"""Unit tests for zero-argument super() & related machinery.""" import textwrap import threading import unittest from unittest.mock import patch from test.support import import_helper, threading_helper ADAPTIVE_WARMUP_DELAY = 2 class A: def f(self): return 'A' @classmethod def cm(cls): return (cls, 'A') class B(A): def f(self): return super().f() + 'B' @classmethod def cm(cls): return (cls, super().cm(), 'B') class C(A): def f(self): return super().f() + 'C' @classmethod def cm(cls): return (cls, super().cm(), 'C') class D(C, B): def f(self): return super().f() + 'D' def cm(cls): return (cls, super().cm(), 'D') class E(D): pass class F(E): f = E.f class G(A): pass class TestSuper(unittest.TestCase): def tearDown(self): # This fixes the damage that test_various___class___pathologies does. nonlocal __class__ __class__ = TestSuper def test_basics_working(self): self.assertEqual(D().f(), 'ABCD') def test_class_getattr_working(self): self.assertEqual(D.f(D()), 'ABCD') def test_subclass_no_override_working(self): self.assertEqual(E().f(), 'ABCD') self.assertEqual(E.f(E()), 'ABCD') def test_unbound_method_transfer_working(self): self.assertEqual(F().f(), 'ABCD') self.assertEqual(F.f(F()), 'ABCD') def test_class_methods_still_working(self): self.assertEqual(A.cm(), (A, 'A')) self.assertEqual(A().cm(), (A, 'A')) self.assertEqual(G.cm(), (G, 'A')) self.assertEqual(G().cm(), (G, 'A')) def test_super_in_class_methods_working(self): d = D() self.assertEqual(d.cm(), (d, (D, (D, (D, 'A'), 'B'), 'C'), 'D')) e = E() self.assertEqual(e.cm(), (e, (E, (E, (E, 'A'), 'B'), 'C'), 'D')) def test_super_with_closure(self): # Issue4360: super() did not work in a function that # contains a closure class E(A): def f(self): def nested(): self return super().f() + 'E' self.assertEqual(E().f(), 'AE') def test_various___class___pathologies(self): # See issue #12370 class X(A): def f(self): return super().f() __class__ = 413 x = X() self.assertEqual(x.f(), 'A') self.assertEqual(x.__class__, 413) class X: x = __class__ def f(): __class__ self.assertIs(X.x, type(self)) with self.assertRaises(NameError) as e: exec("""class X: __class__ def f(): __class__""", globals(), {}) self.assertIs(type(e.exception), NameError) # Not UnboundLocalError class X: global __class__ __class__ = 42 def f(): __class__ self.assertEqual(globals()["__class__"], 42) del globals()["__class__"] self.assertNotIn("__class__", X.__dict__) class X: nonlocal __class__ __class__ = 42 def f(): __class__ self.assertEqual(__class__, 42) def test___class___instancemethod(self): # See issue #14857 class X: def f(self): return __class__ self.assertIs(X().f(), X) def test___class___classmethod(self): # See issue #14857 class X: @classmethod def f(cls): return __class__ self.assertIs(X.f(), X) def test___class___staticmethod(self): # See issue #14857 class X: @staticmethod def f(): return __class__ self.assertIs(X.f(), X) def test___class___new(self): # See issue #23722 # Ensure zero-arg super() works as soon as type.__new__() is completed test_class = None class Meta(type): def __new__(cls, name, bases, namespace): nonlocal test_class self = super().__new__(cls, name, bases, namespace) test_class = self.f() return self class A(metaclass=Meta): @staticmethod def f(): return __class__ self.assertIs(test_class, A) def test___class___delayed(self): # See issue #23722 test_namespace = None class Meta(type): def __new__(cls, name, bases, namespace): nonlocal test_namespace test_namespace = namespace return None class A(metaclass=Meta): @staticmethod def f(): return __class__ self.assertIs(A, None) B = type("B", (), test_namespace) self.assertIs(B.f(), B) def test___class___mro(self): # See issue #23722 test_class = None class Meta(type): def mro(self): # self.f() doesn't work yet... self.__dict__["f"]() return super().mro() class A(metaclass=Meta): def f(): nonlocal test_class test_class = __class__ self.assertIs(test_class, A) def test___classcell___expected_behaviour(self): # See issue #23722 class Meta(type): def __new__(cls, name, bases, namespace): nonlocal namespace_snapshot namespace_snapshot = namespace.copy() return super().__new__(cls, name, bases, namespace) # __classcell__ is injected into the class namespace by the compiler # when at least one method needs it, and should be omitted otherwise namespace_snapshot = None class WithoutClassRef(metaclass=Meta): pass self.assertNotIn("__classcell__", namespace_snapshot) # With zero-arg super() or an explicit __class__ reference, # __classcell__ is the exact cell reference to be populated by # type.__new__ namespace_snapshot = None class WithClassRef(metaclass=Meta): def f(self): return __class__ class_cell = namespace_snapshot["__classcell__"] method_closure = WithClassRef.f.__closure__ self.assertEqual(len(method_closure), 1) self.assertIs(class_cell, method_closure[0]) # Ensure the cell reference *doesn't* get turned into an attribute with self.assertRaises(AttributeError): WithClassRef.__classcell__ def test___classcell___missing(self): # See issue #23722 # Some metaclasses may not pass the original namespace to type.__new__ # We test that case here by forcibly deleting __classcell__ class Meta(type): def __new__(cls, name, bases, namespace): namespace.pop('__classcell__', None) return super().__new__(cls, name, bases, namespace) # The default case should continue to work without any errors class WithoutClassRef(metaclass=Meta): pass # With zero-arg super() or an explicit __class__ reference, we expect # __build_class__ to raise a RuntimeError complaining that # __class__ was not set, and asking if __classcell__ was propagated # to type.__new__. expected_error = '__class__ not set.*__classcell__ propagated' with self.assertRaisesRegex(RuntimeError, expected_error): class WithClassRef(metaclass=Meta): def f(self): return __class__ def test___classcell___overwrite(self): # See issue #23722 # Overwriting __classcell__ with nonsense is explicitly prohibited class Meta(type): def __new__(cls, name, bases, namespace, cell): namespace['__classcell__'] = cell return super().__new__(cls, name, bases, namespace) for bad_cell in (None, 0, "", object()): with self.subTest(bad_cell=bad_cell): with self.assertRaises(TypeError): class A(metaclass=Meta, cell=bad_cell): pass def test___classcell___wrong_cell(self): # See issue #23722 # Pointing the cell reference at the wrong class is also prohibited class Meta(type): def __new__(cls, name, bases, namespace): cls = super().__new__(cls, name, bases, namespace) B = type("B", (), namespace) return cls with self.assertRaises(TypeError): class A(metaclass=Meta): def f(self): return __class__ def test_obscure_super_errors(self): def f(): super() with self.assertRaisesRegex(RuntimeError, r"no arguments"): f() class C: def f(): super() with self.assertRaisesRegex(RuntimeError, r"no arguments"): C.f() def f(x): del x super() with self.assertRaisesRegex(RuntimeError, r"arg\[0\] deleted"): f(None) class X: def f(x): nonlocal __class__ del __class__ super() with self.assertRaisesRegex(RuntimeError, r"empty __class__ cell"): X().f() def test_cell_as_self(self): class X: def meth(self): super() def f(): k = X() def g(): return k return g c = f().__closure__[0] self.assertRaises(TypeError, X.meth, c) def test_super_init_leaks(self): # Issue #26718: super.__init__ leaked memory if called multiple times. # This will be caught by regrtest.py -R if this leak. # NOTE: Despite the use in the test a direct call of super.__init__ # is not endorsed. sp = super(float, 1.0) for i in range(1000): super.__init__(sp, int, i) def test_super_argcount(self): with self.assertRaisesRegex(TypeError, "expected at most"): super(int, int, int) def test_super_argtype(self): with self.assertRaisesRegex(TypeError, "argument 1 must be a type"): super(1, int) def test_shadowed_global(self): source = textwrap.dedent( """ class super: msg = "truly super" class C: def method(self): return super().msg """, ) with import_helper.ready_to_import(name="shadowed_super", source=source): import shadowed_super self.assertEqual(shadowed_super.C().method(), "truly super") import_helper.unload("shadowed_super") def test_shadowed_local(self): class super: msg = "quite super" class C: def method(self): return super().msg self.assertEqual(C().method(), "quite super") def test_shadowed_dynamic(self): class MySuper: msg = "super super" class C: def method(self): return super().msg with patch(f"{__name__}.super", MySuper) as m: self.assertEqual(C().method(), "super super") def test_shadowed_dynamic_two_arg(self): call_args = [] class MySuper: def __init__(self, *args): call_args.append(args) msg = "super super" class C: def method(self): return super(1, 2).msg with patch(f"{__name__}.super", MySuper) as m: self.assertEqual(C().method(), "super super") self.assertEqual(call_args, [(1, 2)]) def test_attribute_error(self): class C: def method(self): return super().msg with self.assertRaisesRegex(AttributeError, "'super' object has no attribute 'msg'"): C().method() def test_bad_first_arg(self): class C: def method(self): return super(1, self).method() with self.assertRaisesRegex(TypeError, "argument 1 must be a type"): C().method() def test_supercheck_fail(self): class C: def method(self, type_, obj): return super(type_, obj).method() c = C() err_msg = ( r"super\(type, obj\): obj \({} {}\) is not " r"an instance or subtype of type \({}\)." ) cases = ( (int, c, int.__name__, C.__name__, "instance of"), # obj is instance of type (C, list(), C.__name__, list.__name__, "instance of"), # obj is type itself (C, list, C.__name__, list.__name__, "type"), ) for case in cases: with self.subTest(case=case): type_, obj, type_str, obj_str, instance_or_type = case regex = err_msg.format(instance_or_type, obj_str, type_str) with self.assertRaisesRegex(TypeError, regex): c.method(type_, obj) def test_super___class__(self): class C: def method(self): return super().__class__ self.assertEqual(C().method(), super) def test_super_subclass___class__(self): class mysuper(super): pass class C: def method(self): return mysuper(C, self).__class__ self.assertEqual(C().method(), mysuper) def test_unusual_getattro(self): class MyType(type): pass def test(name): mytype = MyType(name, (MyType,), {}) super(MyType, type(mytype)).__setattr__(mytype, "bar", 1) self.assertEqual(mytype.bar, 1) for _ in range(ADAPTIVE_WARMUP_DELAY): test("foo1") def test_reassigned_new(self): class A: def __new__(cls): pass def __init_subclass__(cls): if "__new__" not in cls.__dict__: cls.__new__ = cls.__new__ class B(A): pass class C(B): def __new__(cls): return super().__new__(cls) for _ in range(ADAPTIVE_WARMUP_DELAY): C() def test_mixed_staticmethod_hierarchy(self): # This test is just a desugared version of `test_reassigned_new` class A: @staticmethod def some(cls, *args, **kwargs): self.assertFalse(args) self.assertFalse(kwargs) class B(A): def some(cls, *args, **kwargs): return super().some(cls, *args, **kwargs) class C(B): @staticmethod def some(cls): return super().some(cls) for _ in range(ADAPTIVE_WARMUP_DELAY): C.some(C) @threading_helper.requires_working_threading() def test___class___modification_multithreaded(self): """ Note: this test isn't actually testing anything on its own. It requires a sys audithook to be set to crash on older Python. This should be the case anyways as our test suite sets an audit hook. """ class Foo: pass class Bar: pass thing = Foo() def work(): foo = thing for _ in range(200): foo.__class__ = Bar type(foo) foo.__class__ = Foo type(foo) threads = [] for _ in range(6): thread = threading.Thread(target=work) thread.start() threads.append(thread) for thread in threads: thread.join() if __name__ == "__main__": unittest.main()