# -*- Mode: Python -*- # Id: asyncore.py,v 2.51 2000/09/07 22:29:26 rushing Exp # Author: Sam Rushing # ====================================================================== # Copyright 1996 by Sam Rushing # # All Rights Reserved # # Permission to use, copy, modify, and distribute this software and # its documentation for any purpose and without fee is hereby # granted, provided that the above copyright notice appear in all # copies and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of Sam # Rushing not be used in advertising or publicity pertaining to # distribution of the software without specific, written prior # permission. # # SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, # INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN # NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR # CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS # OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, # NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN # CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # ====================================================================== """Basic infrastructure for asynchronous socket service clients and servers. There are only two ways to have a program on a single processor do "more than one thing at a time". Multi-threaded programming is the simplest and most popular way to do it, but there is another very different technique, that lets you have nearly all the advantages of multi-threading, without actually using multiple threads. it's really only practical if your program is largely I/O bound. If your program is CPU bound, then pre-emptive scheduled threads are probably what you really need. Network servers are rarely CPU-bound, however. If your operating system supports the select() system call in its I/O library (and nearly all do), then you can use it to juggle multiple communication channels at once; doing other work while your I/O is taking place in the "background." Although this strategy can seem strange and complex, especially at first, it is in many ways easier to understand and control than multi-threaded programming. The module documented here solves many of the difficult problems for you, making the task of building sophisticated high-performance network servers and clients a snap. """ import exceptions import select import socket import sys import types import os if os.name == 'nt': EWOULDBLOCK = 10035 EINPROGRESS = 10036 EALREADY = 10037 ECONNRESET = 10054 ENOTCONN = 10057 ESHUTDOWN = 10058 else: from errno import EALREADY, EINPROGRESS, EWOULDBLOCK, ECONNRESET, ENOTCONN, ESHUTDOWN try: socket_map except NameError: socket_map = {} class ExitNow (exceptions.Exception): pass DEBUG = 0 def poll (timeout=0.0, map=None): global DEBUG if map is None: map = socket_map if map: r = []; w = []; e = [] for fd, obj in map.items(): if obj.readable(): r.append (fd) if obj.writable(): w.append (fd) r,w,e = select.select (r,w,e, timeout) if DEBUG: print r,w,e for fd in r: try: obj = map[fd] try: obj.handle_read_event() except ExitNow: raise ExitNow except: obj.handle_error() except KeyError: pass for fd in w: try: obj = map[fd] try: obj.handle_write_event() except ExitNow: raise ExitNow except: obj.handle_error() except KeyError: pass def poll2 (timeout=0.0, map=None): import poll if map is None: map=socket_map # timeout is in milliseconds timeout = int(timeout*1000) if map: l = [] for fd, obj in map.items(): flags = 0 if obj.readable(): flags = poll.POLLIN if obj.writable(): flags = flags | poll.POLLOUT if flags: l.append ((fd, flags)) r = poll.poll (l, timeout) for fd, flags in r: try: obj = map[fd] try: if (flags & poll.POLLIN): obj.handle_read_event() if (flags & poll.POLLOUT): obj.handle_write_event() except ExitNow: raise ExitNow except: obj.handle_error() except KeyError: pass def poll3 (timeout=0.0, map=None): # Use the poll() support added to the select module in Python 2.0 if map is None: map=socket_map # timeout is in milliseconds timeout = int(timeout*1000) pollster = select.poll() if map: l = [] for fd, obj in map.items(): flags = 0 if obj.readable(): flags = select.POLLIN if obj.writable(): flags = flags | select.POLLOUT if flags: pollster.register(fd, flags) r = pollster.poll (timeout) for fd, flags in r: try: obj = map[fd] try: if (flags & select.POLLIN): obj.handle_read_event() if (flags & select.POLLOUT): obj.handle_write_event() except ExitNow: raise ExitNow except: obj.handle_error() except KeyError: pass def loop (timeout=30.0, use_poll=0, map=None): if map is None: map=socket_map if use_poll: if hasattr (select, 'poll'): poll_fun = poll3 else: poll_fun = poll2 else: poll_fun = poll while map: poll_fun (timeout, map) class dispatcher: debug = 0 connected = 0 accepting = 0 closing = 0 addr = None def __init__ (self, sock=None, map=None): if sock: self.set_socket (sock, map) # I think it should inherit this anyway self.socket.setblocking (0) self.connected = 1 def __repr__ (self): try: status = [] if self.accepting and self.addr: status.append ('listening') elif self.connected: status.append ('connected') if self.addr: if self.addr == types.TupleType: status.append ('%s:%d' % self.addr) else: status.append (self.addr) return '<%s %s at %x>' % (self.__class__.__name__, ' '.join (status), id (self)) except: pass try: ar = repr (self.addr) except AttributeError: ar = 'no self.addr!' return '<__repr__() failed for %s instance at %x (addr=%s)>' % \ (self.__class__.__name__, id (self), ar) def add_channel (self, map=None): #self.log_info ('adding channel %s' % self) if map is None: map=socket_map map [self._fileno] = self def del_channel (self, map=None): fd = self._fileno if map is None: map=socket_map if map.has_key (fd): #self.log_info ('closing channel %d:%s' % (fd, self)) del map [fd] def create_socket (self, family, type): self.family_and_type = family, type self.socket = socket.socket (family, type) self.socket.setblocking(0) self._fileno = self.socket.fileno() self.add_channel() def set_socket (self, sock, map=None): self.__dict__['socket'] = sock self._fileno = sock.fileno() self.add_channel (map) def set_reuse_addr (self): # try to re-use a server port if possible try: self.socket.setsockopt ( socket.SOL_SOCKET, socket.SO_REUSEADDR, self.socket.getsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR) | 1 ) except: pass # ================================================== # predicates for select() # these are used as filters for the lists of sockets # to pass to select(). # ================================================== def readable (self): return 1 if os.name == 'mac': # The macintosh will select a listening socket for # write if you let it. What might this mean? def writable (self): return not self.accepting else: def writable (self): return 1 # ================================================== # socket object methods. # ================================================== def listen (self, num): self.accepting = 1 if os.name == 'nt' and num > 5: num = 1 return self.socket.listen (num) def bind (self, addr): self.addr = addr return self.socket.bind (addr) def connect (self, address): self.connected = 0 # XXX why not use connect_ex? try: self.socket.connect (address) except socket.error, why: if why[0] in (EINPROGRESS, EALREADY, EWOULDBLOCK): return else: raise socket.error, why self.connected = 1 self.handle_connect() def accept (self): try: conn, addr = self.socket.accept() return conn, addr except socket.error, why: if why[0] == EWOULDBLOCK: pass else: raise socket.error, why def send (self, data): try: result = self.socket.send (data) return result except socket.error, why: if why[0] == EWOULDBLOCK: return 0 else: raise socket.error, why return 0 def recv (self, buffer_size): try: data = self.socket.recv (buffer_size) if not data: # a closed connection is indicated by signaling # a read condition, and having recv() return 0. self.handle_close() return '' else: return data except socket.error, why: # winsock sometimes throws ENOTCONN if why[0] in [ECONNRESET, ENOTCONN, ESHUTDOWN]: self.handle_close() return '' else: raise socket.error, why def close (self): self.del_channel() self.socket.close() # cheap inheritance, used to pass all other attribute # references to the underlying socket object. def __getattr__ (self, attr): return getattr (self.socket, attr) # log and log_info maybe overriden to provide more sophisitcated # logging and warning methods. In general, log is for 'hit' logging # and 'log_info' is for informational, warning and error logging. def log (self, message): sys.stderr.write ('log: %s\n' % str(message)) def log_info (self, message, type='info'): if __debug__ or type != 'info': print '%s: %s' % (type, message) def handle_read_event (self): if self.accepting: # for an accepting socket, getting a read implies # that we are connected if not self.connected: self.connected = 1 self.handle_accept() elif not self.connected: self.handle_connect() self.connected = 1 self.handle_read() else: self.handle_read() def handle_write_event (self): # getting a write implies that we are connected if not self.connected: self.handle_connect() self.connected = 1 self.handle_write() def handle_expt_event (self): self.handle_expt() def handle_error (self): (file,fun,line), t, v, tbinfo = compact_traceback() # sometimes a user repr method will crash. try: self_repr = repr (self) except: self_repr = '<__repr__ (self) failed for object at %0x>' % id(self) self.log_info ( 'uncaptured python exception, closing channel %s (%s:%s %s)' % ( self_repr, t, v, tbinfo ), 'error' ) self.close() def handle_expt (self): self.log_info ('unhandled exception', 'warning') def handle_read (self): self.log_info ('unhandled read event', 'warning') def handle_write (self): self.log_info ('unhandled write event', 'warning') def handle_connect (self): self.log_info ('unhandled connect event', 'warning') def handle_accept (self): self.log_info ('unhandled accept event', 'warning') def handle_close (self): self.log_info ('unhandled close event', 'warning') self.close() # --------------------------------------------------------------------------- # adds simple buffered output capability, useful for simple clients. # [for more sophisticated usage use asynchat.async_chat] # --------------------------------------------------------------------------- class dispatcher_with_send (dispatcher): def __init__ (self, sock=None): dispatcher.__init__ (self, sock) self.out_buffer = '' def initiate_send (self): num_sent = 0 num_sent = dispatcher.send (self, self.out_buffer[:512]) self.out_buffer = self.out_buffer[num_sent:] def handle_write (self): self.initiate_send() def writable (self): return (not self.connected) or len(self.out_buffer) def send (self, data): if self.debug: self.log_info ('sending %s' % repr(data)) self.out_buffer = self.out_buffer + data self.initiate_send() # --------------------------------------------------------------------------- # used for debugging. # --------------------------------------------------------------------------- def compact_traceback (): t,v,tb = sys.exc_info() tbinfo = [] while 1: tbinfo.append (( tb.tb_frame.f_code.co_filename, tb.tb_frame.f_code.co_name, str(tb.tb_lineno) )) tb = tb.tb_next if not tb: break # just to be safe del tb file, function, line = tbinfo[-1] info = '[' + '] ['.join(map(lambda x: '|'.join(x), tbinfo)) + ']' return (file, function, line), t, v, info def close_all (map=None): if map is None: map=socket_map for x in map.values(): x.socket.close() map.clear() # Asynchronous File I/O: # # After a little research (reading man pages on various unixen, and # digging through the linux kernel), I've determined that select() # isn't meant for doing doing asynchronous file i/o. # Heartening, though - reading linux/mm/filemap.c shows that linux # supports asynchronous read-ahead. So _MOST_ of the time, the data # will be sitting in memory for us already when we go to read it. # # What other OS's (besides NT) support async file i/o? [VMS?] # # Regardless, this is useful for pipes, and stdin/stdout... import os if os.name == 'posix': import fcntl class file_wrapper: # here we override just enough to make a file # look like a socket for the purposes of asyncore. def __init__ (self, fd): self.fd = fd def recv (self, *args): return apply (os.read, (self.fd,)+args) def send (self, *args): return apply (os.write, (self.fd,)+args) read = recv write = send def close (self): return os.close (self.fd) def fileno (self): return self.fd class file_dispatcher (dispatcher): def __init__ (self, fd): dispatcher.__init__ (self) self.connected = 1 # set it to non-blocking mode flags = fcntl.fcntl (fd, fcntl.F_GETFL, 0) flags = flags | os.O_NONBLOCK fcntl.fcntl (fd, fcntl.F_SETFL, flags) self.set_file (fd) def set_file (self, fd): self._fileno = fd self.socket = file_wrapper (fd) self.add_channel()