/* Python's malloc wrappers (see pymem.h) */ #include "Python.h" #include "pycore_code.h" // stats #include "pycore_obmalloc.h" #include "pycore_pyerrors.h" // _Py_FatalErrorFormat() #include "pycore_pymem.h" #include "pycore_pystate.h" // _PyInterpreterState_GET #include // malloc() #include #undef uint #define uint pymem_uint /* Defined in tracemalloc.c */ extern void _PyMem_DumpTraceback(int fd, const void *ptr); static void _PyObject_DebugDumpAddress(const void *p); static void _PyMem_DebugCheckAddress(const char *func, char api_id, const void *p); static void set_up_debug_hooks_domain_unlocked(PyMemAllocatorDomain domain); static void set_up_debug_hooks_unlocked(void); static void get_allocator_unlocked(PyMemAllocatorDomain, PyMemAllocatorEx *); static void set_allocator_unlocked(PyMemAllocatorDomain, PyMemAllocatorEx *); /***************************************/ /* low-level allocator implementations */ /***************************************/ /* the default raw allocator (wraps malloc) */ void * _PyMem_RawMalloc(void *Py_UNUSED(ctx), size_t size) { /* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL for malloc(0), which would be treated as an error. Some platforms would return a pointer with no memory behind it, which would break pymalloc. To solve these problems, allocate an extra byte. */ if (size == 0) size = 1; return malloc(size); } void * _PyMem_RawCalloc(void *Py_UNUSED(ctx), size_t nelem, size_t elsize) { /* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL for calloc(0, 0), which would be treated as an error. Some platforms would return a pointer with no memory behind it, which would break pymalloc. To solve these problems, allocate an extra byte. */ if (nelem == 0 || elsize == 0) { nelem = 1; elsize = 1; } return calloc(nelem, elsize); } void * _PyMem_RawRealloc(void *Py_UNUSED(ctx), void *ptr, size_t size) { if (size == 0) size = 1; return realloc(ptr, size); } void _PyMem_RawFree(void *Py_UNUSED(ctx), void *ptr) { free(ptr); } #define MALLOC_ALLOC {NULL, _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree} #define PYRAW_ALLOC MALLOC_ALLOC /* the default object allocator */ // The actual implementation is further down. #ifdef WITH_PYMALLOC void* _PyObject_Malloc(void *ctx, size_t size); void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize); void _PyObject_Free(void *ctx, void *p); void* _PyObject_Realloc(void *ctx, void *ptr, size_t size); # define PYMALLOC_ALLOC {NULL, _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free} # define PYOBJ_ALLOC PYMALLOC_ALLOC #else # define PYOBJ_ALLOC MALLOC_ALLOC #endif // WITH_PYMALLOC #define PYMEM_ALLOC PYOBJ_ALLOC /* the default debug allocators */ // The actual implementation is further down. void* _PyMem_DebugRawMalloc(void *ctx, size_t size); void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize); void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size); void _PyMem_DebugRawFree(void *ctx, void *ptr); void* _PyMem_DebugMalloc(void *ctx, size_t size); void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize); void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size); void _PyMem_DebugFree(void *ctx, void *p); #define PYDBGRAW_ALLOC \ {&_PyRuntime.allocators.debug.raw, _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree} #define PYDBGMEM_ALLOC \ {&_PyRuntime.allocators.debug.mem, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} #define PYDBGOBJ_ALLOC \ {&_PyRuntime.allocators.debug.obj, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} /* the low-level virtual memory allocator */ #ifdef WITH_PYMALLOC # ifdef MS_WINDOWS # include # elif defined(HAVE_MMAP) # include # ifdef MAP_ANONYMOUS # define ARENAS_USE_MMAP # endif # endif #endif void * _PyMem_ArenaAlloc(void *Py_UNUSED(ctx), size_t size) { #ifdef MS_WINDOWS return VirtualAlloc(NULL, size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); #elif defined(ARENAS_USE_MMAP) void *ptr; ptr = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); if (ptr == MAP_FAILED) return NULL; assert(ptr != NULL); return ptr; #else return malloc(size); #endif } void _PyMem_ArenaFree(void *Py_UNUSED(ctx), void *ptr, #if defined(ARENAS_USE_MMAP) size_t size #else size_t Py_UNUSED(size) #endif ) { #ifdef MS_WINDOWS VirtualFree(ptr, 0, MEM_RELEASE); #elif defined(ARENAS_USE_MMAP) munmap(ptr, size); #else free(ptr); #endif } /*******************************************/ /* end low-level allocator implementations */ /*******************************************/ #if defined(__has_feature) /* Clang */ # if __has_feature(address_sanitizer) /* is ASAN enabled? */ # define _Py_NO_SANITIZE_ADDRESS \ __attribute__((no_sanitize("address"))) # endif # if __has_feature(thread_sanitizer) /* is TSAN enabled? */ # define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread)) # endif # if __has_feature(memory_sanitizer) /* is MSAN enabled? */ # define _Py_NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory)) # endif #elif defined(__GNUC__) # if defined(__SANITIZE_ADDRESS__) /* GCC 4.8+, is ASAN enabled? */ # define _Py_NO_SANITIZE_ADDRESS \ __attribute__((no_sanitize_address)) # endif // TSAN is supported since GCC 5.1, but __SANITIZE_THREAD__ macro // is provided only since GCC 7. # if __GNUC__ > 5 || (__GNUC__ == 5 && __GNUC_MINOR__ >= 1) # define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread)) # endif #endif #ifndef _Py_NO_SANITIZE_ADDRESS # define _Py_NO_SANITIZE_ADDRESS #endif #ifndef _Py_NO_SANITIZE_THREAD # define _Py_NO_SANITIZE_THREAD #endif #ifndef _Py_NO_SANITIZE_MEMORY # define _Py_NO_SANITIZE_MEMORY #endif #define ALLOCATORS_MUTEX (_PyRuntime.allocators.mutex) #define _PyMem_Raw (_PyRuntime.allocators.standard.raw) #define _PyMem (_PyRuntime.allocators.standard.mem) #define _PyObject (_PyRuntime.allocators.standard.obj) #define _PyMem_Debug (_PyRuntime.allocators.debug) #define _PyObject_Arena (_PyRuntime.allocators.obj_arena) /***************************/ /* managing the allocators */ /***************************/ static int set_default_allocator_unlocked(PyMemAllocatorDomain domain, int debug, PyMemAllocatorEx *old_alloc) { if (old_alloc != NULL) { get_allocator_unlocked(domain, old_alloc); } PyMemAllocatorEx new_alloc; switch(domain) { case PYMEM_DOMAIN_RAW: new_alloc = (PyMemAllocatorEx)PYRAW_ALLOC; break; case PYMEM_DOMAIN_MEM: new_alloc = (PyMemAllocatorEx)PYMEM_ALLOC; break; case PYMEM_DOMAIN_OBJ: new_alloc = (PyMemAllocatorEx)PYOBJ_ALLOC; break; default: /* unknown domain */ return -1; } set_allocator_unlocked(domain, &new_alloc); if (debug) { set_up_debug_hooks_domain_unlocked(domain); } return 0; } #ifdef Py_DEBUG static const int pydebug = 1; #else static const int pydebug = 0; #endif int _PyMem_SetDefaultAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *old_alloc) { if (ALLOCATORS_MUTEX == NULL) { /* The runtime must be initializing. */ return set_default_allocator_unlocked(domain, pydebug, old_alloc); } PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); int res = set_default_allocator_unlocked(domain, pydebug, old_alloc); PyThread_release_lock(ALLOCATORS_MUTEX); return res; } int _PyMem_GetAllocatorName(const char *name, PyMemAllocatorName *allocator) { if (name == NULL || *name == '\0') { /* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line nameions): use default memory allocators */ *allocator = PYMEM_ALLOCATOR_DEFAULT; } else if (strcmp(name, "default") == 0) { *allocator = PYMEM_ALLOCATOR_DEFAULT; } else if (strcmp(name, "debug") == 0) { *allocator = PYMEM_ALLOCATOR_DEBUG; } #ifdef WITH_PYMALLOC else if (strcmp(name, "pymalloc") == 0) { *allocator = PYMEM_ALLOCATOR_PYMALLOC; } else if (strcmp(name, "pymalloc_debug") == 0) { *allocator = PYMEM_ALLOCATOR_PYMALLOC_DEBUG; } #endif else if (strcmp(name, "malloc") == 0) { *allocator = PYMEM_ALLOCATOR_MALLOC; } else if (strcmp(name, "malloc_debug") == 0) { *allocator = PYMEM_ALLOCATOR_MALLOC_DEBUG; } else { /* unknown allocator */ return -1; } return 0; } static int set_up_allocators_unlocked(PyMemAllocatorName allocator) { switch (allocator) { case PYMEM_ALLOCATOR_NOT_SET: /* do nothing */ break; case PYMEM_ALLOCATOR_DEFAULT: (void)set_default_allocator_unlocked(PYMEM_DOMAIN_RAW, pydebug, NULL); (void)set_default_allocator_unlocked(PYMEM_DOMAIN_MEM, pydebug, NULL); (void)set_default_allocator_unlocked(PYMEM_DOMAIN_OBJ, pydebug, NULL); break; case PYMEM_ALLOCATOR_DEBUG: (void)set_default_allocator_unlocked(PYMEM_DOMAIN_RAW, 1, NULL); (void)set_default_allocator_unlocked(PYMEM_DOMAIN_MEM, 1, NULL); (void)set_default_allocator_unlocked(PYMEM_DOMAIN_OBJ, 1, NULL); break; #ifdef WITH_PYMALLOC case PYMEM_ALLOCATOR_PYMALLOC: case PYMEM_ALLOCATOR_PYMALLOC_DEBUG: { PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; set_allocator_unlocked(PYMEM_DOMAIN_RAW, &malloc_alloc); PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC; set_allocator_unlocked(PYMEM_DOMAIN_MEM, &pymalloc); set_allocator_unlocked(PYMEM_DOMAIN_OBJ, &pymalloc); if (allocator == PYMEM_ALLOCATOR_PYMALLOC_DEBUG) { set_up_debug_hooks_unlocked(); } break; } #endif case PYMEM_ALLOCATOR_MALLOC: case PYMEM_ALLOCATOR_MALLOC_DEBUG: { PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; set_allocator_unlocked(PYMEM_DOMAIN_RAW, &malloc_alloc); set_allocator_unlocked(PYMEM_DOMAIN_MEM, &malloc_alloc); set_allocator_unlocked(PYMEM_DOMAIN_OBJ, &malloc_alloc); if (allocator == PYMEM_ALLOCATOR_MALLOC_DEBUG) { set_up_debug_hooks_unlocked(); } break; } default: /* unknown allocator */ return -1; } return 0; } int _PyMem_SetupAllocators(PyMemAllocatorName allocator) { PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); int res = set_up_allocators_unlocked(allocator); PyThread_release_lock(ALLOCATORS_MUTEX); return res; } static int pymemallocator_eq(PyMemAllocatorEx *a, PyMemAllocatorEx *b) { return (memcmp(a, b, sizeof(PyMemAllocatorEx)) == 0); } static const char* get_current_allocator_name_unlocked(void) { PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; #ifdef WITH_PYMALLOC PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC; #endif if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) && pymemallocator_eq(&_PyMem, &malloc_alloc) && pymemallocator_eq(&_PyObject, &malloc_alloc)) { return "malloc"; } #ifdef WITH_PYMALLOC if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) && pymemallocator_eq(&_PyMem, &pymalloc) && pymemallocator_eq(&_PyObject, &pymalloc)) { return "pymalloc"; } #endif PyMemAllocatorEx dbg_raw = PYDBGRAW_ALLOC; PyMemAllocatorEx dbg_mem = PYDBGMEM_ALLOC; PyMemAllocatorEx dbg_obj = PYDBGOBJ_ALLOC; if (pymemallocator_eq(&_PyMem_Raw, &dbg_raw) && pymemallocator_eq(&_PyMem, &dbg_mem) && pymemallocator_eq(&_PyObject, &dbg_obj)) { /* Debug hooks installed */ if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) && pymemallocator_eq(&_PyMem_Debug.mem.alloc, &malloc_alloc) && pymemallocator_eq(&_PyMem_Debug.obj.alloc, &malloc_alloc)) { return "malloc_debug"; } #ifdef WITH_PYMALLOC if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) && pymemallocator_eq(&_PyMem_Debug.mem.alloc, &pymalloc) && pymemallocator_eq(&_PyMem_Debug.obj.alloc, &pymalloc)) { return "pymalloc_debug"; } #endif } return NULL; } const char* _PyMem_GetCurrentAllocatorName(void) { PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); const char *name = get_current_allocator_name_unlocked(); PyThread_release_lock(ALLOCATORS_MUTEX); return name; } #ifdef WITH_PYMALLOC static int _PyMem_DebugEnabled(void) { return (_PyObject.malloc == _PyMem_DebugMalloc); } static int _PyMem_PymallocEnabled(void) { if (_PyMem_DebugEnabled()) { return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc); } else { return (_PyObject.malloc == _PyObject_Malloc); } } #endif static void set_up_debug_hooks_domain_unlocked(PyMemAllocatorDomain domain) { PyMemAllocatorEx alloc; if (domain == PYMEM_DOMAIN_RAW) { if (_PyMem_Raw.malloc == _PyMem_DebugRawMalloc) { return; } get_allocator_unlocked(domain, &_PyMem_Debug.raw.alloc); alloc.ctx = &_PyMem_Debug.raw; alloc.malloc = _PyMem_DebugRawMalloc; alloc.calloc = _PyMem_DebugRawCalloc; alloc.realloc = _PyMem_DebugRawRealloc; alloc.free = _PyMem_DebugRawFree; set_allocator_unlocked(domain, &alloc); } else if (domain == PYMEM_DOMAIN_MEM) { if (_PyMem.malloc == _PyMem_DebugMalloc) { return; } get_allocator_unlocked(domain, &_PyMem_Debug.mem.alloc); alloc.ctx = &_PyMem_Debug.mem; alloc.malloc = _PyMem_DebugMalloc; alloc.calloc = _PyMem_DebugCalloc; alloc.realloc = _PyMem_DebugRealloc; alloc.free = _PyMem_DebugFree; set_allocator_unlocked(domain, &alloc); } else if (domain == PYMEM_DOMAIN_OBJ) { if (_PyObject.malloc == _PyMem_DebugMalloc) { return; } get_allocator_unlocked(domain, &_PyMem_Debug.obj.alloc); alloc.ctx = &_PyMem_Debug.obj; alloc.malloc = _PyMem_DebugMalloc; alloc.calloc = _PyMem_DebugCalloc; alloc.realloc = _PyMem_DebugRealloc; alloc.free = _PyMem_DebugFree; set_allocator_unlocked(domain, &alloc); } } static void set_up_debug_hooks_unlocked(void) { set_up_debug_hooks_domain_unlocked(PYMEM_DOMAIN_RAW); set_up_debug_hooks_domain_unlocked(PYMEM_DOMAIN_MEM); set_up_debug_hooks_domain_unlocked(PYMEM_DOMAIN_OBJ); } void PyMem_SetupDebugHooks(void) { if (ALLOCATORS_MUTEX == NULL) { /* The runtime must not be completely initialized yet. */ set_up_debug_hooks_unlocked(); return; } PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); set_up_debug_hooks_unlocked(); PyThread_release_lock(ALLOCATORS_MUTEX); } static void get_allocator_unlocked(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) { switch(domain) { case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break; case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break; case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break; default: /* unknown domain: set all attributes to NULL */ allocator->ctx = NULL; allocator->malloc = NULL; allocator->calloc = NULL; allocator->realloc = NULL; allocator->free = NULL; } } static void set_allocator_unlocked(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) { switch(domain) { case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break; case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break; case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break; /* ignore unknown domain */ } } void PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) { if (ALLOCATORS_MUTEX == NULL) { /* The runtime must not be completely initialized yet. */ get_allocator_unlocked(domain, allocator); return; } PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); get_allocator_unlocked(domain, allocator); PyThread_release_lock(ALLOCATORS_MUTEX); } void PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) { if (ALLOCATORS_MUTEX == NULL) { /* The runtime must not be completely initialized yet. */ set_allocator_unlocked(domain, allocator); return; } PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); set_allocator_unlocked(domain, allocator); PyThread_release_lock(ALLOCATORS_MUTEX); } void PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator) { if (ALLOCATORS_MUTEX == NULL) { /* The runtime must not be completely initialized yet. */ *allocator = _PyObject_Arena; return; } PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); *allocator = _PyObject_Arena; PyThread_release_lock(ALLOCATORS_MUTEX); } void PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator) { if (ALLOCATORS_MUTEX == NULL) { /* The runtime must not be completely initialized yet. */ _PyObject_Arena = *allocator; return; } PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); _PyObject_Arena = *allocator; PyThread_release_lock(ALLOCATORS_MUTEX); } /* Note that there is a possible, but very unlikely, race in any place * below where we call one of the allocator functions. We access two * fields in each case: "malloc", etc. and "ctx". * * It is unlikely that the allocator will be changed while one of those * calls is happening, much less in that very narrow window. * Furthermore, the likelihood of a race is drastically reduced by the * fact that the allocator may not be changed after runtime init * (except with a wrapper). * * With the above in mind, we currently don't worry about locking * around these uses of the runtime-global allocators state. */ /*************************/ /* the "arena" allocator */ /*************************/ void * _PyObject_VirtualAlloc(size_t size) { return _PyObject_Arena.alloc(_PyObject_Arena.ctx, size); } void _PyObject_VirtualFree(void *obj, size_t size) { _PyObject_Arena.free(_PyObject_Arena.ctx, obj, size); } /***********************/ /* the "raw" allocator */ /***********************/ void * PyMem_RawMalloc(size_t size) { /* * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes. * Most python internals blindly use a signed Py_ssize_t to track * things without checking for overflows or negatives. * As size_t is unsigned, checking for size < 0 is not required. */ if (size > (size_t)PY_SSIZE_T_MAX) return NULL; return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size); } void * PyMem_RawCalloc(size_t nelem, size_t elsize) { /* see PyMem_RawMalloc() */ if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) return NULL; return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize); } void* PyMem_RawRealloc(void *ptr, size_t new_size) { /* see PyMem_RawMalloc() */ if (new_size > (size_t)PY_SSIZE_T_MAX) return NULL; return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size); } void PyMem_RawFree(void *ptr) { _PyMem_Raw.free(_PyMem_Raw.ctx, ptr); } /***********************/ /* the "mem" allocator */ /***********************/ void * PyMem_Malloc(size_t size) { /* see PyMem_RawMalloc() */ if (size > (size_t)PY_SSIZE_T_MAX) return NULL; OBJECT_STAT_INC_COND(allocations512, size < 512); OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094); OBJECT_STAT_INC_COND(allocations_big, size >= 4094); OBJECT_STAT_INC(allocations); return _PyMem.malloc(_PyMem.ctx, size); } void * PyMem_Calloc(size_t nelem, size_t elsize) { /* see PyMem_RawMalloc() */ if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) return NULL; OBJECT_STAT_INC_COND(allocations512, elsize < 512); OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094); OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094); OBJECT_STAT_INC(allocations); return _PyMem.calloc(_PyMem.ctx, nelem, elsize); } void * PyMem_Realloc(void *ptr, size_t new_size) { /* see PyMem_RawMalloc() */ if (new_size > (size_t)PY_SSIZE_T_MAX) return NULL; return _PyMem.realloc(_PyMem.ctx, ptr, new_size); } void PyMem_Free(void *ptr) { OBJECT_STAT_INC(frees); _PyMem.free(_PyMem.ctx, ptr); } /***************************/ /* pymem utility functions */ /***************************/ wchar_t* _PyMem_RawWcsdup(const wchar_t *str) { assert(str != NULL); size_t len = wcslen(str); if (len > (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) { return NULL; } size_t size = (len + 1) * sizeof(wchar_t); wchar_t *str2 = PyMem_RawMalloc(size); if (str2 == NULL) { return NULL; } memcpy(str2, str, size); return str2; } char * _PyMem_RawStrdup(const char *str) { assert(str != NULL); size_t size = strlen(str) + 1; char *copy = PyMem_RawMalloc(size); if (copy == NULL) { return NULL; } memcpy(copy, str, size); return copy; } char * _PyMem_Strdup(const char *str) { assert(str != NULL); size_t size = strlen(str) + 1; char *copy = PyMem_Malloc(size); if (copy == NULL) { return NULL; } memcpy(copy, str, size); return copy; } /**************************/ /* the "object" allocator */ /**************************/ void * PyObject_Malloc(size_t size) { /* see PyMem_RawMalloc() */ if (size > (size_t)PY_SSIZE_T_MAX) return NULL; OBJECT_STAT_INC_COND(allocations512, size < 512); OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094); OBJECT_STAT_INC_COND(allocations_big, size >= 4094); OBJECT_STAT_INC(allocations); return _PyObject.malloc(_PyObject.ctx, size); } void * PyObject_Calloc(size_t nelem, size_t elsize) { /* see PyMem_RawMalloc() */ if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) return NULL; OBJECT_STAT_INC_COND(allocations512, elsize < 512); OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094); OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094); OBJECT_STAT_INC(allocations); return _PyObject.calloc(_PyObject.ctx, nelem, elsize); } void * PyObject_Realloc(void *ptr, size_t new_size) { /* see PyMem_RawMalloc() */ if (new_size > (size_t)PY_SSIZE_T_MAX) return NULL; return _PyObject.realloc(_PyObject.ctx, ptr, new_size); } void PyObject_Free(void *ptr) { OBJECT_STAT_INC(frees); _PyObject.free(_PyObject.ctx, ptr); } /* If we're using GCC, use __builtin_expect() to reduce overhead of the valgrind checks */ #if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__) # define UNLIKELY(value) __builtin_expect((value), 0) # define LIKELY(value) __builtin_expect((value), 1) #else # define UNLIKELY(value) (value) # define LIKELY(value) (value) #endif #ifdef WITH_PYMALLOC #ifdef WITH_VALGRIND #include /* -1 indicates that we haven't checked that we're running on valgrind yet. */ static int running_on_valgrind = -1; #endif typedef struct _obmalloc_state OMState; static inline int has_own_state(PyInterpreterState *interp) { return (_Py_IsMainInterpreter(interp) || !(interp->feature_flags & Py_RTFLAGS_USE_MAIN_OBMALLOC) || _Py_IsMainInterpreterFinalizing(interp)); } static inline OMState * get_state(void) { PyInterpreterState *interp = _PyInterpreterState_GET(); if (!has_own_state(interp)) { interp = _PyInterpreterState_Main(); } return &interp->obmalloc; } // These macros all rely on a local "state" variable. #define usedpools (state->pools.used) #define allarenas (state->mgmt.arenas) #define maxarenas (state->mgmt.maxarenas) #define unused_arena_objects (state->mgmt.unused_arena_objects) #define usable_arenas (state->mgmt.usable_arenas) #define nfp2lasta (state->mgmt.nfp2lasta) #define narenas_currently_allocated (state->mgmt.narenas_currently_allocated) #define ntimes_arena_allocated (state->mgmt.ntimes_arena_allocated) #define narenas_highwater (state->mgmt.narenas_highwater) #define raw_allocated_blocks (state->mgmt.raw_allocated_blocks) Py_ssize_t _PyInterpreterState_GetAllocatedBlocks(PyInterpreterState *interp) { #ifdef Py_DEBUG assert(has_own_state(interp)); #else if (!has_own_state(interp)) { _Py_FatalErrorFunc(__func__, "the interpreter doesn't have its own allocator"); } #endif OMState *state = &interp->obmalloc; Py_ssize_t n = raw_allocated_blocks; /* add up allocated blocks for used pools */ for (uint i = 0; i < maxarenas; ++i) { /* Skip arenas which are not allocated. */ if (allarenas[i].address == 0) { continue; } uintptr_t base = (uintptr_t)_Py_ALIGN_UP(allarenas[i].address, POOL_SIZE); /* visit every pool in the arena */ assert(base <= (uintptr_t) allarenas[i].pool_address); for (; base < (uintptr_t) allarenas[i].pool_address; base += POOL_SIZE) { poolp p = (poolp)base; n += p->ref.count; } } return n; } void _PyInterpreterState_FinalizeAllocatedBlocks(PyInterpreterState *interp) { if (has_own_state(interp)) { Py_ssize_t leaked = _PyInterpreterState_GetAllocatedBlocks(interp); assert(has_own_state(interp) || leaked == 0); interp->runtime->obmalloc.interpreter_leaks += leaked; } } static Py_ssize_t get_num_global_allocated_blocks(_PyRuntimeState *); /* We preserve the number of blockss leaked during runtime finalization, so they can be reported if the runtime is initialized again. */ // XXX We don't lose any information by dropping this, // so we should consider doing so. static Py_ssize_t last_final_leaks = 0; void _Py_FinalizeAllocatedBlocks(_PyRuntimeState *runtime) { last_final_leaks = get_num_global_allocated_blocks(runtime); runtime->obmalloc.interpreter_leaks = 0; } static Py_ssize_t get_num_global_allocated_blocks(_PyRuntimeState *runtime) { Py_ssize_t total = 0; if (_PyRuntimeState_GetFinalizing(runtime) != NULL) { PyInterpreterState *interp = _PyInterpreterState_Main(); if (interp == NULL) { /* We are at the very end of runtime finalization. We can't rely on finalizing->interp since that thread state is probably already freed, so we don't worry about it. */ assert(PyInterpreterState_Head() == NULL); } else { assert(interp != NULL); /* It is probably the last interpreter but not necessarily. */ assert(PyInterpreterState_Next(interp) == NULL); total += _PyInterpreterState_GetAllocatedBlocks(interp); } } else { HEAD_LOCK(runtime); PyInterpreterState *interp = PyInterpreterState_Head(); assert(interp != NULL); #ifdef Py_DEBUG int got_main = 0; #endif for (; interp != NULL; interp = PyInterpreterState_Next(interp)) { #ifdef Py_DEBUG if (_Py_IsMainInterpreter(interp)) { assert(!got_main); got_main = 1; assert(has_own_state(interp)); } #endif if (has_own_state(interp)) { total += _PyInterpreterState_GetAllocatedBlocks(interp); } } HEAD_UNLOCK(runtime); #ifdef Py_DEBUG assert(got_main); #endif } total += runtime->obmalloc.interpreter_leaks; total += last_final_leaks; return total; } Py_ssize_t _Py_GetGlobalAllocatedBlocks(void) { return get_num_global_allocated_blocks(&_PyRuntime); } #if WITH_PYMALLOC_RADIX_TREE /*==========================================================================*/ /* radix tree for tracking arena usage. */ #define arena_map_root (state->usage.arena_map_root) #ifdef USE_INTERIOR_NODES #define arena_map_mid_count (state->usage.arena_map_mid_count) #define arena_map_bot_count (state->usage.arena_map_bot_count) #endif /* Return a pointer to a bottom tree node, return NULL if it doesn't exist or * it cannot be created */ static inline Py_ALWAYS_INLINE arena_map_bot_t * arena_map_get(OMState *state, pymem_block *p, int create) { #ifdef USE_INTERIOR_NODES /* sanity check that IGNORE_BITS is correct */ assert(HIGH_BITS(p) == HIGH_BITS(&arena_map_root)); int i1 = MAP_TOP_INDEX(p); if (arena_map_root.ptrs[i1] == NULL) { if (!create) { return NULL; } arena_map_mid_t *n = PyMem_RawCalloc(1, sizeof(arena_map_mid_t)); if (n == NULL) { return NULL; } arena_map_root.ptrs[i1] = n; arena_map_mid_count++; } int i2 = MAP_MID_INDEX(p); if (arena_map_root.ptrs[i1]->ptrs[i2] == NULL) { if (!create) { return NULL; } arena_map_bot_t *n = PyMem_RawCalloc(1, sizeof(arena_map_bot_t)); if (n == NULL) { return NULL; } arena_map_root.ptrs[i1]->ptrs[i2] = n; arena_map_bot_count++; } return arena_map_root.ptrs[i1]->ptrs[i2]; #else return &arena_map_root; #endif } /* The radix tree only tracks arenas. So, for 16 MiB arenas, we throw * away 24 bits of the address. That reduces the space requirement of * the tree compared to similar radix tree page-map schemes. In * exchange for slashing the space requirement, it needs more * computation to check an address. * * Tracking coverage is done by "ideal" arena address. It is easier to * explain in decimal so let's say that the arena size is 100 bytes. * Then, ideal addresses are 100, 200, 300, etc. For checking if a * pointer address is inside an actual arena, we have to check two ideal * arena addresses. E.g. if pointer is 357, we need to check 200 and * 300. In the rare case that an arena is aligned in the ideal way * (e.g. base address of arena is 200) then we only have to check one * ideal address. * * The tree nodes for 200 and 300 both store the address of arena. * There are two cases: the arena starts at a lower ideal arena and * extends to this one, or the arena starts in this arena and extends to * the next ideal arena. The tail_lo and tail_hi members correspond to * these two cases. */ /* mark or unmark addresses covered by arena */ static int arena_map_mark_used(OMState *state, uintptr_t arena_base, int is_used) { /* sanity check that IGNORE_BITS is correct */ assert(HIGH_BITS(arena_base) == HIGH_BITS(&arena_map_root)); arena_map_bot_t *n_hi = arena_map_get( state, (pymem_block *)arena_base, is_used); if (n_hi == NULL) { assert(is_used); /* otherwise node should already exist */ return 0; /* failed to allocate space for node */ } int i3 = MAP_BOT_INDEX((pymem_block *)arena_base); int32_t tail = (int32_t)(arena_base & ARENA_SIZE_MASK); if (tail == 0) { /* is ideal arena address */ n_hi->arenas[i3].tail_hi = is_used ? -1 : 0; } else { /* arena_base address is not ideal (aligned to arena size) and * so it potentially covers two MAP_BOT nodes. Get the MAP_BOT node * for the next arena. Note that it might be in different MAP_TOP * and MAP_MID nodes as well so we need to call arena_map_get() * again (do the full tree traversal). */ n_hi->arenas[i3].tail_hi = is_used ? tail : 0; uintptr_t arena_base_next = arena_base + ARENA_SIZE; /* If arena_base is a legit arena address, so is arena_base_next - 1 * (last address in arena). If arena_base_next overflows then it * must overflow to 0. However, that would mean arena_base was * "ideal" and we should not be in this case. */ assert(arena_base < arena_base_next); arena_map_bot_t *n_lo = arena_map_get( state, (pymem_block *)arena_base_next, is_used); if (n_lo == NULL) { assert(is_used); /* otherwise should already exist */ n_hi->arenas[i3].tail_hi = 0; return 0; /* failed to allocate space for node */ } int i3_next = MAP_BOT_INDEX(arena_base_next); n_lo->arenas[i3_next].tail_lo = is_used ? tail : 0; } return 1; } /* Return true if 'p' is a pointer inside an obmalloc arena. * _PyObject_Free() calls this so it needs to be very fast. */ static int arena_map_is_used(OMState *state, pymem_block *p) { arena_map_bot_t *n = arena_map_get(state, p, 0); if (n == NULL) { return 0; } int i3 = MAP_BOT_INDEX(p); /* ARENA_BITS must be < 32 so that the tail is a non-negative int32_t. */ int32_t hi = n->arenas[i3].tail_hi; int32_t lo = n->arenas[i3].tail_lo; int32_t tail = (int32_t)(AS_UINT(p) & ARENA_SIZE_MASK); return (tail < lo) || (tail >= hi && hi != 0); } /* end of radix tree logic */ /*==========================================================================*/ #endif /* WITH_PYMALLOC_RADIX_TREE */ /* Allocate a new arena. If we run out of memory, return NULL. Else * allocate a new arena, and return the address of an arena_object * describing the new arena. It's expected that the caller will set * `usable_arenas` to the return value. */ static struct arena_object* new_arena(OMState *state) { struct arena_object* arenaobj; uint excess; /* number of bytes above pool alignment */ void *address; int debug_stats = _PyRuntime.obmalloc.dump_debug_stats; if (debug_stats == -1) { const char *opt = Py_GETENV("PYTHONMALLOCSTATS"); debug_stats = (opt != NULL && *opt != '\0'); _PyRuntime.obmalloc.dump_debug_stats = debug_stats; } if (debug_stats) { _PyObject_DebugMallocStats(stderr); } if (unused_arena_objects == NULL) { uint i; uint numarenas; size_t nbytes; /* Double the number of arena objects on each allocation. * Note that it's possible for `numarenas` to overflow. */ numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS; if (numarenas <= maxarenas) return NULL; /* overflow */ #if SIZEOF_SIZE_T <= SIZEOF_INT if (numarenas > SIZE_MAX / sizeof(*allarenas)) return NULL; /* overflow */ #endif nbytes = numarenas * sizeof(*allarenas); arenaobj = (struct arena_object *)PyMem_RawRealloc(allarenas, nbytes); if (arenaobj == NULL) return NULL; allarenas = arenaobj; /* We might need to fix pointers that were copied. However, * new_arena only gets called when all the pages in the * previous arenas are full. Thus, there are *no* pointers * into the old array. Thus, we don't have to worry about * invalid pointers. Just to be sure, some asserts: */ assert(usable_arenas == NULL); assert(unused_arena_objects == NULL); /* Put the new arenas on the unused_arena_objects list. */ for (i = maxarenas; i < numarenas; ++i) { allarenas[i].address = 0; /* mark as unassociated */ allarenas[i].nextarena = i < numarenas - 1 ? &allarenas[i+1] : NULL; } /* Update globals. */ unused_arena_objects = &allarenas[maxarenas]; maxarenas = numarenas; } /* Take the next available arena object off the head of the list. */ assert(unused_arena_objects != NULL); arenaobj = unused_arena_objects; unused_arena_objects = arenaobj->nextarena; assert(arenaobj->address == 0); address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE); #if WITH_PYMALLOC_RADIX_TREE if (address != NULL) { if (!arena_map_mark_used(state, (uintptr_t)address, 1)) { /* marking arena in radix tree failed, abort */ _PyObject_Arena.free(_PyObject_Arena.ctx, address, ARENA_SIZE); address = NULL; } } #endif if (address == NULL) { /* The allocation failed: return NULL after putting the * arenaobj back. */ arenaobj->nextarena = unused_arena_objects; unused_arena_objects = arenaobj; return NULL; } arenaobj->address = (uintptr_t)address; ++narenas_currently_allocated; ++ntimes_arena_allocated; if (narenas_currently_allocated > narenas_highwater) narenas_highwater = narenas_currently_allocated; arenaobj->freepools = NULL; /* pool_address <- first pool-aligned address in the arena nfreepools <- number of whole pools that fit after alignment */ arenaobj->pool_address = (pymem_block*)arenaobj->address; arenaobj->nfreepools = MAX_POOLS_IN_ARENA; excess = (uint)(arenaobj->address & POOL_SIZE_MASK); if (excess != 0) { --arenaobj->nfreepools; arenaobj->pool_address += POOL_SIZE - excess; } arenaobj->ntotalpools = arenaobj->nfreepools; return arenaobj; } #if WITH_PYMALLOC_RADIX_TREE /* Return true if and only if P is an address that was allocated by pymalloc. When the radix tree is used, 'poolp' is unused. */ static bool address_in_range(OMState *state, void *p, poolp Py_UNUSED(pool)) { return arena_map_is_used(state, p); } #else /* address_in_range(P, POOL) Return true if and only if P is an address that was allocated by pymalloc. POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P) (the caller is asked to compute this because the macro expands POOL more than once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a variable and pass the latter to the macro; because address_in_range is called on every alloc/realloc/free, micro-efficiency is important here). Tricky: Let B be the arena base address associated with the pool, B = arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if B <= P < B + ARENA_SIZE Subtracting B throughout, this is true iff 0 <= P-B < ARENA_SIZE By using unsigned arithmetic, the "0 <=" half of the test can be skipped. Obscure: A PyMem "free memory" function can call the pymalloc free or realloc before the first arena has been allocated. `arenas` is still NULL in that case. We're relying on that maxarenas is also 0 in that case, so that (POOL)->arenaindex < maxarenas must be false, saving us from trying to index into a NULL arenas. Details: given P and POOL, the arena_object corresponding to P is AO = arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild stores, etc), POOL is the correct address of P's pool, AO.address is the correct base address of the pool's arena, and P must be within ARENA_SIZE of AO.address. In addition, AO.address is not 0 (no arena can start at address 0 (NULL)). Therefore address_in_range correctly reports that obmalloc controls P. Now suppose obmalloc does not control P (e.g., P was obtained via a direct call to the system malloc() or realloc()). (POOL)->arenaindex may be anything in this case -- it may even be uninitialized trash. If the trash arenaindex is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't control P. Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an allocated arena, obmalloc controls all the memory in slice AO.address : AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc, so P doesn't lie in that slice, so the macro correctly reports that P is not controlled by obmalloc. Finally, if P is not controlled by obmalloc and AO corresponds to an unused arena_object (one not currently associated with an allocated arena), AO.address is 0, and the second test in the macro reduces to: P < ARENA_SIZE If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part of the test still passes, and the third clause (AO.address != 0) is necessary to get the correct result: AO.address is 0 in this case, so the macro correctly reports that P is not controlled by obmalloc (despite that P lies in slice AO.address : AO.address + ARENA_SIZE). Note: The third (AO.address != 0) clause was added in Python 2.5. Before 2.5, arenas were never free()'ed, and an arenaindex < maxarena always corresponded to a currently-allocated arena, so the "P is not controlled by obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case was impossible. Note that the logic is excruciating, and reading up possibly uninitialized memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex) creates problems for some memory debuggers. The overwhelming advantage is that this test determines whether an arbitrary address is controlled by obmalloc in a small constant time, independent of the number of arenas obmalloc controls. Since this test is needed at every entry point, it's extremely desirable that it be this fast. */ static bool _Py_NO_SANITIZE_ADDRESS _Py_NO_SANITIZE_THREAD _Py_NO_SANITIZE_MEMORY address_in_range(OMState *state, void *p, poolp pool) { // Since address_in_range may be reading from memory which was not allocated // by Python, it is important that pool->arenaindex is read only once, as // another thread may be concurrently modifying the value without holding // the GIL. The following dance forces the compiler to read pool->arenaindex // only once. uint arenaindex = *((volatile uint *)&pool->arenaindex); return arenaindex < maxarenas && (uintptr_t)p - allarenas[arenaindex].address < ARENA_SIZE && allarenas[arenaindex].address != 0; } #endif /* !WITH_PYMALLOC_RADIX_TREE */ /*==========================================================================*/ // Called when freelist is exhausted. Extend the freelist if there is // space for a block. Otherwise, remove this pool from usedpools. static void pymalloc_pool_extend(poolp pool, uint size) { if (UNLIKELY(pool->nextoffset <= pool->maxnextoffset)) { /* There is room for another block. */ pool->freeblock = (pymem_block*)pool + pool->nextoffset; pool->nextoffset += INDEX2SIZE(size); *(pymem_block **)(pool->freeblock) = NULL; return; } /* Pool is full, unlink from used pools. */ poolp next; next = pool->nextpool; pool = pool->prevpool; next->prevpool = pool; pool->nextpool = next; } /* called when pymalloc_alloc can not allocate a block from usedpool. * This function takes new pool and allocate a block from it. */ static void* allocate_from_new_pool(OMState *state, uint size) { /* There isn't a pool of the right size class immediately * available: use a free pool. */ if (UNLIKELY(usable_arenas == NULL)) { /* No arena has a free pool: allocate a new arena. */ #ifdef WITH_MEMORY_LIMITS if (narenas_currently_allocated >= MAX_ARENAS) { return NULL; } #endif usable_arenas = new_arena(state); if (usable_arenas == NULL) { return NULL; } usable_arenas->nextarena = usable_arenas->prevarena = NULL; assert(nfp2lasta[usable_arenas->nfreepools] == NULL); nfp2lasta[usable_arenas->nfreepools] = usable_arenas; } assert(usable_arenas->address != 0); /* This arena already had the smallest nfreepools value, so decreasing * nfreepools doesn't change that, and we don't need to rearrange the * usable_arenas list. However, if the arena becomes wholly allocated, * we need to remove its arena_object from usable_arenas. */ assert(usable_arenas->nfreepools > 0); if (nfp2lasta[usable_arenas->nfreepools] == usable_arenas) { /* It's the last of this size, so there won't be any. */ nfp2lasta[usable_arenas->nfreepools] = NULL; } /* If any free pools will remain, it will be the new smallest. */ if (usable_arenas->nfreepools > 1) { assert(nfp2lasta[usable_arenas->nfreepools - 1] == NULL); nfp2lasta[usable_arenas->nfreepools - 1] = usable_arenas; } /* Try to get a cached free pool. */ poolp pool = usable_arenas->freepools; if (LIKELY(pool != NULL)) { /* Unlink from cached pools. */ usable_arenas->freepools = pool->nextpool; usable_arenas->nfreepools--; if (UNLIKELY(usable_arenas->nfreepools == 0)) { /* Wholly allocated: remove. */ assert(usable_arenas->freepools == NULL); assert(usable_arenas->nextarena == NULL || usable_arenas->nextarena->prevarena == usable_arenas); usable_arenas = usable_arenas->nextarena; if (usable_arenas != NULL) { usable_arenas->prevarena = NULL; assert(usable_arenas->address != 0); } } else { /* nfreepools > 0: it must be that freepools * isn't NULL, or that we haven't yet carved * off all the arena's pools for the first * time. */ assert(usable_arenas->freepools != NULL || usable_arenas->pool_address <= (pymem_block*)usable_arenas->address + ARENA_SIZE - POOL_SIZE); } } else { /* Carve off a new pool. */ assert(usable_arenas->nfreepools > 0); assert(usable_arenas->freepools == NULL); pool = (poolp)usable_arenas->pool_address; assert((pymem_block*)pool <= (pymem_block*)usable_arenas->address + ARENA_SIZE - POOL_SIZE); pool->arenaindex = (uint)(usable_arenas - allarenas); assert(&allarenas[pool->arenaindex] == usable_arenas); pool->szidx = DUMMY_SIZE_IDX; usable_arenas->pool_address += POOL_SIZE; --usable_arenas->nfreepools; if (usable_arenas->nfreepools == 0) { assert(usable_arenas->nextarena == NULL || usable_arenas->nextarena->prevarena == usable_arenas); /* Unlink the arena: it is completely allocated. */ usable_arenas = usable_arenas->nextarena; if (usable_arenas != NULL) { usable_arenas->prevarena = NULL; assert(usable_arenas->address != 0); } } } /* Frontlink to used pools. */ pymem_block *bp; poolp next = usedpools[size + size]; /* == prev */ pool->nextpool = next; pool->prevpool = next; next->nextpool = pool; next->prevpool = pool; pool->ref.count = 1; if (pool->szidx == size) { /* Luckily, this pool last contained blocks * of the same size class, so its header * and free list are already initialized. */ bp = pool->freeblock; assert(bp != NULL); pool->freeblock = *(pymem_block **)bp; return bp; } /* * Initialize the pool header, set up the free list to * contain just the second block, and return the first * block. */ pool->szidx = size; size = INDEX2SIZE(size); bp = (pymem_block *)pool + POOL_OVERHEAD; pool->nextoffset = POOL_OVERHEAD + (size << 1); pool->maxnextoffset = POOL_SIZE - size; pool->freeblock = bp + size; *(pymem_block **)(pool->freeblock) = NULL; return bp; } /* pymalloc allocator Return a pointer to newly allocated memory if pymalloc allocated memory. Return NULL if pymalloc failed to allocate the memory block: on bigger requests, on error in the code below (as a last chance to serve the request) or when the max memory limit has been reached. */ static inline void* pymalloc_alloc(OMState *state, void *Py_UNUSED(ctx), size_t nbytes) { #ifdef WITH_VALGRIND if (UNLIKELY(running_on_valgrind == -1)) { running_on_valgrind = RUNNING_ON_VALGRIND; } if (UNLIKELY(running_on_valgrind)) { return NULL; } #endif if (UNLIKELY(nbytes == 0)) { return NULL; } if (UNLIKELY(nbytes > SMALL_REQUEST_THRESHOLD)) { return NULL; } uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT; poolp pool = usedpools[size + size]; pymem_block *bp; if (LIKELY(pool != pool->nextpool)) { /* * There is a used pool for this size class. * Pick up the head block of its free list. */ ++pool->ref.count; bp = pool->freeblock; assert(bp != NULL); if (UNLIKELY((pool->freeblock = *(pymem_block **)bp) == NULL)) { // Reached the end of the free list, try to extend it. pymalloc_pool_extend(pool, size); } } else { /* There isn't a pool of the right size class immediately * available: use a free pool. */ bp = allocate_from_new_pool(state, size); } return (void *)bp; } void * _PyObject_Malloc(void *ctx, size_t nbytes) { OMState *state = get_state(); void* ptr = pymalloc_alloc(state, ctx, nbytes); if (LIKELY(ptr != NULL)) { return ptr; } ptr = PyMem_RawMalloc(nbytes); if (ptr != NULL) { raw_allocated_blocks++; } return ptr; } void * _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize) { assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize); size_t nbytes = nelem * elsize; OMState *state = get_state(); void* ptr = pymalloc_alloc(state, ctx, nbytes); if (LIKELY(ptr != NULL)) { memset(ptr, 0, nbytes); return ptr; } ptr = PyMem_RawCalloc(nelem, elsize); if (ptr != NULL) { raw_allocated_blocks++; } return ptr; } static void insert_to_usedpool(OMState *state, poolp pool) { assert(pool->ref.count > 0); /* else the pool is empty */ uint size = pool->szidx; poolp next = usedpools[size + size]; poolp prev = next->prevpool; /* insert pool before next: prev <-> pool <-> next */ pool->nextpool = next; pool->prevpool = prev; next->prevpool = pool; prev->nextpool = pool; } static void insert_to_freepool(OMState *state, poolp pool) { poolp next = pool->nextpool; poolp prev = pool->prevpool; next->prevpool = prev; prev->nextpool = next; /* Link the pool to freepools. This is a singly-linked * list, and pool->prevpool isn't used there. */ struct arena_object *ao = &allarenas[pool->arenaindex]; pool->nextpool = ao->freepools; ao->freepools = pool; uint nf = ao->nfreepools; /* If this is the rightmost arena with this number of free pools, * nfp2lasta[nf] needs to change. Caution: if nf is 0, there * are no arenas in usable_arenas with that value. */ struct arena_object* lastnf = nfp2lasta[nf]; assert((nf == 0 && lastnf == NULL) || (nf > 0 && lastnf != NULL && lastnf->nfreepools == nf && (lastnf->nextarena == NULL || nf < lastnf->nextarena->nfreepools))); if (lastnf == ao) { /* it is the rightmost */ struct arena_object* p = ao->prevarena; nfp2lasta[nf] = (p != NULL && p->nfreepools == nf) ? p : NULL; } ao->nfreepools = ++nf; /* All the rest is arena management. We just freed * a pool, and there are 4 cases for arena mgmt: * 1. If all the pools are free, return the arena to * the system free(). Except if this is the last * arena in the list, keep it to avoid thrashing: * keeping one wholly free arena in the list avoids * pathological cases where a simple loop would * otherwise provoke needing to allocate and free an * arena on every iteration. See bpo-37257. * 2. If this is the only free pool in the arena, * add the arena back to the `usable_arenas` list. * 3. If the "next" arena has a smaller count of free * pools, we have to "slide this arena right" to * restore that usable_arenas is sorted in order of * nfreepools. * 4. Else there's nothing more to do. */ if (nf == ao->ntotalpools && ao->nextarena != NULL) { /* Case 1. First unlink ao from usable_arenas. */ assert(ao->prevarena == NULL || ao->prevarena->address != 0); assert(ao ->nextarena == NULL || ao->nextarena->address != 0); /* Fix the pointer in the prevarena, or the * usable_arenas pointer. */ if (ao->prevarena == NULL) { usable_arenas = ao->nextarena; assert(usable_arenas == NULL || usable_arenas->address != 0); } else { assert(ao->prevarena->nextarena == ao); ao->prevarena->nextarena = ao->nextarena; } /* Fix the pointer in the nextarena. */ if (ao->nextarena != NULL) { assert(ao->nextarena->prevarena == ao); ao->nextarena->prevarena = ao->prevarena; } /* Record that this arena_object slot is * available to be reused. */ ao->nextarena = unused_arena_objects; unused_arena_objects = ao; #if WITH_PYMALLOC_RADIX_TREE /* mark arena region as not under control of obmalloc */ arena_map_mark_used(state, ao->address, 0); #endif /* Free the entire arena. */ _PyObject_Arena.free(_PyObject_Arena.ctx, (void *)ao->address, ARENA_SIZE); ao->address = 0; /* mark unassociated */ --narenas_currently_allocated; return; } if (nf == 1) { /* Case 2. Put ao at the head of * usable_arenas. Note that because * ao->nfreepools was 0 before, ao isn't * currently on the usable_arenas list. */ ao->nextarena = usable_arenas; ao->prevarena = NULL; if (usable_arenas) usable_arenas->prevarena = ao; usable_arenas = ao; assert(usable_arenas->address != 0); if (nfp2lasta[1] == NULL) { nfp2lasta[1] = ao; } return; } /* If this arena is now out of order, we need to keep * the list sorted. The list is kept sorted so that * the "most full" arenas are used first, which allows * the nearly empty arenas to be completely freed. In * a few un-scientific tests, it seems like this * approach allowed a lot more memory to be freed. */ /* If this is the only arena with nf, record that. */ if (nfp2lasta[nf] == NULL) { nfp2lasta[nf] = ao; } /* else the rightmost with nf doesn't change */ /* If this was the rightmost of the old size, it remains in place. */ if (ao == lastnf) { /* Case 4. Nothing to do. */ return; } /* If ao were the only arena in the list, the last block would have * gotten us out. */ assert(ao->nextarena != NULL); /* Case 3: We have to move the arena towards the end of the list, * because it has more free pools than the arena to its right. It needs * to move to follow lastnf. * First unlink ao from usable_arenas. */ if (ao->prevarena != NULL) { /* ao isn't at the head of the list */ assert(ao->prevarena->nextarena == ao); ao->prevarena->nextarena = ao->nextarena; } else { /* ao is at the head of the list */ assert(usable_arenas == ao); usable_arenas = ao->nextarena; } ao->nextarena->prevarena = ao->prevarena; /* And insert after lastnf. */ ao->prevarena = lastnf; ao->nextarena = lastnf->nextarena; if (ao->nextarena != NULL) { ao->nextarena->prevarena = ao; } lastnf->nextarena = ao; /* Verify that the swaps worked. */ assert(ao->nextarena == NULL || nf <= ao->nextarena->nfreepools); assert(ao->prevarena == NULL || nf > ao->prevarena->nfreepools); assert(ao->nextarena == NULL || ao->nextarena->prevarena == ao); assert((usable_arenas == ao && ao->prevarena == NULL) || ao->prevarena->nextarena == ao); } /* Free a memory block allocated by pymalloc_alloc(). Return 1 if it was freed. Return 0 if the block was not allocated by pymalloc_alloc(). */ static inline int pymalloc_free(OMState *state, void *Py_UNUSED(ctx), void *p) { assert(p != NULL); #ifdef WITH_VALGRIND if (UNLIKELY(running_on_valgrind > 0)) { return 0; } #endif poolp pool = POOL_ADDR(p); if (UNLIKELY(!address_in_range(state, p, pool))) { return 0; } /* We allocated this address. */ /* Link p to the start of the pool's freeblock list. Since * the pool had at least the p block outstanding, the pool * wasn't empty (so it's already in a usedpools[] list, or * was full and is in no list -- it's not in the freeblocks * list in any case). */ assert(pool->ref.count > 0); /* else it was empty */ pymem_block *lastfree = pool->freeblock; *(pymem_block **)p = lastfree; pool->freeblock = (pymem_block *)p; pool->ref.count--; if (UNLIKELY(lastfree == NULL)) { /* Pool was full, so doesn't currently live in any list: * link it to the front of the appropriate usedpools[] list. * This mimics LRU pool usage for new allocations and * targets optimal filling when several pools contain * blocks of the same size class. */ insert_to_usedpool(state, pool); return 1; } /* freeblock wasn't NULL, so the pool wasn't full, * and the pool is in a usedpools[] list. */ if (LIKELY(pool->ref.count != 0)) { /* pool isn't empty: leave it in usedpools */ return 1; } /* Pool is now empty: unlink from usedpools, and * link to the front of freepools. This ensures that * previously freed pools will be allocated later * (being not referenced, they are perhaps paged out). */ insert_to_freepool(state, pool); return 1; } void _PyObject_Free(void *ctx, void *p) { /* PyObject_Free(NULL) has no effect */ if (p == NULL) { return; } OMState *state = get_state(); if (UNLIKELY(!pymalloc_free(state, ctx, p))) { /* pymalloc didn't allocate this address */ PyMem_RawFree(p); raw_allocated_blocks--; } } /* pymalloc realloc. If nbytes==0, then as the Python docs promise, we do not treat this like free(p), and return a non-NULL result. Return 1 if pymalloc reallocated memory and wrote the new pointer into newptr_p. Return 0 if pymalloc didn't allocated p. */ static int pymalloc_realloc(OMState *state, void *ctx, void **newptr_p, void *p, size_t nbytes) { void *bp; poolp pool; size_t size; assert(p != NULL); #ifdef WITH_VALGRIND /* Treat running_on_valgrind == -1 the same as 0 */ if (UNLIKELY(running_on_valgrind > 0)) { return 0; } #endif pool = POOL_ADDR(p); if (!address_in_range(state, p, pool)) { /* pymalloc is not managing this block. If nbytes <= SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this block. However, if we do, we need to copy the valid data from the C-managed block to one of our blocks, and there's no portable way to know how much of the memory space starting at p is valid. As bug 1185883 pointed out the hard way, it's possible that the C-managed block is "at the end" of allocated VM space, so that a memory fault can occur if we try to copy nbytes bytes starting at p. Instead we punt: let C continue to manage this block. */ return 0; } /* pymalloc is in charge of this block */ size = INDEX2SIZE(pool->szidx); if (nbytes <= size) { /* The block is staying the same or shrinking. If it's shrinking, there's a tradeoff: it costs cycles to copy the block to a smaller size class, but it wastes memory not to copy it. The compromise here is to copy on shrink only if at least 25% of size can be shaved off. */ if (4 * nbytes > 3 * size) { /* It's the same, or shrinking and new/old > 3/4. */ *newptr_p = p; return 1; } size = nbytes; } bp = _PyObject_Malloc(ctx, nbytes); if (bp != NULL) { memcpy(bp, p, size); _PyObject_Free(ctx, p); } *newptr_p = bp; return 1; } void * _PyObject_Realloc(void *ctx, void *ptr, size_t nbytes) { void *ptr2; if (ptr == NULL) { return _PyObject_Malloc(ctx, nbytes); } OMState *state = get_state(); if (pymalloc_realloc(state, ctx, &ptr2, ptr, nbytes)) { return ptr2; } return PyMem_RawRealloc(ptr, nbytes); } #else /* ! WITH_PYMALLOC */ /*==========================================================================*/ /* pymalloc not enabled: Redirect the entry points to malloc. These will * only be used by extensions that are compiled with pymalloc enabled. */ Py_ssize_t _PyInterpreterState_GetAllocatedBlocks(PyInterpreterState *Py_UNUSED(interp)) { return 0; } Py_ssize_t _Py_GetGlobalAllocatedBlocks(void) { return 0; } void _PyInterpreterState_FinalizeAllocatedBlocks(PyInterpreterState *Py_UNUSED(interp)) { return; } void _Py_FinalizeAllocatedBlocks(_PyRuntimeState *Py_UNUSED(runtime)) { return; } #endif /* WITH_PYMALLOC */ /*==========================================================================*/ /* A x-platform debugging allocator. This doesn't manage memory directly, * it wraps a real allocator, adding extra debugging info to the memory blocks. */ /* Uncomment this define to add the "serialno" field */ /* #define PYMEM_DEBUG_SERIALNO */ #ifdef PYMEM_DEBUG_SERIALNO static size_t serialno = 0; /* incremented on each debug {m,re}alloc */ /* serialno is always incremented via calling this routine. The point is * to supply a single place to set a breakpoint. */ static void bumpserialno(void) { ++serialno; } #endif #define SST SIZEOF_SIZE_T #ifdef PYMEM_DEBUG_SERIALNO # define PYMEM_DEBUG_EXTRA_BYTES 4 * SST #else # define PYMEM_DEBUG_EXTRA_BYTES 3 * SST #endif /* Read sizeof(size_t) bytes at p as a big-endian size_t. */ static size_t read_size_t(const void *p) { const uint8_t *q = (const uint8_t *)p; size_t result = *q++; int i; for (i = SST; --i > 0; ++q) result = (result << 8) | *q; return result; } /* Write n as a big-endian size_t, MSB at address p, LSB at * p + sizeof(size_t) - 1. */ static void write_size_t(void *p, size_t n) { uint8_t *q = (uint8_t *)p + SST - 1; int i; for (i = SST; --i >= 0; --q) { *q = (uint8_t)(n & 0xff); n >>= 8; } } /* Let S = sizeof(size_t). The debug malloc asks for 4 * S extra bytes and fills them with useful stuff, here calling the underlying malloc's result p: p[0: S] Number of bytes originally asked for. This is a size_t, big-endian (easier to read in a memory dump). p[S] API ID. See PEP 445. This is a character, but seems undocumented. p[S+1: 2*S] Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads. p[2*S: 2*S+n] The requested memory, filled with copies of PYMEM_CLEANBYTE. Used to catch reference to uninitialized memory. &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc handled the request itself. p[2*S+n: 2*S+n+S] Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads. p[2*S+n+S: 2*S+n+2*S] A serial number, incremented by 1 on each call to _PyMem_DebugMalloc and _PyMem_DebugRealloc. This is a big-endian size_t. If "bad memory" is detected later, the serial number gives an excellent way to set a breakpoint on the next run, to capture the instant at which this block was passed out. If PYMEM_DEBUG_SERIALNO is not defined (default), the debug malloc only asks for 3 * S extra bytes, and omits the last serialno field. */ static void * _PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes) { debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; uint8_t *p; /* base address of malloc'ed pad block */ uint8_t *data; /* p + 2*SST == pointer to data bytes */ uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */ size_t total; /* nbytes + PYMEM_DEBUG_EXTRA_BYTES */ if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) { /* integer overflow: can't represent total as a Py_ssize_t */ return NULL; } total = nbytes + PYMEM_DEBUG_EXTRA_BYTES; /* Layout: [SSSS IFFF CCCC...CCCC FFFF NNNN] ^--- p ^--- data ^--- tail S: nbytes stored as size_t I: API identifier (1 byte) F: Forbidden bytes (size_t - 1 bytes before, size_t bytes after) C: Clean bytes used later to store actual data N: Serial number stored as size_t If PYMEM_DEBUG_SERIALNO is not defined (default), the last NNNN field is omitted. */ if (use_calloc) { p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total); } else { p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total); } if (p == NULL) { return NULL; } data = p + 2*SST; #ifdef PYMEM_DEBUG_SERIALNO bumpserialno(); #endif /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */ write_size_t(p, nbytes); p[SST] = (uint8_t)api->api_id; memset(p + SST + 1, PYMEM_FORBIDDENBYTE, SST-1); if (nbytes > 0 && !use_calloc) { memset(data, PYMEM_CLEANBYTE, nbytes); } /* at tail, write pad (SST bytes) and serialno (SST bytes) */ tail = data + nbytes; memset(tail, PYMEM_FORBIDDENBYTE, SST); #ifdef PYMEM_DEBUG_SERIALNO write_size_t(tail + SST, serialno); #endif return data; } void * _PyMem_DebugRawMalloc(void *ctx, size_t nbytes) { return _PyMem_DebugRawAlloc(0, ctx, nbytes); } void * _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize) { size_t nbytes; assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize); nbytes = nelem * elsize; return _PyMem_DebugRawAlloc(1, ctx, nbytes); } /* The debug free first checks the 2*SST bytes on each end for sanity (in particular, that the FORBIDDENBYTEs with the api ID are still intact). Then fills the original bytes with PYMEM_DEADBYTE. Then calls the underlying free. */ void _PyMem_DebugRawFree(void *ctx, void *p) { /* PyMem_Free(NULL) has no effect */ if (p == NULL) { return; } debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; uint8_t *q = (uint8_t *)p - 2*SST; /* address returned from malloc */ size_t nbytes; _PyMem_DebugCheckAddress(__func__, api->api_id, p); nbytes = read_size_t(q); nbytes += PYMEM_DEBUG_EXTRA_BYTES; memset(q, PYMEM_DEADBYTE, nbytes); api->alloc.free(api->alloc.ctx, q); } void * _PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes) { if (p == NULL) { return _PyMem_DebugRawAlloc(0, ctx, nbytes); } debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; uint8_t *head; /* base address of malloc'ed pad block */ uint8_t *data; /* pointer to data bytes */ uint8_t *r; uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */ size_t total; /* 2 * SST + nbytes + 2 * SST */ size_t original_nbytes; #define ERASED_SIZE 64 uint8_t save[2*ERASED_SIZE]; /* A copy of erased bytes. */ _PyMem_DebugCheckAddress(__func__, api->api_id, p); data = (uint8_t *)p; head = data - 2*SST; original_nbytes = read_size_t(head); if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) { /* integer overflow: can't represent total as a Py_ssize_t */ return NULL; } total = nbytes + PYMEM_DEBUG_EXTRA_BYTES; tail = data + original_nbytes; #ifdef PYMEM_DEBUG_SERIALNO size_t block_serialno = read_size_t(tail + SST); #endif /* Mark the header, the trailer, ERASED_SIZE bytes at the begin and ERASED_SIZE bytes at the end as dead and save the copy of erased bytes. */ if (original_nbytes <= sizeof(save)) { memcpy(save, data, original_nbytes); memset(data - 2 * SST, PYMEM_DEADBYTE, original_nbytes + PYMEM_DEBUG_EXTRA_BYTES); } else { memcpy(save, data, ERASED_SIZE); memset(head, PYMEM_DEADBYTE, ERASED_SIZE + 2 * SST); memcpy(&save[ERASED_SIZE], tail - ERASED_SIZE, ERASED_SIZE); memset(tail - ERASED_SIZE, PYMEM_DEADBYTE, ERASED_SIZE + PYMEM_DEBUG_EXTRA_BYTES - 2 * SST); } /* Resize and add decorations. */ r = (uint8_t *)api->alloc.realloc(api->alloc.ctx, head, total); if (r == NULL) { /* if realloc() failed: rewrite header and footer which have just been erased */ nbytes = original_nbytes; } else { head = r; #ifdef PYMEM_DEBUG_SERIALNO bumpserialno(); block_serialno = serialno; #endif } data = head + 2*SST; write_size_t(head, nbytes); head[SST] = (uint8_t)api->api_id; memset(head + SST + 1, PYMEM_FORBIDDENBYTE, SST-1); tail = data + nbytes; memset(tail, PYMEM_FORBIDDENBYTE, SST); #ifdef PYMEM_DEBUG_SERIALNO write_size_t(tail + SST, block_serialno); #endif /* Restore saved bytes. */ if (original_nbytes <= sizeof(save)) { memcpy(data, save, Py_MIN(nbytes, original_nbytes)); } else { size_t i = original_nbytes - ERASED_SIZE; memcpy(data, save, Py_MIN(nbytes, ERASED_SIZE)); if (nbytes > i) { memcpy(data + i, &save[ERASED_SIZE], Py_MIN(nbytes - i, ERASED_SIZE)); } } if (r == NULL) { return NULL; } if (nbytes > original_nbytes) { /* growing: mark new extra memory clean */ memset(data + original_nbytes, PYMEM_CLEANBYTE, nbytes - original_nbytes); } return data; } static inline void _PyMem_DebugCheckGIL(const char *func) { if (!PyGILState_Check()) { _Py_FatalErrorFunc(func, "Python memory allocator called " "without holding the GIL"); } } void * _PyMem_DebugMalloc(void *ctx, size_t nbytes) { _PyMem_DebugCheckGIL(__func__); return _PyMem_DebugRawMalloc(ctx, nbytes); } void * _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize) { _PyMem_DebugCheckGIL(__func__); return _PyMem_DebugRawCalloc(ctx, nelem, elsize); } void _PyMem_DebugFree(void *ctx, void *ptr) { _PyMem_DebugCheckGIL(__func__); _PyMem_DebugRawFree(ctx, ptr); } void * _PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes) { _PyMem_DebugCheckGIL(__func__); return _PyMem_DebugRawRealloc(ctx, ptr, nbytes); } /* Check the forbidden bytes on both ends of the memory allocated for p. * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress, * and call Py_FatalError to kill the program. * The API id, is also checked. */ static void _PyMem_DebugCheckAddress(const char *func, char api, const void *p) { assert(p != NULL); const uint8_t *q = (const uint8_t *)p; size_t nbytes; const uint8_t *tail; int i; char id; /* Check the API id */ id = (char)q[-SST]; if (id != api) { _PyObject_DebugDumpAddress(p); _Py_FatalErrorFormat(func, "bad ID: Allocated using API '%c', " "verified using API '%c'", id, api); } /* Check the stuff at the start of p first: if there's underwrite * corruption, the number-of-bytes field may be nuts, and checking * the tail could lead to a segfault then. */ for (i = SST-1; i >= 1; --i) { if (*(q-i) != PYMEM_FORBIDDENBYTE) { _PyObject_DebugDumpAddress(p); _Py_FatalErrorFunc(func, "bad leading pad byte"); } } nbytes = read_size_t(q - 2*SST); tail = q + nbytes; for (i = 0; i < SST; ++i) { if (tail[i] != PYMEM_FORBIDDENBYTE) { _PyObject_DebugDumpAddress(p); _Py_FatalErrorFunc(func, "bad trailing pad byte"); } } } /* Display info to stderr about the memory block at p. */ static void _PyObject_DebugDumpAddress(const void *p) { const uint8_t *q = (const uint8_t *)p; const uint8_t *tail; size_t nbytes; int i; int ok; char id; fprintf(stderr, "Debug memory block at address p=%p:", p); if (p == NULL) { fprintf(stderr, "\n"); return; } id = (char)q[-SST]; fprintf(stderr, " API '%c'\n", id); nbytes = read_size_t(q - 2*SST); fprintf(stderr, " %zu bytes originally requested\n", nbytes); /* In case this is nuts, check the leading pad bytes first. */ fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1); ok = 1; for (i = 1; i <= SST-1; ++i) { if (*(q-i) != PYMEM_FORBIDDENBYTE) { ok = 0; break; } } if (ok) fputs("FORBIDDENBYTE, as expected.\n", stderr); else { fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", PYMEM_FORBIDDENBYTE); for (i = SST-1; i >= 1; --i) { const uint8_t byte = *(q-i); fprintf(stderr, " at p-%d: 0x%02x", i, byte); if (byte != PYMEM_FORBIDDENBYTE) fputs(" *** OUCH", stderr); fputc('\n', stderr); } fputs(" Because memory is corrupted at the start, the " "count of bytes requested\n" " may be bogus, and checking the trailing pad " "bytes may segfault.\n", stderr); } tail = q + nbytes; fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, (void *)tail); ok = 1; for (i = 0; i < SST; ++i) { if (tail[i] != PYMEM_FORBIDDENBYTE) { ok = 0; break; } } if (ok) fputs("FORBIDDENBYTE, as expected.\n", stderr); else { fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", PYMEM_FORBIDDENBYTE); for (i = 0; i < SST; ++i) { const uint8_t byte = tail[i]; fprintf(stderr, " at tail+%d: 0x%02x", i, byte); if (byte != PYMEM_FORBIDDENBYTE) fputs(" *** OUCH", stderr); fputc('\n', stderr); } } #ifdef PYMEM_DEBUG_SERIALNO size_t serial = read_size_t(tail + SST); fprintf(stderr, " The block was made by call #%zu to debug malloc/realloc.\n", serial); #endif if (nbytes > 0) { i = 0; fputs(" Data at p:", stderr); /* print up to 8 bytes at the start */ while (q < tail && i < 8) { fprintf(stderr, " %02x", *q); ++i; ++q; } /* and up to 8 at the end */ if (q < tail) { if (tail - q > 8) { fputs(" ...", stderr); q = tail - 8; } while (q < tail) { fprintf(stderr, " %02x", *q); ++q; } } fputc('\n', stderr); } fputc('\n', stderr); fflush(stderr); _PyMem_DumpTraceback(fileno(stderr), p); } static size_t printone(FILE *out, const char* msg, size_t value) { int i, k; char buf[100]; size_t origvalue = value; fputs(msg, out); for (i = (int)strlen(msg); i < 35; ++i) fputc(' ', out); fputc('=', out); /* Write the value with commas. */ i = 22; buf[i--] = '\0'; buf[i--] = '\n'; k = 3; do { size_t nextvalue = value / 10; unsigned int digit = (unsigned int)(value - nextvalue * 10); value = nextvalue; buf[i--] = (char)(digit + '0'); --k; if (k == 0 && value && i >= 0) { k = 3; buf[i--] = ','; } } while (value && i >= 0); while (i >= 0) buf[i--] = ' '; fputs(buf, out); return origvalue; } void _PyDebugAllocatorStats(FILE *out, const char *block_name, int num_blocks, size_t sizeof_block) { char buf1[128]; char buf2[128]; PyOS_snprintf(buf1, sizeof(buf1), "%d %ss * %zd bytes each", num_blocks, block_name, sizeof_block); PyOS_snprintf(buf2, sizeof(buf2), "%48s ", buf1); (void)printone(out, buf2, num_blocks * sizeof_block); } #ifdef WITH_PYMALLOC #ifdef Py_DEBUG /* Is target in the list? The list is traversed via the nextpool pointers. * The list may be NULL-terminated, or circular. Return 1 if target is in * list, else 0. */ static int pool_is_in_list(const poolp target, poolp list) { poolp origlist = list; assert(target != NULL); if (list == NULL) return 0; do { if (target == list) return 1; list = list->nextpool; } while (list != NULL && list != origlist); return 0; } #endif /* Print summary info to "out" about the state of pymalloc's structures. * In Py_DEBUG mode, also perform some expensive internal consistency * checks. * * Return 0 if the memory debug hooks are not installed or no statistics was * written into out, return 1 otherwise. */ int _PyObject_DebugMallocStats(FILE *out) { if (!_PyMem_PymallocEnabled()) { return 0; } OMState *state = get_state(); uint i; const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT; /* # of pools, allocated blocks, and free blocks per class index */ size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; /* total # of allocated bytes in used and full pools */ size_t allocated_bytes = 0; /* total # of available bytes in used pools */ size_t available_bytes = 0; /* # of free pools + pools not yet carved out of current arena */ uint numfreepools = 0; /* # of bytes for arena alignment padding */ size_t arena_alignment = 0; /* # of bytes in used and full pools used for pool_headers */ size_t pool_header_bytes = 0; /* # of bytes in used and full pools wasted due to quantization, * i.e. the necessarily leftover space at the ends of used and * full pools. */ size_t quantization = 0; /* # of arenas actually allocated. */ size_t narenas = 0; /* running total -- should equal narenas * ARENA_SIZE */ size_t total; char buf[128]; fprintf(out, "Small block threshold = %d, in %u size classes.\n", SMALL_REQUEST_THRESHOLD, numclasses); for (i = 0; i < numclasses; ++i) numpools[i] = numblocks[i] = numfreeblocks[i] = 0; /* Because full pools aren't linked to from anything, it's easiest * to march over all the arenas. If we're lucky, most of the memory * will be living in full pools -- would be a shame to miss them. */ for (i = 0; i < maxarenas; ++i) { uintptr_t base = allarenas[i].address; /* Skip arenas which are not allocated. */ if (allarenas[i].address == (uintptr_t)NULL) continue; narenas += 1; numfreepools += allarenas[i].nfreepools; /* round up to pool alignment */ if (base & (uintptr_t)POOL_SIZE_MASK) { arena_alignment += POOL_SIZE; base &= ~(uintptr_t)POOL_SIZE_MASK; base += POOL_SIZE; } /* visit every pool in the arena */ assert(base <= (uintptr_t) allarenas[i].pool_address); for (; base < (uintptr_t) allarenas[i].pool_address; base += POOL_SIZE) { poolp p = (poolp)base; const uint sz = p->szidx; uint freeblocks; if (p->ref.count == 0) { /* currently unused */ #ifdef Py_DEBUG assert(pool_is_in_list(p, allarenas[i].freepools)); #endif continue; } ++numpools[sz]; numblocks[sz] += p->ref.count; freeblocks = NUMBLOCKS(sz) - p->ref.count; numfreeblocks[sz] += freeblocks; #ifdef Py_DEBUG if (freeblocks > 0) assert(pool_is_in_list(p, usedpools[sz + sz])); #endif } } assert(narenas == narenas_currently_allocated); fputc('\n', out); fputs("class size num pools blocks in use avail blocks\n" "----- ---- --------- ------------- ------------\n", out); for (i = 0; i < numclasses; ++i) { size_t p = numpools[i]; size_t b = numblocks[i]; size_t f = numfreeblocks[i]; uint size = INDEX2SIZE(i); if (p == 0) { assert(b == 0 && f == 0); continue; } fprintf(out, "%5u %6u %11zu %15zu %13zu\n", i, size, p, b, f); allocated_bytes += b * size; available_bytes += f * size; pool_header_bytes += p * POOL_OVERHEAD; quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size); } fputc('\n', out); #ifdef PYMEM_DEBUG_SERIALNO if (_PyMem_DebugEnabled()) { (void)printone(out, "# times object malloc called", serialno); } #endif (void)printone(out, "# arenas allocated total", ntimes_arena_allocated); (void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas); (void)printone(out, "# arenas highwater mark", narenas_highwater); (void)printone(out, "# arenas allocated current", narenas); PyOS_snprintf(buf, sizeof(buf), "%zu arenas * %d bytes/arena", narenas, ARENA_SIZE); (void)printone(out, buf, narenas * ARENA_SIZE); fputc('\n', out); /* Account for what all of those arena bytes are being used for. */ total = printone(out, "# bytes in allocated blocks", allocated_bytes); total += printone(out, "# bytes in available blocks", available_bytes); PyOS_snprintf(buf, sizeof(buf), "%u unused pools * %d bytes", numfreepools, POOL_SIZE); total += printone(out, buf, (size_t)numfreepools * POOL_SIZE); total += printone(out, "# bytes lost to pool headers", pool_header_bytes); total += printone(out, "# bytes lost to quantization", quantization); total += printone(out, "# bytes lost to arena alignment", arena_alignment); (void)printone(out, "Total", total); assert(narenas * ARENA_SIZE == total); #if WITH_PYMALLOC_RADIX_TREE fputs("\narena map counts\n", out); #ifdef USE_INTERIOR_NODES (void)printone(out, "# arena map mid nodes", arena_map_mid_count); (void)printone(out, "# arena map bot nodes", arena_map_bot_count); fputc('\n', out); #endif total = printone(out, "# bytes lost to arena map root", sizeof(arena_map_root)); #ifdef USE_INTERIOR_NODES total += printone(out, "# bytes lost to arena map mid", sizeof(arena_map_mid_t) * arena_map_mid_count); total += printone(out, "# bytes lost to arena map bot", sizeof(arena_map_bot_t) * arena_map_bot_count); (void)printone(out, "Total", total); #endif #endif return 1; } #endif /* #ifdef WITH_PYMALLOC */