0U }; state[0U] = tmp; } /** 0 = success, 1 = max length exceeded */ Hacl_Streaming_Types_error_code Hacl_Hash_SHA1_update(Hacl_Streaming_MD_state_32 *state, uint8_t *chunk, uint32_t chunk_len) { Hacl_Streaming_MD_state_32 s = *state; uint64_t total_len = s.total_len; if ((uint64_t)chunk_len > 2305843009213693951ULL - total_len) { return Hacl_Streaming_Types_MaximumLengthExceeded; } uint32_t sz; if (total_len % (uint64_t)64U == 0ULL && total_len > 0ULL) { sz = 64U; } else { sz = (uint32_t)(total_len % (uint64_t)64U); } if (chunk_len <= 64U - sz) { Hacl_Streaming_MD_state_32 s1 = *state; uint32_t *block_state1 = s1.block_state; uint8_t *buf = s1.buf; uint64_t total_len1 = s1.total_len; uint32_t sz1; if (total_len1 % (uint64_t)64U == 0ULL && total_len1 > 0ULL) { sz1 = 64U; } else { sz1 = (uint32_t)(total_len1 % (uint64_t)64U); } uint8_t *buf2 = buf + sz1; memcpy(buf2, chunk, chunk_len * sizeof (uint8_t)); uint64_t total_len2 = total_len1 + (uint64_t)chunk_len; *state = ( (Hacl_Streaming_MD_state_32){ .block_state = block_state1, .buf = buf, .total_len = total_len2 } ); } else if (sz == 0U) { Hacl_Streaming_MD_state_32 s1 = *state; uint32_t *block_state1 = s1.block_state; uint8_t *buf = s1.buf; uint64_t total_len1 = s1.total_len; uint32_t sz1; if (total_len1 % (uint64_t)64U == 0ULL && total_len1 > 0ULL) { sz1 = 64U; } else { sz1 = (uint32_t)(total_len1 % (uint64_t)64U); } if (!(sz1 == 0U)) { Hacl_Hash_SHA1_update_multi(block_state1, buf, 1U); } uint32_t ite; if ((uint64_t)chunk_len % (uint64_t)64U == 0ULL && (uint64_t)chunk_len > 0ULL) { ite = 64U; } else { ite = (uint32_t)((uint64_t)chunk_len % (uint64_t)64U); } uint32_t n_blocks = (chunk_len - ite) / 64U; uint32_t data1_len = n_blocks * 64U; uint32_t data2_len = chunk_len - data1_len; uint8_t *data1 = chunk; uint8_t *data2 = chunk + data1_len; Hacl_Hash_SHA1_update_multi(block_state1, data1, data1_len / 64U); uint8_t *dst = buf; memcpy(dst, data2, data2_len * sizeof (uint8_t)); *state = ( (Hacl_Streaming_MD_state_32){ .block_state = block_state1, .buf = buf, .total_len = total_len1 + (uint64_t)chunk_len } ); } else { uint32_t diff = 64U - sz; uint8_t *chunk1 = chunk; uint8_t *chunk2 = chunk + diff; Hacl_Streaming_MD_state_32 s1 = *state; uint32_t *block_state10 = s1.block_state; uint8_t *buf0 = s1.buf; uint64_t total_len10 = s1.total_len; uint32_t sz10; if (total_len10 % (uint64_t)64U == 0ULL && total_len10 > 0ULL) { sz10 = 64U; } else { sz10 = (uint32_t)(total_len10 % (uint64_t)64U); } uint8_t *buf2 = buf0 + sz10; memcpy(buf2, chunk1, diff * sizeof (uint8_t)); uint64_t total_len2 = total_len10 + (uint64_t)diff; *state = ( (Hacl_Streaming_MD_state_32){ .block_state = block_state10, .buf = buf0, .total_len = total_len2 } ); Hacl_Streaming_MD_state_32 s10 = *state; uint32_t *block_state1 = s10.block_state; uint8_t *buf = s10.buf; uint64_t total_len1 = s10.total_len; uint32_t sz1; if (total_len1 % (uint64_t)64U == 0ULL && total_len1 > 0ULL) { sz1 = 64U; } else { sz1 = (uint32_t)(total_len1 % (uint64_t)64U); } if (!(sz1 == 0U)) { Hacl_Hash_SHA1_update_multi(block_state1, buf, 1U); } uint32_t ite; if ((uint64_t)(chunk_len - diff) % (uint64_t)64U == 0ULL && (uint64_t)(chunk_len - diff) > 0ULL) { ite = 64U; } else { ite = (uint32_t)((uint64_t)(chunk_len - diff) % (uint64_t)64U); } uint32_t n_blocks = (chunk_len - diff - ite) / 64U; uint32_t data1_len = n_blocks * 64U; uint32_t data2_len = chunk_len - diff - data1_len; uint8_t *data1 = chunk2; uint8_t *data2 = chunk2 + data1_len; Hacl_Hash_SHA1_update_multi(block_state1, data1, data1_len / 64U); uint8_t *dst = buf; memcpy(dst, data2, data2_len * sizeof (uint8_t)); *state = ( (Hacl_Streaming_MD_state_32){ .block_state = block_state1, .buf = buf, .total_len = total_len1 + (uint64_t)(chunk_len - diff) } ); } return Hacl_Streaming_Types_Success; } void Hacl_Hash_SHA1_digest(Hacl_Streaming_MD_state_32 *state, uint8_t *output) { Hacl_Streaming_MD_state_32 scrut = *state; uint32_t *block_state = scrut.block_state; uint8_t *buf_ = scrut.buf; uint64_t total_len = scrut.total_len; uint32_t r; if (total_len % (uint64_t)64U == 0ULL && total_len > 0ULL) { r = 64U; } else { r = (uint32_t)(total_len % (uint64_t)64U); } uint8_t *buf_1 = buf_; uint32_t tmp_block_state[5U] = { 0U }; memcpy(tmp_block_state, block_state, 5U * sizeof (uint32_t)); uint32_t ite; if (r % 64U == 0U && r > 0U) { ite = 64U; } else { ite = r % 64U; } uint8_t *buf_last = buf_1 + r - ite; uint8_t *buf_multi = buf_1; Hacl_Hash_SHA1_update_multi(tmp_block_state, buf_multi, 0U); uint64_t prev_len_last = total_len - (uint64_t)r; Hacl_Hash_SHA1_update_last(tmp_block_state, prev_len_last, buf_last, r); Hacl_Hash_SHA1_finish(tmp_block_state, output); } void Hacl_Hash_SHA1_free(Hacl_Streaming_MD_state_32 *state) { Hacl_Streaming_MD_state_32 scrut = *state; uint8_t *buf = scrut.buf; uint32_t *block_state = scrut.block_state; KRML_HOST_FREE(block_state); KRML_HOST_FREE(buf); KRML_HOST_FREE(state); } Hacl_Streaming_MD_state_32 *Hacl_Hash_SHA1_copy(Hacl_Streaming_MD_state_32 *state) { Hacl_Streaming_MD_state_32 scrut = *state; uint32_t *block_state0 = scrut.block_state; uint8_t *buf0 = scrut.buf; uint64_t total_len0 = scrut.total_len; uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC(64U, sizeof (uint8_t)); memcpy(buf, buf0, 64U * sizeof (uint8_t)); uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC(5U, sizeof (uint32_t)); memcpy(block_state, block_state0, 5U * sizeof (uint32_t)); Hacl_Streaming_MD_state_32 s = { .block_state = block_state, .buf = buf, .total_len = total_len0 }; Hacl_Streaming_MD_state_32 *p = (Hacl_Streaming_MD_state_32 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_32)); p[0U] = s; return p; } void Hacl_Hash_SHA1_hash(uint8_t *output, uint8_t *input, uint32_t input_len) { Hacl_Hash_SHA1_hash_oneshot(output, input, input_len); }