/* ---------------------------------------------------------------------------- Copyright (c) 2019-2023 Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ /* ---------------------------------------------------------------------------- Concurrent bitmap that can set/reset sequences of bits atomically, represented as an array of fields where each field is a machine word (`size_t`) There are two api's; the standard one cannot have sequences that cross between the bitmap fields (and a sequence must be <= MI_BITMAP_FIELD_BITS). The `_across` postfixed functions do allow sequences that can cross over between the fields. (This is used in arena allocation) ---------------------------------------------------------------------------- */ #include "mimalloc.h" #include "mimalloc/internal.h" #include "bitmap.h" /* ----------------------------------------------------------- Bitmap definition ----------------------------------------------------------- */ // The bit mask for a given number of blocks at a specified bit index. static inline size_t mi_bitmap_mask_(size_t count, size_t bitidx) { mi_assert_internal(count + bitidx <= MI_BITMAP_FIELD_BITS); mi_assert_internal(count > 0); if (count >= MI_BITMAP_FIELD_BITS) return MI_BITMAP_FIELD_FULL; if (count == 0) return 0; return ((((size_t)1 << count) - 1) << bitidx); } /* ----------------------------------------------------------- Claim a bit sequence atomically ----------------------------------------------------------- */ // Try to atomically claim a sequence of `count` bits in a single // field at `idx` in `bitmap`. Returns `true` on success. inline bool _mi_bitmap_try_find_claim_field(mi_bitmap_t bitmap, size_t idx, const size_t count, mi_bitmap_index_t* bitmap_idx) { mi_assert_internal(bitmap_idx != NULL); mi_assert_internal(count <= MI_BITMAP_FIELD_BITS); mi_assert_internal(count > 0); mi_bitmap_field_t* field = &bitmap[idx]; size_t map = mi_atomic_load_relaxed(field); if (map==MI_BITMAP_FIELD_FULL) return false; // short cut // search for 0-bit sequence of length count const size_t mask = mi_bitmap_mask_(count, 0); const size_t bitidx_max = MI_BITMAP_FIELD_BITS - count; #ifdef MI_HAVE_FAST_BITSCAN size_t bitidx = mi_ctz(~map); // quickly find the first zero bit if possible #else size_t bitidx = 0; // otherwise start at 0 #endif size_t m = (mask << bitidx); // invariant: m == mask shifted by bitidx // scan linearly for a free range of zero bits while (bitidx <= bitidx_max) { const size_t mapm = (map & m); if (mapm == 0) { // are the mask bits free at bitidx? mi_assert_internal((m >> bitidx) == mask); // no overflow? const size_t newmap = (map | m); mi_assert_internal((newmap^map) >> bitidx == mask); if (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)) { // TODO: use weak cas here? // no success, another thread claimed concurrently.. keep going (with updated `map`) continue; } else { // success, we claimed the bits! *bitmap_idx = mi_bitmap_index_create(idx, bitidx); return true; } } else { // on to the next bit range #ifdef MI_HAVE_FAST_BITSCAN mi_assert_internal(mapm != 0); const size_t shift = (count == 1 ? 1 : (MI_INTPTR_BITS - mi_clz(mapm) - bitidx)); mi_assert_internal(shift > 0 && shift <= count); #else const size_t shift = 1; #endif bitidx += shift; m <<= shift; } } // no bits found return false; } // Find `count` bits of 0 and set them to 1 atomically; returns `true` on success. // Starts at idx, and wraps around to search in all `bitmap_fields` fields. // `count` can be at most MI_BITMAP_FIELD_BITS and will never cross fields. bool _mi_bitmap_try_find_from_claim(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx) { size_t idx = start_field_idx; for (size_t visited = 0; visited < bitmap_fields; visited++, idx++) { if (idx >= bitmap_fields) { idx = 0; } // wrap if (_mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx)) { return true; } } return false; } // Like _mi_bitmap_try_find_from_claim but with an extra predicate that must be fulfilled bool _mi_bitmap_try_find_from_claim_pred(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_pred_fun_t pred_fun, void* pred_arg, mi_bitmap_index_t* bitmap_idx) { size_t idx = start_field_idx; for (size_t visited = 0; visited < bitmap_fields; visited++, idx++) { if (idx >= bitmap_fields) idx = 0; // wrap if (_mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx)) { if (pred_fun == NULL || pred_fun(*bitmap_idx, pred_arg)) { return true; } // predicate returned false, unclaim and look further _mi_bitmap_unclaim(bitmap, bitmap_fields, count, *bitmap_idx); } } return false; } // Set `count` bits at `bitmap_idx` to 0 atomically // Returns `true` if all `count` bits were 1 previously. bool _mi_bitmap_unclaim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { const size_t idx = mi_bitmap_index_field(bitmap_idx); const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); const size_t mask = mi_bitmap_mask_(count, bitidx); mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields); // mi_assert_internal((bitmap[idx] & mask) == mask); const size_t prev = mi_atomic_and_acq_rel(&bitmap[idx], ~mask); return ((prev & mask) == mask); } // Set `count` bits at `bitmap_idx` to 1 atomically // Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit. bool _mi_bitmap_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* any_zero) { const size_t idx = mi_bitmap_index_field(bitmap_idx); const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); const size_t mask = mi_bitmap_mask_(count, bitidx); mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields); //mi_assert_internal(any_zero != NULL || (bitmap[idx] & mask) == 0); size_t prev = mi_atomic_or_acq_rel(&bitmap[idx], mask); if (any_zero != NULL) { *any_zero = ((prev & mask) != mask); } return ((prev & mask) == 0); } // Returns `true` if all `count` bits were 1. `any_ones` is `true` if there was at least one bit set to one. static bool mi_bitmap_is_claimedx(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* any_ones) { const size_t idx = mi_bitmap_index_field(bitmap_idx); const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); const size_t mask = mi_bitmap_mask_(count, bitidx); mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields); const size_t field = mi_atomic_load_relaxed(&bitmap[idx]); if (any_ones != NULL) { *any_ones = ((field & mask) != 0); } return ((field & mask) == mask); } // Try to set `count` bits at `bitmap_idx` from 0 to 1 atomically. // Returns `true` if successful when all previous `count` bits were 0. bool _mi_bitmap_try_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { const size_t idx = mi_bitmap_index_field(bitmap_idx); const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); const size_t mask = mi_bitmap_mask_(count, bitidx); mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields); size_t expected = mi_atomic_load_relaxed(&bitmap[idx]); do { if ((expected & mask) != 0) return false; } while (!mi_atomic_cas_strong_acq_rel(&bitmap[idx], &expected, expected | mask)); mi_assert_internal((expected & mask) == 0); return true; } bool _mi_bitmap_is_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { return mi_bitmap_is_claimedx(bitmap, bitmap_fields, count, bitmap_idx, NULL); } bool _mi_bitmap_is_any_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { bool any_ones; mi_bitmap_is_claimedx(bitmap, bitmap_fields, count, bitmap_idx, &any_ones); return any_ones; } //-------------------------------------------------------------------------- // the `_across` functions work on bitmaps where sequences can cross over // between the fields. This is used in arena allocation //-------------------------------------------------------------------------- // Try to atomically claim a sequence of `count` bits starting from the field // at `idx` in `bitmap` and crossing into subsequent fields. Returns `true` on success. // Only needs to consider crossing into the next fields (see `mi_bitmap_try_find_from_claim_across`) static bool mi_bitmap_try_find_claim_field_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t idx, const size_t count, const size_t retries, mi_bitmap_index_t* bitmap_idx) { mi_assert_internal(bitmap_idx != NULL); // check initial trailing zeros mi_bitmap_field_t* field = &bitmap[idx]; size_t map = mi_atomic_load_relaxed(field); const size_t initial = mi_clz(map); // count of initial zeros starting at idx mi_assert_internal(initial <= MI_BITMAP_FIELD_BITS); if (initial == 0) return false; if (initial >= count) return _mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx); // no need to cross fields (this case won't happen for us) if (_mi_divide_up(count - initial, MI_BITMAP_FIELD_BITS) >= (bitmap_fields - idx)) return false; // not enough entries // scan ahead size_t found = initial; size_t mask = 0; // mask bits for the final field while(found < count) { field++; map = mi_atomic_load_relaxed(field); const size_t mask_bits = (found + MI_BITMAP_FIELD_BITS <= count ? MI_BITMAP_FIELD_BITS : (count - found)); mi_assert_internal(mask_bits > 0 && mask_bits <= MI_BITMAP_FIELD_BITS); mask = mi_bitmap_mask_(mask_bits, 0); if ((map & mask) != 0) return false; // some part is already claimed found += mask_bits; } mi_assert_internal(field < &bitmap[bitmap_fields]); // we found a range of contiguous zeros up to the final field; mask contains mask in the final field // now try to claim the range atomically mi_bitmap_field_t* const final_field = field; const size_t final_mask = mask; mi_bitmap_field_t* const initial_field = &bitmap[idx]; const size_t initial_idx = MI_BITMAP_FIELD_BITS - initial; const size_t initial_mask = mi_bitmap_mask_(initial, initial_idx); // initial field size_t newmap; field = initial_field; map = mi_atomic_load_relaxed(field); do { newmap = (map | initial_mask); if ((map & initial_mask) != 0) { goto rollback; }; } while (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)); // intermediate fields while (++field < final_field) { newmap = MI_BITMAP_FIELD_FULL; map = 0; if (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)) { goto rollback; } } // final field mi_assert_internal(field == final_field); map = mi_atomic_load_relaxed(field); do { newmap = (map | final_mask); if ((map & final_mask) != 0) { goto rollback; } } while (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)); // claimed! *bitmap_idx = mi_bitmap_index_create(idx, initial_idx); return true; rollback: // roll back intermediate fields // (we just failed to claim `field` so decrement first) while (--field > initial_field) { newmap = 0; map = MI_BITMAP_FIELD_FULL; mi_assert_internal(mi_atomic_load_relaxed(field) == map); mi_atomic_store_release(field, newmap); } if (field == initial_field) { // (if we failed on the initial field, `field + 1 == initial_field`) map = mi_atomic_load_relaxed(field); do { mi_assert_internal((map & initial_mask) == initial_mask); newmap = (map & ~initial_mask); } while (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)); } // retry? (we make a recursive call instead of goto to be able to use const declarations) if (retries <= 2) { return mi_bitmap_try_find_claim_field_across(bitmap, bitmap_fields, idx, count, retries+1, bitmap_idx); } else { return false; } } // Find `count` bits of zeros and set them to 1 atomically; returns `true` on success. // Starts at idx, and wraps around to search in all `bitmap_fields` fields. bool _mi_bitmap_try_find_from_claim_across(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx) { mi_assert_internal(count > 0); if (count <= 2) { // we don't bother with crossover fields for small counts return _mi_bitmap_try_find_from_claim(bitmap, bitmap_fields, start_field_idx, count, bitmap_idx); } // visit the fields size_t idx = start_field_idx; for (size_t visited = 0; visited < bitmap_fields; visited++, idx++) { if (idx >= bitmap_fields) { idx = 0; } // wrap // first try to claim inside a field if (count <= MI_BITMAP_FIELD_BITS) { if (_mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx)) { return true; } } // if that fails, then try to claim across fields if (mi_bitmap_try_find_claim_field_across(bitmap, bitmap_fields, idx, count, 0, bitmap_idx)) { return true; } } return false; } // Helper for masks across fields; returns the mid count, post_mask may be 0 static size_t mi_bitmap_mask_across(mi_bitmap_index_t bitmap_idx, size_t bitmap_fields, size_t count, size_t* pre_mask, size_t* mid_mask, size_t* post_mask) { MI_UNUSED(bitmap_fields); const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); if mi_likely(bitidx + count <= MI_BITMAP_FIELD_BITS) { *pre_mask = mi_bitmap_mask_(count, bitidx); *mid_mask = 0; *post_mask = 0; mi_assert_internal(mi_bitmap_index_field(bitmap_idx) < bitmap_fields); return 0; } else { const size_t pre_bits = MI_BITMAP_FIELD_BITS - bitidx; mi_assert_internal(pre_bits < count); *pre_mask = mi_bitmap_mask_(pre_bits, bitidx); count -= pre_bits; const size_t mid_count = (count / MI_BITMAP_FIELD_BITS); *mid_mask = MI_BITMAP_FIELD_FULL; count %= MI_BITMAP_FIELD_BITS; *post_mask = (count==0 ? 0 : mi_bitmap_mask_(count, 0)); mi_assert_internal(mi_bitmap_index_field(bitmap_idx) + mid_count + (count==0 ? 0 : 1) < bitmap_fields); return mid_count; } } // Set `count` bits at `bitmap_idx` to 0 atomically // Returns `true` if all `count` bits were 1 previously. bool _mi_bitmap_unclaim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { size_t idx = mi_bitmap_index_field(bitmap_idx); size_t pre_mask; size_t mid_mask; size_t post_mask; size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask); bool all_one = true; mi_bitmap_field_t* field = &bitmap[idx]; size_t prev = mi_atomic_and_acq_rel(field++, ~pre_mask); // clear first part if ((prev & pre_mask) != pre_mask) all_one = false; while(mid_count-- > 0) { prev = mi_atomic_and_acq_rel(field++, ~mid_mask); // clear mid part if ((prev & mid_mask) != mid_mask) all_one = false; } if (post_mask!=0) { prev = mi_atomic_and_acq_rel(field, ~post_mask); // clear end part if ((prev & post_mask) != post_mask) all_one = false; } return all_one; } // Set `count` bits at `bitmap_idx` to 1 atomically // Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit. bool _mi_bitmap_claim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* pany_zero) { size_t idx = mi_bitmap_index_field(bitmap_idx); size_t pre_mask; size_t mid_mask; size_t post_mask; size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask); bool all_zero = true; bool any_zero = false; _Atomic(size_t)*field = &bitmap[idx]; size_t prev = mi_atomic_or_acq_rel(field++, pre_mask); if ((prev & pre_mask) != 0) all_zero = false; if ((prev & pre_mask) != pre_mask) any_zero = true; while (mid_count-- > 0) { prev = mi_atomic_or_acq_rel(field++, mid_mask); if ((prev & mid_mask) != 0) all_zero = false; if ((prev & mid_mask) != mid_mask) any_zero = true; } if (post_mask!=0) { prev = mi_atomic_or_acq_rel(field, post_mask); if ((prev & post_mask) != 0) all_zero = false; if ((prev & post_mask) != post_mask) any_zero = true; } if (pany_zero != NULL) { *pany_zero = any_zero; } return all_zero; } // Returns `true` if all `count` bits were 1. // `any_ones` is `true` if there was at least one bit set to one. static bool mi_bitmap_is_claimedx_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* pany_ones) { size_t idx = mi_bitmap_index_field(bitmap_idx); size_t pre_mask; size_t mid_mask; size_t post_mask; size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask); bool all_ones = true; bool any_ones = false; mi_bitmap_field_t* field = &bitmap[idx]; size_t prev = mi_atomic_load_relaxed(field++); if ((prev & pre_mask) != pre_mask) all_ones = false; if ((prev & pre_mask) != 0) any_ones = true; while (mid_count-- > 0) { prev = mi_atomic_load_relaxed(field++); if ((prev & mid_mask) != mid_mask) all_ones = false; if ((prev & mid_mask) != 0) any_ones = true; } if (post_mask!=0) { prev = mi_atomic_load_relaxed(field); if ((prev & post_mask) != post_mask) all_ones = false; if ((prev & post_mask) != 0) any_ones = true; } if (pany_ones != NULL) { *pany_ones = any_ones; } return all_ones; } bool _mi_bitmap_is_claimed_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { return mi_bitmap_is_claimedx_across(bitmap, bitmap_fields, count, bitmap_idx, NULL); } bool _mi_bitmap_is_any_claimed_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { bool any_ones; mi_bitmap_is_claimedx_across(bitmap, bitmap_fields, count, bitmap_idx, &any_ones); return any_ones; }