/* SHA256 module */ /* This module provides an interface to NIST's SHA-256 and SHA-224 Algorithms */ /* See below for information about the original code this module was based upon. Additional work performed by: Andrew Kuchling (amk@amk.ca) Greg Stein (gstein@lyra.org) Trevor Perrin (trevp@trevp.net) Copyright (C) 2005-2007 Gregory P. Smith (greg@krypto.org) Licensed to PSF under a Contributor Agreement. */ /* SHA objects */ #include "Python.h" #include "pycore_bitutils.h" // _Py_bswap32() #include "structmember.h" // PyMemberDef #include "hashlib.h" #include "pystrhex.h" /*[clinic input] module _sha256 class SHA256Type "SHAobject *" "&PyType_Type" [clinic start generated code]*/ /*[clinic end generated code: output=da39a3ee5e6b4b0d input=71a39174d4f0a744]*/ /* Some useful types */ typedef unsigned char SHA_BYTE; typedef uint32_t SHA_INT32; /* 32-bit integer */ /* The SHA block size and message digest sizes, in bytes */ #define SHA_BLOCKSIZE 64 #define SHA_DIGESTSIZE 32 /* The structure for storing SHA info */ typedef struct { PyObject_HEAD SHA_INT32 digest[8]; /* Message digest */ SHA_INT32 count_lo, count_hi; /* 64-bit bit count */ SHA_BYTE data[SHA_BLOCKSIZE]; /* SHA data buffer */ int local; /* unprocessed amount in data */ int digestsize; } SHAobject; #include "clinic/sha256module.c.h" typedef struct { PyTypeObject* sha224_type; PyTypeObject* sha256_type; } _sha256_state; static inline _sha256_state* _sha256_get_state(PyObject *module) { void *state = PyModule_GetState(module); assert(state != NULL); return (_sha256_state *)state; } /* When run on a little-endian CPU we need to perform byte reversal on an array of longwords. */ #if PY_LITTLE_ENDIAN static void longReverse(SHA_INT32 *buffer, int byteCount) { byteCount /= sizeof(*buffer); for (; byteCount--; buffer++) { *buffer = _Py_bswap32(*buffer); } } #endif static void SHAcopy(SHAobject *src, SHAobject *dest) { dest->local = src->local; dest->digestsize = src->digestsize; dest->count_lo = src->count_lo; dest->count_hi = src->count_hi; memcpy(dest->digest, src->digest, sizeof(src->digest)); memcpy(dest->data, src->data, sizeof(src->data)); } /* ------------------------------------------------------------------------ * * This code for the SHA-256 algorithm was noted as public domain. The * original headers are pasted below. * * Several changes have been made to make it more compatible with the * Python environment and desired interface. * */ /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@iahu.ca, https://www.libtom.net */ /* SHA256 by Tom St Denis */ /* Various logical functions */ #define ROR(x, y)\ ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \ ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL) #define Ch(x,y,z) (z ^ (x & (y ^ z))) #define Maj(x,y,z) (((x | y) & z) | (x & y)) #define S(x, n) ROR((x),(n)) #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n)) #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) static void sha_transform(SHAobject *sha_info) { int i; SHA_INT32 S[8], W[64], t0, t1; memcpy(W, sha_info->data, sizeof(sha_info->data)); #if PY_LITTLE_ENDIAN longReverse(W, (int)sizeof(sha_info->data)); #endif for (i = 16; i < 64; ++i) { W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; } for (i = 0; i < 8; ++i) { S[i] = sha_info->digest[i]; } /* Compress */ #define RND(a,b,c,d,e,f,g,h,i,ki) \ t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \ t1 = Sigma0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3); RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2); #undef RND /* feedback */ for (i = 0; i < 8; i++) { sha_info->digest[i] = sha_info->digest[i] + S[i]; } } /* initialize the SHA digest */ static void sha_init(SHAobject *sha_info) { sha_info->digest[0] = 0x6A09E667L; sha_info->digest[1] = 0xBB67AE85L; sha_info->digest[2] = 0x3C6EF372L; sha_info->digest[3] = 0xA54FF53AL; sha_info->digest[4] = 0x510E527FL; sha_info->digest[5] = 0x9B05688CL; sha_info->digest[6] = 0x1F83D9ABL; sha_info->digest[7] = 0x5BE0CD19L; sha_info->count_lo = 0L; sha_info->count_hi = 0L; sha_info->local = 0; sha_info->digestsize = 32; } static void sha224_init(SHAobject *sha_info) { sha_info->digest[0] = 0xc1059ed8L; sha_info->digest[1] = 0x367cd507L; sha_info->digest[2] = 0x3070dd17L; sha_info->digest[3] = 0xf70e5939L; sha_info->digest[4] = 0xffc00b31L; sha_info->digest[5] = 0x68581511L; sha_info->digest[6] = 0x64f98fa7L; sha_info->digest[7] = 0xbefa4fa4L; sha_info->count_lo = 0L; sha_info->count_hi = 0L; sha_info->local = 0; sha_info->digestsize = 28; } /* update the SHA digest */ static void sha_update(SHAobject *sha_info, SHA_BYTE *buffer, Py_ssize_t count) { Py_ssize_t i; SHA_INT32 clo; clo = sha_info->count_lo + ((SHA_INT32) count << 3); if (clo < sha_info->count_lo) { ++sha_info->count_hi; } sha_info->count_lo = clo; sha_info->count_hi += (SHA_INT32) count >> 29; if (sha_info->local) { i = SHA_BLOCKSIZE - sha_info->local; if (i > count) { i = count; } memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i); count -= i; buffer += i; sha_info->local += (int)i; if (sha_info->local == SHA_BLOCKSIZE) { sha_transform(sha_info); } else { return; } } while (count >= SHA_BLOCKSIZE) { memcpy(sha_info->data, buffer, SHA_BLOCKSIZE); buffer += SHA_BLOCKSIZE; count -= SHA_BLOCKSIZE; sha_transform(sha_info); } memcpy(sha_info->data, buffer, count); sha_info->local = (int)count; } /* finish computing the SHA digest */ static void sha_final(unsigned char digest[SHA_DIGESTSIZE], SHAobject *sha_info) { int count; SHA_INT32 lo_bit_count, hi_bit_count; lo_bit_count = sha_info->count_lo; hi_bit_count = sha_info->count_hi; count = (int) ((lo_bit_count >> 3) & 0x3f); ((SHA_BYTE *) sha_info->data)[count++] = 0x80; if (count > SHA_BLOCKSIZE - 8) { memset(((SHA_BYTE *) sha_info->data) + count, 0, SHA_BLOCKSIZE - count); sha_transform(sha_info); memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8); } else { memset(((SHA_BYTE *) sha_info->data) + count, 0, SHA_BLOCKSIZE - 8 - count); } /* GJS: note that we add the hi/lo in big-endian. sha_transform will swap these values into host-order. */ sha_info->data[56] = (hi_bit_count >> 24) & 0xff; sha_info->data[57] = (hi_bit_count >> 16) & 0xff; sha_info->data[58] = (hi_bit_count >> 8) & 0xff; sha_info->data[59] = (hi_bit_count >> 0) & 0xff; sha_info->data[60] = (lo_bit_count >> 24) & 0xff; sha_info->data[61] = (lo_bit_count >> 16) & 0xff; sha_info->data[62] = (lo_bit_count >> 8) & 0xff; sha_info->data[63] = (lo_bit_count >> 0) & 0xff; sha_transform(sha_info); digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff); digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff); digest[ 2] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff); digest[ 3] = (unsigned char) ((sha_info->digest[0] ) & 0xff); digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff); digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff); digest[ 6] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff); digest[ 7] = (unsigned char) ((sha_info->digest[1] ) & 0xff); digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff); digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff); digest[10] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff); digest[11] = (unsigned char) ((sha_info->digest[2] ) & 0xff); digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff); digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff); digest[14] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff); digest[15] = (unsigned char) ((sha_info->digest[3] ) & 0xff); digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff); digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff); digest[18] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff); digest[19] = (unsigned char) ((sha_info->digest[4] ) & 0xff); digest[20] = (unsigned char) ((sha_info->digest[5] >> 24) & 0xff); digest[21] = (unsigned char) ((sha_info->digest[5] >> 16) & 0xff); digest[22] = (unsigned char) ((sha_info->digest[5] >> 8) & 0xff); digest[23] = (unsigned char) ((sha_info->digest[5] ) & 0xff); digest[24] = (unsigned char) ((sha_info->digest[6] >> 24) & 0xff); digest[25] = (unsigned char) ((sha_info->digest[6] >> 16) & 0xff); digest[26] = (unsigned char) ((sha_info->digest[6] >> 8) & 0xff); digest[27] = (unsigned char) ((sha_info->digest[6] ) & 0xff); digest[28] = (unsigned char) ((sha_info->digest[7] >> 24) & 0xff); digest[29] = (unsigned char) ((sha_info->digest[7] >> 16) & 0xff); digest[30] = (unsigned char) ((sha_info->digest[7] >> 8) & 0xff); digest[31] = (unsigned char) ((sha_info->digest[7] ) & 0xff); } /* * End of copied SHA code. * * ------------------------------------------------------------------------ */ static SHAobject * newSHA224object(_sha256_state *state) { return (SHAobject *)PyObject_New(SHAobject, state->sha224_type); } static SHAobject * newSHA256object(_sha256_state *state) { return (SHAobject *)PyObject_New(SHAobject, state->sha256_type); } /* Internal methods for a hash object */ static void SHA_dealloc(PyObject *ptr) { PyTypeObject *tp = Py_TYPE(ptr); PyObject_Free(ptr); Py_DECREF(tp); } /* External methods for a hash object */ /*[clinic input] SHA256Type.copy cls:defining_class Return a copy of the hash object. [clinic start generated code]*/ static PyObject * SHA256Type_copy_impl(SHAobject *self, PyTypeObject *cls) /*[clinic end generated code: output=9273f92c382be12f input=3137146fcb88e212]*/ { SHAobject *newobj; _sha256_state *state = PyType_GetModuleState(cls); if (Py_IS_TYPE(self, state->sha256_type)) { if ( (newobj = newSHA256object(state)) == NULL) { return NULL; } } else { if ( (newobj = newSHA224object(state))==NULL) { return NULL; } } SHAcopy(self, newobj); return (PyObject *)newobj; } /*[clinic input] SHA256Type.digest Return the digest value as a bytes object. [clinic start generated code]*/ static PyObject * SHA256Type_digest_impl(SHAobject *self) /*[clinic end generated code: output=46616a5e909fbc3d input=f1f4cfea5cbde35c]*/ { unsigned char digest[SHA_DIGESTSIZE]; SHAobject temp; SHAcopy(self, &temp); sha_final(digest, &temp); return PyBytes_FromStringAndSize((const char *)digest, self->digestsize); } /*[clinic input] SHA256Type.hexdigest Return the digest value as a string of hexadecimal digits. [clinic start generated code]*/ static PyObject * SHA256Type_hexdigest_impl(SHAobject *self) /*[clinic end generated code: output=725f8a7041ae97f3 input=0cc4c714693010d1]*/ { unsigned char digest[SHA_DIGESTSIZE]; SHAobject temp; /* Get the raw (binary) digest value */ SHAcopy(self, &temp); sha_final(digest, &temp); return _Py_strhex((const char *)digest, self->digestsize); } /*[clinic input] SHA256Type.update obj: object / Update this hash object's state with the provided string. [clinic start generated code]*/ static PyObject * SHA256Type_update(SHAobject *self, PyObject *obj) /*[clinic end generated code: output=0967fb2860c66af7 input=b2d449d5b30f0f5a]*/ { Py_buffer buf; GET_BUFFER_VIEW_OR_ERROUT(obj, &buf); sha_update(self, buf.buf, buf.len); PyBuffer_Release(&buf); Py_RETURN_NONE; } static PyMethodDef SHA_methods[] = { SHA256TYPE_COPY_METHODDEF SHA256TYPE_DIGEST_METHODDEF SHA256TYPE_HEXDIGEST_METHODDEF SHA256TYPE_UPDATE_METHODDEF {NULL, NULL} /* sentinel */ }; static PyObject * SHA256_get_block_size(PyObject *self, void *closure) { return PyLong_FromLong(SHA_BLOCKSIZE); } static PyObject * SHA256_get_name(PyObject *self, void *closure) { if (((SHAobject *)self)->digestsize == 32) return PyUnicode_FromStringAndSize("sha256", 6); else return PyUnicode_FromStringAndSize("sha224", 6); } static PyGetSetDef SHA_getseters[] = { {"block_size", (getter)SHA256_get_block_size, NULL, NULL, NULL}, {"name", (getter)SHA256_get_name, NULL, NULL, NULL}, {NULL} /* Sentinel */ }; static PyMemberDef SHA_members[] = { {"digest_size", T_INT, offsetof(SHAobject, digestsize), READONLY, NULL}, {NULL} /* Sentinel */ }; static PyType_Slot sha256_types_slots[] = { {Py_tp_dealloc, SHA_dealloc}, {Py_tp_methods, SHA_methods}, {Py_tp_members, SHA_members}, {Py_tp_getset, SHA_getseters}, {0,0} }; static PyType_Spec sha224_type_spec = { .name = "_sha256.sha224", .basicsize = sizeof(SHAobject), .flags = Py_TPFLAGS_DEFAULT, .slots = sha256_types_slots }; static PyType_Spec sha256_type_spec = { .name = "_sha256.sha256", .basicsize = sizeof(SHAobject), .flags = Py_TPFLAGS_DEFAULT, .slots = sha256_types_slots }; /* The single module-level function: new() */ /*[clinic input] _sha256.sha256 string: object(c_default="NULL") = b'' * usedforsecurity: bool = True Return a new SHA-256 hash object; optionally initialized with a string. [clinic start generated code]*/ static PyObject * _sha256_sha256_impl(PyObject *module, PyObject *string, int usedforsecurity) /*[clinic end generated code: output=a1de327e8e1185cf input=9be86301aeb14ea5]*/ { Py_buffer buf; if (string) { GET_BUFFER_VIEW_OR_ERROUT(string, &buf); } _sha256_state *state = PyModule_GetState(module); SHAobject *new; if ((new = newSHA256object(state)) == NULL) { if (string) { PyBuffer_Release(&buf); } return NULL; } sha_init(new); if (PyErr_Occurred()) { Py_DECREF(new); if (string) { PyBuffer_Release(&buf); } return NULL; } if (string) { sha_update(new, buf.buf, buf.len); PyBuffer_Release(&buf); } return (PyObject *)new; } /*[clinic input] _sha256.sha224 string: object(c_default="NULL") = b'' * usedforsecurity: bool = True Return a new SHA-224 hash object; optionally initialized with a string. [clinic start generated code]*/ static PyObject * _sha256_sha224_impl(PyObject *module, PyObject *string, int usedforsecurity) /*[clinic end generated code: output=08be6b36569bc69c input=9fcfb46e460860ac]*/ { Py_buffer buf; if (string) { GET_BUFFER_VIEW_OR_ERROUT(string, &buf); } _sha256_state *state = PyModule_GetState(module); SHAobject *new; if ((new = newSHA224object(state)) == NULL) { if (string) { PyBuffer_Release(&buf); } return NULL; } sha224_init(new); if (PyErr_Occurred()) { Py_DECREF(new); if (string) { PyBuffer_Release(&buf); } return NULL; } if (string) { sha_update(new, buf.buf, buf.len); PyBuffer_Release(&buf); } return (PyObject *)new; } /* List of functions exported by this module */ static struct PyMethodDef SHA_functions[] = { _SHA256_SHA256_METHODDEF _SHA256_SHA224_METHODDEF {NULL, NULL} /* Sentinel */ }; static int _sha256_traverse(PyObject *module, visitproc visit, void *arg) { _sha256_state *state = _sha256_get_state(module); Py_VISIT(state->sha224_type); Py_VISIT(state->sha256_type); return 0; } static int _sha256_clear(PyObject *module) { _sha256_state *state = _sha256_get_state(module); Py_CLEAR(state->sha224_type); Py_CLEAR(state->sha256_type); return 0; } static void _sha256_free(void *module) { _sha256_clear((PyObject *)module); } static int sha256_exec(PyObject *module) { _sha256_state *state = _sha256_get_state(module); state->sha224_type = (PyTypeObject *)PyType_FromModuleAndSpec( module, &sha224_type_spec, NULL); if (state->sha224_type == NULL) { return -1; } state->sha256_type = (PyTypeObject *)PyType_FromModuleAndSpec( module, &sha256_type_spec, NULL); if (state->sha256_type == NULL) { return -1; } Py_INCREF((PyObject *)state->sha224_type); if (PyModule_AddObject(module, "SHA224Type", (PyObject *)state->sha224_type) < 0) { Py_DECREF((PyObject *)state->sha224_type); return -1; } Py_INCREF((PyObject *)state->sha256_type); if (PyModule_AddObject(module, "SHA256Type", (PyObject *)state->sha256_type) < 0) { Py_DECREF((PyObject *)state->sha256_type); return -1; } return 0; } static PyModuleDef_Slot _sha256_slots[] = { {Py_mod_exec, sha256_exec}, {0, NULL} }; static struct PyModuleDef _sha256module = { PyModuleDef_HEAD_INIT, .m_name = "_sha256", .m_size = sizeof(_sha256_state), .m_methods = SHA_functions, .m_slots = _sha256_slots, .m_traverse = _sha256_traverse, .m_clear = _sha256_clear, .m_free = _sha256_free }; /* Initialize this module. */ PyMODINIT_FUNC PyInit__sha256(void) { return PyModuleDef_Init(&_sha256module); }