/*[clinic input] preserve [clinic start generated code]*/ #if defined(Py_BUILD_CORE) && !defined(Py_BUILD_CORE_MODULE) # include "pycore_gc.h" // PyGC_Head # include "pycore_runtime.h" // _Py_ID() #endif PyDoc_STRVAR(float_is_integer__doc__, "is_integer($self, /)\n" "--\n" "\n" "Return True if the float is an integer."); #define FLOAT_IS_INTEGER_METHODDEF \ {"is_integer", (PyCFunction)float_is_integer, METH_NOARGS, float_is_integer__doc__}, static PyObject * float_is_integer_impl(PyObject *self); static PyObject * float_is_integer(PyObject *self, PyObject *Py_UNUSED(ignored)) { return float_is_integer_impl(self); } PyDoc_STRVAR(float___trunc____doc__, "__trunc__($self, /)\n" "--\n" "\n" "Return the Integral closest to x between 0 and x."); #define FLOAT___TRUNC___METHODDEF \ {"__trunc__", (PyCFunction)float___trunc__, METH_NOARGS, float___trunc____doc__}, static PyObject * float___trunc___impl(PyObject *self); static PyObject * float___trunc__(PyObject *self, PyObject *Py_UNUSED(ignored)) { return float___trunc___impl(self); } PyDoc_STRVAR(float___floor____doc__, "__floor__($self, /)\n" "--\n" "\n" "Return the floor as an Integral."); #define FLOAT___FLOOR___METHODDEF \ {"__floor__", (PyCFunction)float___floor__, METH_NOARGS, float___floor____doc__}, static PyObject * float___floor___impl(PyObject *self); static PyObject * float___floor__(PyObject *self, PyObject *Py_UNUSED(ignored)) { return float___floor___impl(self); } PyDoc_STRVAR(float___ceil____doc__, "__ceil__($self, /)\n" "--\n" "\n" "Return the ceiling as an Integral."); #define FLOAT___CEIL___METHODDEF \ {"__ceil__", (PyCFunction)float___ceil__, METH_NOARGS, float___ceil____doc__}, static PyObject * float___ceil___impl(PyObject *self); static PyObject * float___ceil__(PyObject *self, PyObject *Py_UNUSED(ignored)) { return float___ceil___impl(self); } PyDoc_STRVAR(float___round____doc__, "__round__($self, ndigits=None, /)\n" "--\n" "\n" "Return the Integral closest to x, rounding half toward even.\n" "\n" "When an argument is passed, work like built-in round(x, ndigits)."); #define FLOAT___ROUND___METHODDEF \ {"__round__", _PyCFunction_CAST(float___round__), METH_FASTCALL, float___round____doc__}, static PyObject * float___round___impl(PyObject *self, PyObject *o_ndigits); static PyObject * float___round__(PyObject *self, PyObject *const *args, Py_ssize_t nargs) { PyObject *return_value = NULL; PyObject *o_ndigits = Py_None; if (!_PyArg_CheckPositional("__round__", nargs, 0, 1)) { goto exit; } if (nargs < 1) { goto skip_optional; } o_ndigits = args[0]; skip_optional: return_value = float___round___impl(self, o_ndigits); exit: return return_value; } PyDoc_STRVAR(float_conjugate__doc__, "conjugate($self, /)\n" "--\n" "\n" "Return self, the complex conjugate of any float."); #define FLOAT_CONJUGATE_METHODDEF \ {"conjugate", (PyCFunction)float_conjugate, METH_NOARGS, float_conjugate__doc__}, static PyObject * float_conjugate_impl(PyObject *self); static PyObject * float_conjugate(PyObject *self, PyObject *Py_UNUSED(ignored)) { return float_conjugate_impl(self); } PyDoc_STRVAR(float_hex__doc__, "hex($self, /)\n" "--\n" "\n" "Return a hexadecimal representation of a floating-point number.\n" "\n" ">>> (-0.1).hex()\n" "\'-0x1.999999999999ap-4\'\n" ">>> 3.14159.hex()\n" "\'0x1.921f9f01b866ep+1\'"); #define FLOAT_HEX_METHODDEF \ {"hex", (PyCFunction)float_hex, METH_NOARGS, float_hex__doc__}, static PyObject * float_hex_impl(PyObject *self); static PyObject * float_hex(PyObject *self, PyObject *Py_UNUSED(ignored)) { return float_hex_impl(self); } PyDoc_STRVAR(float_fromhex__doc__, "fromhex($type, string, /)\n" "--\n" "\n" "Create a floating-point number from a hexadecimal string.\n" "\n" ">>> float.fromhex(\'0x1.ffffp10\')\n" "2047.984375\n" ">>> float.fromhex(\'-0x1p-1074\')\n" "-5e-324"); #define FLOAT_FROMHEX_METHODDEF \ {"fromhex", (PyCFunction)float_fromhex, METH_O|METH_CLASS, float_fromhex__doc__}, PyDoc_STRVAR(float_as_integer_ratio__doc__, "as_integer_ratio($self, /)\n" "--\n" "\n" "Return a pair of integers, whose ratio is exactly equal to the original float.\n" "\n" "The ratio is in lowest terms and has a positive denominator. Raise\n" "OverflowError on infinities and a ValueError on NaNs.\n" "\n" ">>> (10.0).as_integer_ratio()\n" "(10, 1)\n" ">>> (0.0).as_integer_ratio()\n" "(0, 1)\n" ">>> (-.25).as_integer_ratio()\n" "(-1, 4)"); #define FLOAT_AS_INTEGER_RATIO_METHODDEF \ {"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS, float_as_integer_ratio__doc__}, static PyObject * float_as_integer_ratio_impl(PyObject *self); static PyObject * float_as_integer_ratio(PyObject *self, PyObject *Py_UNUSED(ignored)) { return float_as_integer_ratio_impl(self); } PyDoc_STRVAR(float_new__doc__, "float(x=0, /)\n" "--\n" "\n" "Convert a string or number to a floating point number, if possible."); static PyObject * float_new_impl(PyTypeObject *type, PyObject *x); static PyObject * float_new(PyTypeObject *type, PyObject *args, PyObject *kwargs) { PyObject *return_value = NULL; PyTypeObject *base_tp = &PyFloat_Type; PyObject *x = NULL; if ((type == base_tp || type->tp_init == base_tp->tp_init) && !_PyArg_NoKeywords("float", kwargs)) { goto exit; } if (!_PyArg_CheckPositional("float", PyTuple_GET_SIZE(args), 0, 1)) { goto exit; } if (PyTuple_GET_SIZE(args) < 1) { goto skip_optional; } x = PyTuple_GET_ITEM(args, 0); skip_optional: return_value = float_new_impl(type, x); exit: return return_value; } PyDoc_STRVAR(float___getnewargs____doc__, "__getnewargs__($self, /)\n" "--\n" "\n"); #define FLOAT___GETNEWARGS___METHODDEF \ {"__getnewargs__", (PyCFunction)float___getnewargs__, METH_NOARGS, float___getnewargs____doc__}, static PyObject * float___getnewargs___impl(PyObject *self); static PyObject * float___getnewargs__(PyObject *self, PyObject *Py_UNUSED(ignored)) { return float___getnewargs___impl(self); } PyDoc_STRVAR(float___getformat____doc__, "__getformat__($type, typestr, /)\n" "--\n" "\n" "You probably don\'t want to use this function.\n" "\n" " typestr\n" " Must be \'double\' or \'float\'.\n" "\n" "It exists mainly to be used in Python\'s test suite.\n" "\n" "This function returns whichever of \'unknown\', \'IEEE, big-endian\' or \'IEEE,\n" "little-endian\' best describes the format of floating point numbers used by the\n" "C type named by typestr."); #define FLOAT___GETFORMAT___METHODDEF \ {"__getformat__", (PyCFunction)float___getformat__, METH_O|METH_CLASS, float___getformat____doc__}, static PyObject * float___getformat___impl(PyTypeObject *type, const char *typestr); static PyObject * float___getformat__(PyTypeObject *type, PyObject *arg) { PyObject *return_value = NULL; const char *typestr; if (!PyUnicode_Check(arg)) { _PyArg_BadArgument("__getformat__", "argument", "str", arg); goto exit; } Py_ssize_t typestr_length; typestr = PyUnicode_AsUTF8AndSize(arg, &typestr_length); if (typestr == NULL) { goto exit; } if (strlen(typestr) != (size_t)typestr_length) { PyErr_SetString(PyExc_ValueError, "embedded null character"); goto exit; } return_value = float___getformat___impl(type, typestr); exit: return return_value; } PyDoc_STRVAR(float___format____doc__, "__format__($self, format_spec, /)\n" "--\n" "\n" "Formats the float according to format_spec."); #define FLOAT___FORMAT___METHODDEF \ {"__format__", (PyCFunction)float___format__, METH_O, float___format____doc__}, static PyObject * float___format___impl(PyObject *self, PyObject *format_spec); static PyObject * float___format__(PyObject *self, PyObject *arg) { PyObject *return_value = NULL; PyObject *format_spec; if (!PyUnicode_Check(arg)) { _PyArg_BadArgument("__format__", "argument", "str", arg); goto exit; } format_spec = arg; return_value = float___format___impl(self, format_spec); exit: return return_value; } /*[clinic end generated code: output=355c3f5102034a41 input=a9049054013a1b77]*/