#include "Python.h" #include "pycore_call.h" // _PyObject_CallNoArgs() #include "pycore_ceval.h" // _PyEval_GetBuiltin() #include "pycore_critical_section.h" // Py_BEGIN_CRITICAL_SECTION() #include "pycore_long.h" // _PyLong_GetZero() #include "pycore_moduleobject.h" // _PyModule_GetState() #include "pycore_typeobject.h" // _PyType_GetModuleState() #include "pycore_object.h" // _PyObject_GC_TRACK() #include "pycore_tuple.h" // _PyTuple_ITEMS() #include // offsetof() /* Itertools module written and maintained by Raymond D. Hettinger */ typedef struct { PyTypeObject *accumulate_type; PyTypeObject *batched_type; PyTypeObject *chain_type; PyTypeObject *combinations_type; PyTypeObject *compress_type; PyTypeObject *count_type; PyTypeObject *cwr_type; PyTypeObject *cycle_type; PyTypeObject *dropwhile_type; PyTypeObject *filterfalse_type; PyTypeObject *groupby_type; PyTypeObject *_grouper_type; PyTypeObject *islice_type; PyTypeObject *pairwise_type; PyTypeObject *permutations_type; PyTypeObject *product_type; PyTypeObject *repeat_type; PyTypeObject *starmap_type; PyTypeObject *takewhile_type; PyTypeObject *tee_type; PyTypeObject *teedataobject_type; PyTypeObject *ziplongest_type; } itertools_state; static inline itertools_state * get_module_state(PyObject *mod) { void *state = _PyModule_GetState(mod); assert(state != NULL); return (itertools_state *)state; } static inline itertools_state * get_module_state_by_cls(PyTypeObject *cls) { void *state = _PyType_GetModuleState(cls); assert(state != NULL); return (itertools_state *)state; } static struct PyModuleDef itertoolsmodule; static inline itertools_state * find_state_by_type(PyTypeObject *tp) { PyObject *mod = PyType_GetModuleByDef(tp, &itertoolsmodule); assert(mod != NULL); return get_module_state(mod); } /*[clinic input] module itertools class itertools.groupby "groupbyobject *" "clinic_state()->groupby_type" class itertools._grouper "_grouperobject *" "clinic_state()->_grouper_type" class itertools.teedataobject "teedataobject *" "clinic_state()->teedataobject_type" class itertools._tee "teeobject *" "clinic_state()->tee_type" class itertools.batched "batchedobject *" "clinic_state()->batched_type" class itertools.cycle "cycleobject *" "clinic_state()->cycle_type" class itertools.dropwhile "dropwhileobject *" "clinic_state()->dropwhile_type" class itertools.takewhile "takewhileobject *" "clinic_state()->takewhile_type" class itertools.starmap "starmapobject *" "clinic_state()->starmap_type" class itertools.chain "chainobject *" "clinic_state()->chain_type" class itertools.combinations "combinationsobject *" "clinic_state()->combinations_type" class itertools.combinations_with_replacement "cwr_object *" "clinic_state()->cwr_type" class itertools.permutations "permutationsobject *" "clinic_state()->permutations_type" class itertools.accumulate "accumulateobject *" "clinic_state()->accumulate_type" class itertools.compress "compressobject *" "clinic_state()->compress_type" class itertools.filterfalse "filterfalseobject *" "clinic_state()->filterfalse_type" class itertools.count "countobject *" "clinic_state()->count_type" class itertools.pairwise "pairwiseobject *" "clinic_state()->pairwise_type" [clinic start generated code]*/ /*[clinic end generated code: output=da39a3ee5e6b4b0d input=aa48fe4de9d4080f]*/ #define clinic_state() (find_state_by_type(type)) #define clinic_state_by_cls() (get_module_state_by_cls(base_tp)) #include "clinic/itertoolsmodule.c.h" #undef clinic_state_by_cls #undef clinic_state /* batched object ************************************************************/ typedef struct { PyObject_HEAD PyObject *it; Py_ssize_t batch_size; bool strict; } batchedobject; /*[clinic input] @classmethod itertools.batched.__new__ as batched_new iterable: object n: Py_ssize_t * strict: bool = False Batch data into tuples of length n. The last batch may be shorter than n. Loops over the input iterable and accumulates data into tuples up to size n. The input is consumed lazily, just enough to fill a batch. The result is yielded as soon as a batch is full or when the input iterable is exhausted. >>> for batch in batched('ABCDEFG', 3): ... print(batch) ... ('A', 'B', 'C') ('D', 'E', 'F') ('G',) If "strict" is True, raises a ValueError if the final batch is shorter than n. [clinic start generated code]*/ static PyObject * batched_new_impl(PyTypeObject *type, PyObject *iterable, Py_ssize_t n, int strict) /*[clinic end generated code: output=c6de11b061529d3e input=7814b47e222f5467]*/ { PyObject *it; batchedobject *bo; if (n < 1) { /* We could define the n==0 case to return an empty iterator but that is at odds with the idea that batching should never throw-away input data. */ PyErr_SetString(PyExc_ValueError, "n must be at least one"); return NULL; } it = PyObject_GetIter(iterable); if (it == NULL) { return NULL; } /* create batchedobject structure */ bo = (batchedobject *)type->tp_alloc(type, 0); if (bo == NULL) { Py_DECREF(it); return NULL; } bo->batch_size = n; bo->it = it; bo->strict = (bool) strict; return (PyObject *)bo; } static void batched_dealloc(batchedobject *bo) { PyTypeObject *tp = Py_TYPE(bo); PyObject_GC_UnTrack(bo); Py_XDECREF(bo->it); tp->tp_free(bo); Py_DECREF(tp); } static int batched_traverse(batchedobject *bo, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(bo)); Py_VISIT(bo->it); return 0; } static PyObject * batched_next(batchedobject *bo) { Py_ssize_t i; Py_ssize_t n = bo->batch_size; PyObject *it = bo->it; PyObject *item; PyObject *result; if (it == NULL) { return NULL; } result = PyTuple_New(n); if (result == NULL) { return NULL; } iternextfunc iternext = *Py_TYPE(it)->tp_iternext; PyObject **items = _PyTuple_ITEMS(result); for (i=0 ; i < n ; i++) { item = iternext(it); if (item == NULL) { goto null_item; } items[i] = item; } return result; null_item: if (PyErr_Occurred()) { if (!PyErr_ExceptionMatches(PyExc_StopIteration)) { /* Input raised an exception other than StopIteration */ Py_CLEAR(bo->it); Py_DECREF(result); return NULL; } PyErr_Clear(); } if (i == 0) { Py_CLEAR(bo->it); Py_DECREF(result); return NULL; } if (bo->strict) { Py_CLEAR(bo->it); Py_DECREF(result); PyErr_SetString(PyExc_ValueError, "batched(): incomplete batch"); return NULL; } _PyTuple_Resize(&result, i); return result; } static PyType_Slot batched_slots[] = { {Py_tp_dealloc, batched_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)batched_new__doc__}, {Py_tp_traverse, batched_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, batched_next}, {Py_tp_alloc, PyType_GenericAlloc}, {Py_tp_new, batched_new}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec batched_spec = { .name = "itertools.batched", .basicsize = sizeof(batchedobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = batched_slots, }; /* pairwise object ***********************************************************/ typedef struct { PyObject_HEAD PyObject *it; PyObject *old; PyObject *result; } pairwiseobject; /*[clinic input] @classmethod itertools.pairwise.__new__ as pairwise_new iterable: object / Return an iterator of overlapping pairs taken from the input iterator. s -> (s0,s1), (s1,s2), (s2, s3), ... [clinic start generated code]*/ static PyObject * pairwise_new_impl(PyTypeObject *type, PyObject *iterable) /*[clinic end generated code: output=9f0267062d384456 input=6e7c3cddb431a8d6]*/ { PyObject *it; pairwiseobject *po; it = PyObject_GetIter(iterable); if (it == NULL) { return NULL; } po = (pairwiseobject *)type->tp_alloc(type, 0); if (po == NULL) { Py_DECREF(it); return NULL; } po->it = it; po->old = NULL; po->result = PyTuple_Pack(2, Py_None, Py_None); if (po->result == NULL) { Py_DECREF(po); return NULL; } return (PyObject *)po; } static void pairwise_dealloc(pairwiseobject *po) { PyTypeObject *tp = Py_TYPE(po); PyObject_GC_UnTrack(po); Py_XDECREF(po->it); Py_XDECREF(po->old); Py_XDECREF(po->result); tp->tp_free(po); Py_DECREF(tp); } static int pairwise_traverse(pairwiseobject *po, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(po)); Py_VISIT(po->it); Py_VISIT(po->old); Py_VISIT(po->result); return 0; } static PyObject * pairwise_next(pairwiseobject *po) { PyObject *it = po->it; PyObject *old = po->old; PyObject *new, *result; if (it == NULL) { return NULL; } if (old == NULL) { old = (*Py_TYPE(it)->tp_iternext)(it); Py_XSETREF(po->old, old); if (old == NULL) { Py_CLEAR(po->it); return NULL; } it = po->it; if (it == NULL) { Py_CLEAR(po->old); return NULL; } } Py_INCREF(old); new = (*Py_TYPE(it)->tp_iternext)(it); if (new == NULL) { Py_CLEAR(po->it); Py_CLEAR(po->old); Py_DECREF(old); return NULL; } result = po->result; if (Py_REFCNT(result) == 1) { Py_INCREF(result); PyObject *last_old = PyTuple_GET_ITEM(result, 0); PyObject *last_new = PyTuple_GET_ITEM(result, 1); PyTuple_SET_ITEM(result, 0, Py_NewRef(old)); PyTuple_SET_ITEM(result, 1, Py_NewRef(new)); Py_DECREF(last_old); Py_DECREF(last_new); // bpo-42536: The GC may have untracked this result tuple. Since we're // recycling it, make sure it's tracked again: if (!_PyObject_GC_IS_TRACKED(result)) { _PyObject_GC_TRACK(result); } } else { result = PyTuple_New(2); if (result != NULL) { PyTuple_SET_ITEM(result, 0, Py_NewRef(old)); PyTuple_SET_ITEM(result, 1, Py_NewRef(new)); } } Py_XSETREF(po->old, new); Py_DECREF(old); return result; } static PyType_Slot pairwise_slots[] = { {Py_tp_dealloc, pairwise_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)pairwise_new__doc__}, {Py_tp_traverse, pairwise_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, pairwise_next}, {Py_tp_alloc, PyType_GenericAlloc}, {Py_tp_new, pairwise_new}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec pairwise_spec = { .name = "itertools.pairwise", .basicsize = sizeof(pairwiseobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = pairwise_slots, }; /* groupby object ************************************************************/ typedef struct { PyObject_HEAD PyObject *it; PyObject *keyfunc; PyObject *tgtkey; PyObject *currkey; PyObject *currvalue; const void *currgrouper; /* borrowed reference */ itertools_state *state; } groupbyobject; static PyObject *_grouper_create(groupbyobject *, PyObject *); /*[clinic input] @classmethod itertools.groupby.__new__ iterable as it: object Elements to divide into groups according to the key function. key as keyfunc: object = None A function for computing the group category for each element. If the key function is not specified or is None, the element itself is used for grouping. make an iterator that returns consecutive keys and groups from the iterable [clinic start generated code]*/ static PyObject * itertools_groupby_impl(PyTypeObject *type, PyObject *it, PyObject *keyfunc) /*[clinic end generated code: output=cbb1ae3a90fd4141 input=6b3d123e87ff65a1]*/ { groupbyobject *gbo; gbo = (groupbyobject *)type->tp_alloc(type, 0); if (gbo == NULL) return NULL; gbo->tgtkey = NULL; gbo->currkey = NULL; gbo->currvalue = NULL; gbo->keyfunc = Py_NewRef(keyfunc); gbo->it = PyObject_GetIter(it); if (gbo->it == NULL) { Py_DECREF(gbo); return NULL; } gbo->state = find_state_by_type(type); return (PyObject *)gbo; } static void groupby_dealloc(groupbyobject *gbo) { PyTypeObject *tp = Py_TYPE(gbo); PyObject_GC_UnTrack(gbo); Py_XDECREF(gbo->it); Py_XDECREF(gbo->keyfunc); Py_XDECREF(gbo->tgtkey); Py_XDECREF(gbo->currkey); Py_XDECREF(gbo->currvalue); tp->tp_free(gbo); Py_DECREF(tp); } static int groupby_traverse(groupbyobject *gbo, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(gbo)); Py_VISIT(gbo->it); Py_VISIT(gbo->keyfunc); Py_VISIT(gbo->tgtkey); Py_VISIT(gbo->currkey); Py_VISIT(gbo->currvalue); return 0; } Py_LOCAL_INLINE(int) groupby_step(groupbyobject *gbo) { PyObject *newvalue, *newkey, *oldvalue; newvalue = PyIter_Next(gbo->it); if (newvalue == NULL) return -1; if (gbo->keyfunc == Py_None) { newkey = Py_NewRef(newvalue); } else { newkey = PyObject_CallOneArg(gbo->keyfunc, newvalue); if (newkey == NULL) { Py_DECREF(newvalue); return -1; } } oldvalue = gbo->currvalue; gbo->currvalue = newvalue; Py_XSETREF(gbo->currkey, newkey); Py_XDECREF(oldvalue); return 0; } static PyObject * groupby_next(groupbyobject *gbo) { PyObject *r, *grouper; gbo->currgrouper = NULL; /* skip to next iteration group */ for (;;) { if (gbo->currkey == NULL) /* pass */; else if (gbo->tgtkey == NULL) break; else { int rcmp; rcmp = PyObject_RichCompareBool(gbo->tgtkey, gbo->currkey, Py_EQ); if (rcmp == -1) return NULL; else if (rcmp == 0) break; } if (groupby_step(gbo) < 0) return NULL; } Py_INCREF(gbo->currkey); Py_XSETREF(gbo->tgtkey, gbo->currkey); grouper = _grouper_create(gbo, gbo->tgtkey); if (grouper == NULL) return NULL; r = PyTuple_Pack(2, gbo->currkey, grouper); Py_DECREF(grouper); return r; } static PyType_Slot groupby_slots[] = { {Py_tp_dealloc, groupby_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)itertools_groupby__doc__}, {Py_tp_traverse, groupby_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, groupby_next}, {Py_tp_new, itertools_groupby}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec groupby_spec = { .name = "itertools.groupby", .basicsize= sizeof(groupbyobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = groupby_slots, }; /* _grouper object (internal) ************************************************/ typedef struct { PyObject_HEAD PyObject *parent; PyObject *tgtkey; } _grouperobject; /*[clinic input] @classmethod itertools._grouper.__new__ parent: object(subclass_of='clinic_state_by_cls()->groupby_type') tgtkey: object / [clinic start generated code]*/ static PyObject * itertools__grouper_impl(PyTypeObject *type, PyObject *parent, PyObject *tgtkey) /*[clinic end generated code: output=462efb1cdebb5914 input=afe05eb477118f12]*/ { return _grouper_create((groupbyobject*) parent, tgtkey); } static PyObject * _grouper_create(groupbyobject *parent, PyObject *tgtkey) { itertools_state *state = parent->state; _grouperobject *igo = PyObject_GC_New(_grouperobject, state->_grouper_type); if (igo == NULL) return NULL; igo->parent = Py_NewRef(parent); igo->tgtkey = Py_NewRef(tgtkey); parent->currgrouper = igo; /* borrowed reference */ PyObject_GC_Track(igo); return (PyObject *)igo; } static void _grouper_dealloc(_grouperobject *igo) { PyTypeObject *tp = Py_TYPE(igo); PyObject_GC_UnTrack(igo); Py_DECREF(igo->parent); Py_DECREF(igo->tgtkey); PyObject_GC_Del(igo); Py_DECREF(tp); } static int _grouper_traverse(_grouperobject *igo, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(igo)); Py_VISIT(igo->parent); Py_VISIT(igo->tgtkey); return 0; } static PyObject * _grouper_next(_grouperobject *igo) { groupbyobject *gbo = (groupbyobject *)igo->parent; PyObject *r; int rcmp; if (gbo->currgrouper != igo) return NULL; if (gbo->currvalue == NULL) { if (groupby_step(gbo) < 0) return NULL; } assert(gbo->currkey != NULL); rcmp = PyObject_RichCompareBool(igo->tgtkey, gbo->currkey, Py_EQ); if (rcmp <= 0) /* got any error or current group is end */ return NULL; r = gbo->currvalue; gbo->currvalue = NULL; Py_CLEAR(gbo->currkey); return r; } static PyType_Slot _grouper_slots[] = { {Py_tp_dealloc, _grouper_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_traverse, _grouper_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, _grouper_next}, {Py_tp_new, itertools__grouper}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec _grouper_spec = { .name = "itertools._grouper", .basicsize = sizeof(_grouperobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_IMMUTABLETYPE), .slots = _grouper_slots, }; /* tee object and with supporting function and objects ***********************/ /* The teedataobject pre-allocates space for LINKCELLS number of objects. To help the object fit neatly inside cache lines (space for 16 to 32 pointers), the value should be a multiple of 16 minus space for the other structure members including PyHEAD overhead. The larger the value, the less memory overhead per object and the less time spent allocating/deallocating new links. The smaller the number, the less wasted space and the more rapid freeing of older data. */ #define LINKCELLS 57 typedef struct { PyObject_HEAD PyObject *it; int numread; /* 0 <= numread <= LINKCELLS */ int running; PyObject *nextlink; PyObject *(values[LINKCELLS]); } teedataobject; typedef struct { PyObject_HEAD teedataobject *dataobj; int index; /* 0 <= index <= LINKCELLS */ PyObject *weakreflist; itertools_state *state; } teeobject; static PyObject * teedataobject_newinternal(itertools_state *state, PyObject *it) { teedataobject *tdo; tdo = PyObject_GC_New(teedataobject, state->teedataobject_type); if (tdo == NULL) return NULL; tdo->running = 0; tdo->numread = 0; tdo->nextlink = NULL; tdo->it = Py_NewRef(it); PyObject_GC_Track(tdo); return (PyObject *)tdo; } static PyObject * teedataobject_jumplink(itertools_state *state, teedataobject *tdo) { if (tdo->nextlink == NULL) tdo->nextlink = teedataobject_newinternal(state, tdo->it); return Py_XNewRef(tdo->nextlink); } static PyObject * teedataobject_getitem(teedataobject *tdo, int i) { PyObject *value; assert(i < LINKCELLS); if (i < tdo->numread) value = tdo->values[i]; else { /* this is the lead iterator, so fetch more data */ assert(i == tdo->numread); if (tdo->running) { PyErr_SetString(PyExc_RuntimeError, "cannot re-enter the tee iterator"); return NULL; } tdo->running = 1; value = PyIter_Next(tdo->it); tdo->running = 0; if (value == NULL) return NULL; tdo->numread++; tdo->values[i] = value; } return Py_NewRef(value); } static int teedataobject_traverse(teedataobject *tdo, visitproc visit, void * arg) { int i; Py_VISIT(Py_TYPE(tdo)); Py_VISIT(tdo->it); for (i = 0; i < tdo->numread; i++) Py_VISIT(tdo->values[i]); Py_VISIT(tdo->nextlink); return 0; } static void teedataobject_safe_decref(PyObject *obj) { while (obj && Py_REFCNT(obj) == 1) { PyObject *nextlink = ((teedataobject *)obj)->nextlink; ((teedataobject *)obj)->nextlink = NULL; Py_SETREF(obj, nextlink); } Py_XDECREF(obj); } static int teedataobject_clear(teedataobject *tdo) { int i; PyObject *tmp; Py_CLEAR(tdo->it); for (i=0 ; inumread ; i++) Py_CLEAR(tdo->values[i]); tmp = tdo->nextlink; tdo->nextlink = NULL; teedataobject_safe_decref(tmp); return 0; } static void teedataobject_dealloc(teedataobject *tdo) { PyTypeObject *tp = Py_TYPE(tdo); PyObject_GC_UnTrack(tdo); teedataobject_clear(tdo); PyObject_GC_Del(tdo); Py_DECREF(tp); } /*[clinic input] @classmethod itertools.teedataobject.__new__ iterable as it: object values: object(subclass_of='&PyList_Type') next: object / Data container common to multiple tee objects. [clinic start generated code]*/ static PyObject * itertools_teedataobject_impl(PyTypeObject *type, PyObject *it, PyObject *values, PyObject *next) /*[clinic end generated code: output=3343ceb07e08df5e input=be60f2fabd2b72ba]*/ { teedataobject *tdo; Py_ssize_t i, len; itertools_state *state = get_module_state_by_cls(type); assert(type == state->teedataobject_type); tdo = (teedataobject *)teedataobject_newinternal(state, it); if (!tdo) return NULL; len = PyList_GET_SIZE(values); if (len > LINKCELLS) goto err; for (i=0; ivalues[i] = PyList_GET_ITEM(values, i); Py_INCREF(tdo->values[i]); } /* len <= LINKCELLS < INT_MAX */ tdo->numread = Py_SAFE_DOWNCAST(len, Py_ssize_t, int); if (len == LINKCELLS) { if (next != Py_None) { if (!Py_IS_TYPE(next, state->teedataobject_type)) goto err; assert(tdo->nextlink == NULL); tdo->nextlink = Py_NewRef(next); } } else { if (next != Py_None) goto err; /* shouldn't have a next if we are not full */ } return (PyObject*)tdo; err: Py_XDECREF(tdo); PyErr_SetString(PyExc_ValueError, "Invalid arguments"); return NULL; } static PyType_Slot teedataobject_slots[] = { {Py_tp_dealloc, teedataobject_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)itertools_teedataobject__doc__}, {Py_tp_traverse, teedataobject_traverse}, {Py_tp_clear, teedataobject_clear}, {Py_tp_new, itertools_teedataobject}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec teedataobject_spec = { .name = "itertools._tee_dataobject", .basicsize = sizeof(teedataobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_IMMUTABLETYPE), .slots = teedataobject_slots, }; static PyObject * tee_next(teeobject *to) { PyObject *value, *link; if (to->index >= LINKCELLS) { link = teedataobject_jumplink(to->state, to->dataobj); if (link == NULL) return NULL; Py_SETREF(to->dataobj, (teedataobject *)link); to->index = 0; } value = teedataobject_getitem(to->dataobj, to->index); if (value == NULL) return NULL; to->index++; return value; } static int tee_traverse(teeobject *to, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(to)); Py_VISIT((PyObject *)to->dataobj); return 0; } static PyObject * tee_copy(teeobject *to, PyObject *Py_UNUSED(ignored)) { teeobject *newto; newto = PyObject_GC_New(teeobject, Py_TYPE(to)); if (newto == NULL) return NULL; newto->dataobj = (teedataobject*)Py_NewRef(to->dataobj); newto->index = to->index; newto->weakreflist = NULL; newto->state = to->state; PyObject_GC_Track(newto); return (PyObject *)newto; } PyDoc_STRVAR(teecopy_doc, "Returns an independent iterator."); static PyObject * tee_fromiterable(itertools_state *state, PyObject *iterable) { teeobject *to; PyObject *it; it = PyObject_GetIter(iterable); if (it == NULL) return NULL; if (PyObject_TypeCheck(it, state->tee_type)) { to = (teeobject *)tee_copy((teeobject *)it, NULL); goto done; } PyObject *dataobj = teedataobject_newinternal(state, it); if (!dataobj) { to = NULL; goto done; } to = PyObject_GC_New(teeobject, state->tee_type); if (to == NULL) { Py_DECREF(dataobj); goto done; } to->dataobj = (teedataobject *)dataobj; to->index = 0; to->weakreflist = NULL; to->state = state; PyObject_GC_Track(to); done: Py_DECREF(it); return (PyObject *)to; } /*[clinic input] @classmethod itertools._tee.__new__ iterable: object / Iterator wrapped to make it copyable. [clinic start generated code]*/ static PyObject * itertools__tee_impl(PyTypeObject *type, PyObject *iterable) /*[clinic end generated code: output=b02d3fd26c810c3f input=adc0779d2afe37a2]*/ { itertools_state *state = get_module_state_by_cls(type); return tee_fromiterable(state, iterable); } static int tee_clear(teeobject *to) { if (to->weakreflist != NULL) PyObject_ClearWeakRefs((PyObject *) to); Py_CLEAR(to->dataobj); return 0; } static void tee_dealloc(teeobject *to) { PyTypeObject *tp = Py_TYPE(to); PyObject_GC_UnTrack(to); tee_clear(to); PyObject_GC_Del(to); Py_DECREF(tp); } static PyMethodDef tee_methods[] = { {"__copy__", (PyCFunction)tee_copy, METH_NOARGS, teecopy_doc}, {NULL, NULL} /* sentinel */ }; static PyMemberDef tee_members[] = { {"__weaklistoffset__", Py_T_PYSSIZET, offsetof(teeobject, weakreflist), Py_READONLY}, {NULL}, }; static PyType_Slot tee_slots[] = { {Py_tp_dealloc, tee_dealloc}, {Py_tp_doc, (void *)itertools__tee__doc__}, {Py_tp_traverse, tee_traverse}, {Py_tp_clear, tee_clear}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, tee_next}, {Py_tp_methods, tee_methods}, {Py_tp_members, tee_members}, {Py_tp_new, itertools__tee}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec tee_spec = { .name = "itertools._tee", .basicsize = sizeof(teeobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_IMMUTABLETYPE), .slots = tee_slots, }; /*[clinic input] itertools.tee iterable: object n: Py_ssize_t = 2 / Returns a tuple of n independent iterators. [clinic start generated code]*/ static PyObject * itertools_tee_impl(PyObject *module, PyObject *iterable, Py_ssize_t n) /*[clinic end generated code: output=1c64519cd859c2f0 input=c99a1472c425d66d]*/ { Py_ssize_t i; PyObject *it, *to, *result; if (n < 0) { PyErr_SetString(PyExc_ValueError, "n must be >= 0"); return NULL; } result = PyTuple_New(n); if (result == NULL) return NULL; if (n == 0) return result; it = PyObject_GetIter(iterable); if (it == NULL) { Py_DECREF(result); return NULL; } itertools_state *state = get_module_state(module); to = tee_fromiterable(state, it); Py_DECREF(it); if (to == NULL) { Py_DECREF(result); return NULL; } PyTuple_SET_ITEM(result, 0, to); for (i = 1; i < n; i++) { to = tee_copy((teeobject *)to, NULL); if (to == NULL) { Py_DECREF(result); return NULL; } PyTuple_SET_ITEM(result, i, to); } return result; } /* cycle object **************************************************************/ typedef struct { PyObject_HEAD PyObject *it; PyObject *saved; Py_ssize_t index; int firstpass; } cycleobject; /*[clinic input] @classmethod itertools.cycle.__new__ iterable: object / Return elements from the iterable until it is exhausted. Then repeat the sequence indefinitely. [clinic start generated code]*/ static PyObject * itertools_cycle_impl(PyTypeObject *type, PyObject *iterable) /*[clinic end generated code: output=f60e5ec17a45b35c input=9d1d84bcf66e908b]*/ { PyObject *it; PyObject *saved; cycleobject *lz; /* Get iterator. */ it = PyObject_GetIter(iterable); if (it == NULL) return NULL; saved = PyList_New(0); if (saved == NULL) { Py_DECREF(it); return NULL; } /* create cycleobject structure */ lz = (cycleobject *)type->tp_alloc(type, 0); if (lz == NULL) { Py_DECREF(it); Py_DECREF(saved); return NULL; } lz->it = it; lz->saved = saved; lz->index = 0; lz->firstpass = 0; return (PyObject *)lz; } static void cycle_dealloc(cycleobject *lz) { PyTypeObject *tp = Py_TYPE(lz); PyObject_GC_UnTrack(lz); Py_XDECREF(lz->it); Py_XDECREF(lz->saved); tp->tp_free(lz); Py_DECREF(tp); } static int cycle_traverse(cycleobject *lz, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(lz)); Py_VISIT(lz->it); Py_VISIT(lz->saved); return 0; } static PyObject * cycle_next(cycleobject *lz) { PyObject *item; if (lz->it != NULL) { item = PyIter_Next(lz->it); if (item != NULL) { if (lz->firstpass) return item; if (PyList_Append(lz->saved, item)) { Py_DECREF(item); return NULL; } return item; } /* Note: StopIteration is already cleared by PyIter_Next() */ if (PyErr_Occurred()) return NULL; Py_CLEAR(lz->it); } if (PyList_GET_SIZE(lz->saved) == 0) return NULL; item = PyList_GET_ITEM(lz->saved, lz->index); lz->index++; if (lz->index >= PyList_GET_SIZE(lz->saved)) lz->index = 0; return Py_NewRef(item); } static PyType_Slot cycle_slots[] = { {Py_tp_dealloc, cycle_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)itertools_cycle__doc__}, {Py_tp_traverse, cycle_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, cycle_next}, {Py_tp_new, itertools_cycle}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec cycle_spec = { .name = "itertools.cycle", .basicsize = sizeof(cycleobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = cycle_slots, }; /* dropwhile object **********************************************************/ typedef struct { PyObject_HEAD PyObject *func; PyObject *it; long start; } dropwhileobject; /*[clinic input] @classmethod itertools.dropwhile.__new__ predicate as func: object iterable as seq: object / Drop items from the iterable while predicate(item) is true. Afterwards, return every element until the iterable is exhausted. [clinic start generated code]*/ static PyObject * itertools_dropwhile_impl(PyTypeObject *type, PyObject *func, PyObject *seq) /*[clinic end generated code: output=92f9d0d89af149e4 input=d39737147c9f0a26]*/ { PyObject *it; dropwhileobject *lz; /* Get iterator. */ it = PyObject_GetIter(seq); if (it == NULL) return NULL; /* create dropwhileobject structure */ lz = (dropwhileobject *)type->tp_alloc(type, 0); if (lz == NULL) { Py_DECREF(it); return NULL; } lz->func = Py_NewRef(func); lz->it = it; lz->start = 0; return (PyObject *)lz; } static void dropwhile_dealloc(dropwhileobject *lz) { PyTypeObject *tp = Py_TYPE(lz); PyObject_GC_UnTrack(lz); Py_XDECREF(lz->func); Py_XDECREF(lz->it); tp->tp_free(lz); Py_DECREF(tp); } static int dropwhile_traverse(dropwhileobject *lz, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(lz)); Py_VISIT(lz->it); Py_VISIT(lz->func); return 0; } static PyObject * dropwhile_next(dropwhileobject *lz) { PyObject *item, *good; PyObject *it = lz->it; long ok; PyObject *(*iternext)(PyObject *); iternext = *Py_TYPE(it)->tp_iternext; for (;;) { item = iternext(it); if (item == NULL) return NULL; if (lz->start == 1) return item; good = PyObject_CallOneArg(lz->func, item); if (good == NULL) { Py_DECREF(item); return NULL; } ok = PyObject_IsTrue(good); Py_DECREF(good); if (ok == 0) { lz->start = 1; return item; } Py_DECREF(item); if (ok < 0) return NULL; } } static PyType_Slot dropwhile_slots[] = { {Py_tp_dealloc, dropwhile_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)itertools_dropwhile__doc__}, {Py_tp_traverse, dropwhile_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, dropwhile_next}, {Py_tp_new, itertools_dropwhile}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec dropwhile_spec = { .name = "itertools.dropwhile", .basicsize = sizeof(dropwhileobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = dropwhile_slots, }; /* takewhile object **********************************************************/ typedef struct { PyObject_HEAD PyObject *func; PyObject *it; long stop; } takewhileobject; /*[clinic input] @classmethod itertools.takewhile.__new__ predicate as func: object iterable as seq: object / Return successive entries from an iterable as long as the predicate evaluates to true for each entry. [clinic start generated code]*/ static PyObject * itertools_takewhile_impl(PyTypeObject *type, PyObject *func, PyObject *seq) /*[clinic end generated code: output=bb179ea7864e2ef6 input=ba5255f7519aa119]*/ { PyObject *it; takewhileobject *lz; /* Get iterator. */ it = PyObject_GetIter(seq); if (it == NULL) return NULL; /* create takewhileobject structure */ lz = (takewhileobject *)type->tp_alloc(type, 0); if (lz == NULL) { Py_DECREF(it); return NULL; } lz->func = Py_NewRef(func); lz->it = it; lz->stop = 0; return (PyObject *)lz; } static void takewhile_dealloc(takewhileobject *lz) { PyTypeObject *tp = Py_TYPE(lz); PyObject_GC_UnTrack(lz); Py_XDECREF(lz->func); Py_XDECREF(lz->it); tp->tp_free(lz); Py_DECREF(tp); } static int takewhile_traverse(takewhileobject *lz, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(lz)); Py_VISIT(lz->it); Py_VISIT(lz->func); return 0; } static PyObject * takewhile_next(takewhileobject *lz) { PyObject *item, *good; PyObject *it = lz->it; long ok; if (lz->stop == 1) return NULL; item = (*Py_TYPE(it)->tp_iternext)(it); if (item == NULL) return NULL; good = PyObject_CallOneArg(lz->func, item); if (good == NULL) { Py_DECREF(item); return NULL; } ok = PyObject_IsTrue(good); Py_DECREF(good); if (ok > 0) return item; Py_DECREF(item); if (ok == 0) lz->stop = 1; return NULL; } static PyType_Slot takewhile_slots[] = { {Py_tp_dealloc, takewhile_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)itertools_takewhile__doc__}, {Py_tp_traverse, takewhile_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, takewhile_next}, {Py_tp_new, itertools_takewhile}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec takewhile_spec = { .name = "itertools.takewhile", .basicsize = sizeof(takewhileobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = takewhile_slots, }; /* islice object *************************************************************/ typedef struct { PyObject_HEAD PyObject *it; Py_ssize_t next; Py_ssize_t stop; Py_ssize_t step; Py_ssize_t cnt; } isliceobject; static PyObject * islice_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyObject *seq; Py_ssize_t start=0, stop=-1, step=1; PyObject *it, *a1=NULL, *a2=NULL, *a3=NULL; Py_ssize_t numargs; isliceobject *lz; itertools_state *st = find_state_by_type(type); PyTypeObject *islice_type = st->islice_type; if ((type == islice_type || type->tp_init == islice_type->tp_init) && !_PyArg_NoKeywords("islice", kwds)) return NULL; if (!PyArg_UnpackTuple(args, "islice", 2, 4, &seq, &a1, &a2, &a3)) return NULL; numargs = PyTuple_Size(args); if (numargs == 2) { if (a1 != Py_None) { stop = PyNumber_AsSsize_t(a1, PyExc_OverflowError); if (stop == -1) { if (PyErr_Occurred()) PyErr_Clear(); PyErr_SetString(PyExc_ValueError, "Stop argument for islice() must be None or " "an integer: 0 <= x <= sys.maxsize."); return NULL; } } } else { if (a1 != Py_None) start = PyNumber_AsSsize_t(a1, PyExc_OverflowError); if (start == -1 && PyErr_Occurred()) PyErr_Clear(); if (a2 != Py_None) { stop = PyNumber_AsSsize_t(a2, PyExc_OverflowError); if (stop == -1) { if (PyErr_Occurred()) PyErr_Clear(); PyErr_SetString(PyExc_ValueError, "Stop argument for islice() must be None or " "an integer: 0 <= x <= sys.maxsize."); return NULL; } } } if (start<0 || stop<-1) { PyErr_SetString(PyExc_ValueError, "Indices for islice() must be None or " "an integer: 0 <= x <= sys.maxsize."); return NULL; } if (a3 != NULL) { if (a3 != Py_None) step = PyNumber_AsSsize_t(a3, PyExc_OverflowError); if (step == -1 && PyErr_Occurred()) PyErr_Clear(); } if (step<1) { PyErr_SetString(PyExc_ValueError, "Step for islice() must be a positive integer or None."); return NULL; } /* Get iterator. */ it = PyObject_GetIter(seq); if (it == NULL) return NULL; /* create isliceobject structure */ lz = (isliceobject *)type->tp_alloc(type, 0); if (lz == NULL) { Py_DECREF(it); return NULL; } lz->it = it; lz->next = start; lz->stop = stop; lz->step = step; lz->cnt = 0L; return (PyObject *)lz; } static void islice_dealloc(isliceobject *lz) { PyTypeObject *tp = Py_TYPE(lz); PyObject_GC_UnTrack(lz); Py_XDECREF(lz->it); tp->tp_free(lz); Py_DECREF(tp); } static int islice_traverse(isliceobject *lz, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(lz)); Py_VISIT(lz->it); return 0; } static PyObject * islice_next(isliceobject *lz) { PyObject *item; PyObject *it = lz->it; Py_ssize_t stop = lz->stop; Py_ssize_t oldnext; PyObject *(*iternext)(PyObject *); if (it == NULL) return NULL; iternext = *Py_TYPE(it)->tp_iternext; while (lz->cnt < lz->next) { item = iternext(it); if (item == NULL) goto empty; Py_DECREF(item); lz->cnt++; } if (stop != -1 && lz->cnt >= stop) goto empty; item = iternext(it); if (item == NULL) goto empty; lz->cnt++; oldnext = lz->next; /* The (size_t) cast below avoids the danger of undefined behaviour from signed integer overflow. */ lz->next += (size_t)lz->step; if (lz->next < oldnext || (stop != -1 && lz->next > stop)) lz->next = stop; return item; empty: Py_CLEAR(lz->it); return NULL; } PyDoc_STRVAR(islice_doc, "islice(iterable, stop) --> islice object\n\ islice(iterable, start, stop[, step]) --> islice object\n\ \n\ Return an iterator whose next() method returns selected values from an\n\ iterable. If start is specified, will skip all preceding elements;\n\ otherwise, start defaults to zero. Step defaults to one. If\n\ specified as another value, step determines how many values are\n\ skipped between successive calls. Works like a slice() on a list\n\ but returns an iterator."); static PyType_Slot islice_slots[] = { {Py_tp_dealloc, islice_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)islice_doc}, {Py_tp_traverse, islice_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, islice_next}, {Py_tp_new, islice_new}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec islice_spec = { .name = "itertools.islice", .basicsize = sizeof(isliceobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = islice_slots, }; /* starmap object ************************************************************/ typedef struct { PyObject_HEAD PyObject *func; PyObject *it; } starmapobject; /*[clinic input] @classmethod itertools.starmap.__new__ function as func: object iterable as seq: object / Return an iterator whose values are returned from the function evaluated with an argument tuple taken from the given sequence. [clinic start generated code]*/ static PyObject * itertools_starmap_impl(PyTypeObject *type, PyObject *func, PyObject *seq) /*[clinic end generated code: output=79eeb81d452c6e8d input=844766df6a0d4dad]*/ { PyObject *it; starmapobject *lz; /* Get iterator. */ it = PyObject_GetIter(seq); if (it == NULL) return NULL; /* create starmapobject structure */ lz = (starmapobject *)type->tp_alloc(type, 0); if (lz == NULL) { Py_DECREF(it); return NULL; } lz->func = Py_NewRef(func); lz->it = it; return (PyObject *)lz; } static void starmap_dealloc(starmapobject *lz) { PyTypeObject *tp = Py_TYPE(lz); PyObject_GC_UnTrack(lz); Py_XDECREF(lz->func); Py_XDECREF(lz->it); tp->tp_free(lz); Py_DECREF(tp); } static int starmap_traverse(starmapobject *lz, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(lz)); Py_VISIT(lz->it); Py_VISIT(lz->func); return 0; } static PyObject * starmap_next(starmapobject *lz) { PyObject *args; PyObject *result; PyObject *it = lz->it; args = (*Py_TYPE(it)->tp_iternext)(it); if (args == NULL) return NULL; if (!PyTuple_CheckExact(args)) { PyObject *newargs = PySequence_Tuple(args); Py_DECREF(args); if (newargs == NULL) return NULL; args = newargs; } result = PyObject_Call(lz->func, args, NULL); Py_DECREF(args); return result; } static PyType_Slot starmap_slots[] = { {Py_tp_dealloc, starmap_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)itertools_starmap__doc__}, {Py_tp_traverse, starmap_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, starmap_next}, {Py_tp_new, itertools_starmap}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec starmap_spec = { .name = "itertools.starmap", .basicsize = sizeof(starmapobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = starmap_slots, }; /* chain object **************************************************************/ typedef struct { PyObject_HEAD PyObject *source; /* Iterator over input iterables */ PyObject *active; /* Currently running input iterator */ } chainobject; static PyObject * chain_new_internal(PyTypeObject *type, PyObject *source) { chainobject *lz; lz = (chainobject *)type->tp_alloc(type, 0); if (lz == NULL) { Py_DECREF(source); return NULL; } lz->source = source; lz->active = NULL; return (PyObject *)lz; } static PyObject * chain_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyObject *source; itertools_state *state = find_state_by_type(type); PyTypeObject *chain_type = state->chain_type; if ((type == chain_type || type->tp_init == chain_type->tp_init) && !_PyArg_NoKeywords("chain", kwds)) return NULL; source = PyObject_GetIter(args); if (source == NULL) return NULL; return chain_new_internal(type, source); } /*[clinic input] @classmethod itertools.chain.from_iterable iterable as arg: object / Alternative chain() constructor taking a single iterable argument that evaluates lazily. [clinic start generated code]*/ static PyObject * itertools_chain_from_iterable(PyTypeObject *type, PyObject *arg) /*[clinic end generated code: output=667ae7a7f7b68654 input=72c39e3a2ca3be85]*/ { PyObject *source; source = PyObject_GetIter(arg); if (source == NULL) return NULL; return chain_new_internal(type, source); } static void chain_dealloc(chainobject *lz) { PyTypeObject *tp = Py_TYPE(lz); PyObject_GC_UnTrack(lz); Py_XDECREF(lz->active); Py_XDECREF(lz->source); tp->tp_free(lz); Py_DECREF(tp); } static int chain_traverse(chainobject *lz, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(lz)); Py_VISIT(lz->source); Py_VISIT(lz->active); return 0; } static PyObject * chain_next(chainobject *lz) { PyObject *item; /* lz->source is the iterator of iterables. If it's NULL, we've already * consumed them all. lz->active is the current iterator. If it's NULL, * we should grab a new one from lz->source. */ while (lz->source != NULL) { if (lz->active == NULL) { PyObject *iterable = PyIter_Next(lz->source); if (iterable == NULL) { Py_CLEAR(lz->source); return NULL; /* no more input sources */ } lz->active = PyObject_GetIter(iterable); Py_DECREF(iterable); if (lz->active == NULL) { Py_CLEAR(lz->source); return NULL; /* input not iterable */ } } item = (*Py_TYPE(lz->active)->tp_iternext)(lz->active); if (item != NULL) return item; if (PyErr_Occurred()) { if (PyErr_ExceptionMatches(PyExc_StopIteration)) PyErr_Clear(); else return NULL; /* input raised an exception */ } /* lz->active is consumed, try with the next iterable. */ Py_CLEAR(lz->active); } /* Everything had been consumed already. */ return NULL; } PyDoc_STRVAR(chain_doc, "chain(*iterables)\n\ --\n\ \n\ Return a chain object whose .__next__() method returns elements from the\n\ first iterable until it is exhausted, then elements from the next\n\ iterable, until all of the iterables are exhausted."); static PyMethodDef chain_methods[] = { ITERTOOLS_CHAIN_FROM_ITERABLE_METHODDEF {"__class_getitem__", Py_GenericAlias, METH_O|METH_CLASS, PyDoc_STR("See PEP 585")}, {NULL, NULL} /* sentinel */ }; static PyType_Slot chain_slots[] = { {Py_tp_dealloc, chain_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)chain_doc}, {Py_tp_traverse, chain_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, chain_next}, {Py_tp_methods, chain_methods}, {Py_tp_new, chain_new}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec chain_spec = { .name = "itertools.chain", .basicsize = sizeof(chainobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = chain_slots, }; /* product object ************************************************************/ typedef struct { PyObject_HEAD PyObject *pools; /* tuple of pool tuples */ Py_ssize_t *indices; /* one index per pool */ PyObject *result; /* most recently returned result tuple */ int stopped; /* set to 1 when the iterator is exhausted */ } productobject; static PyObject * product_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { productobject *lz; Py_ssize_t nargs, npools, repeat=1; PyObject *pools = NULL; Py_ssize_t *indices = NULL; Py_ssize_t i; if (kwds != NULL) { char *kwlist[] = {"repeat", 0}; PyObject *tmpargs = PyTuple_New(0); if (tmpargs == NULL) return NULL; if (!PyArg_ParseTupleAndKeywords(tmpargs, kwds, "|n:product", kwlist, &repeat)) { Py_DECREF(tmpargs); return NULL; } Py_DECREF(tmpargs); if (repeat < 0) { PyErr_SetString(PyExc_ValueError, "repeat argument cannot be negative"); return NULL; } } assert(PyTuple_CheckExact(args)); if (repeat == 0) { nargs = 0; } else { nargs = PyTuple_GET_SIZE(args); if ((size_t)nargs > PY_SSIZE_T_MAX/sizeof(Py_ssize_t)/repeat) { PyErr_SetString(PyExc_OverflowError, "repeat argument too large"); return NULL; } } npools = nargs * repeat; indices = PyMem_New(Py_ssize_t, npools); if (indices == NULL) { PyErr_NoMemory(); goto error; } pools = PyTuple_New(npools); if (pools == NULL) goto error; for (i=0; i < nargs ; ++i) { PyObject *item = PyTuple_GET_ITEM(args, i); PyObject *pool = PySequence_Tuple(item); if (pool == NULL) goto error; PyTuple_SET_ITEM(pools, i, pool); indices[i] = 0; } for ( ; i < npools; ++i) { PyObject *pool = PyTuple_GET_ITEM(pools, i - nargs); Py_INCREF(pool); PyTuple_SET_ITEM(pools, i, pool); indices[i] = 0; } /* create productobject structure */ lz = (productobject *)type->tp_alloc(type, 0); if (lz == NULL) goto error; lz->pools = pools; lz->indices = indices; lz->result = NULL; lz->stopped = 0; return (PyObject *)lz; error: if (indices != NULL) PyMem_Free(indices); Py_XDECREF(pools); return NULL; } static void product_dealloc(productobject *lz) { PyTypeObject *tp = Py_TYPE(lz); PyObject_GC_UnTrack(lz); Py_XDECREF(lz->pools); Py_XDECREF(lz->result); if (lz->indices != NULL) PyMem_Free(lz->indices); tp->tp_free(lz); Py_DECREF(tp); } static PyObject * product_sizeof(productobject *lz, void *unused) { size_t res = _PyObject_SIZE(Py_TYPE(lz)); res += (size_t)PyTuple_GET_SIZE(lz->pools) * sizeof(Py_ssize_t); return PyLong_FromSize_t(res); } PyDoc_STRVAR(sizeof_doc, "Returns size in memory, in bytes."); static int product_traverse(productobject *lz, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(lz)); Py_VISIT(lz->pools); Py_VISIT(lz->result); return 0; } static PyObject * product_next(productobject *lz) { PyObject *pool; PyObject *elem; PyObject *oldelem; PyObject *pools = lz->pools; PyObject *result = lz->result; Py_ssize_t npools = PyTuple_GET_SIZE(pools); Py_ssize_t i; if (lz->stopped) return NULL; if (result == NULL) { /* On the first pass, return an initial tuple filled with the first element from each pool. */ result = PyTuple_New(npools); if (result == NULL) goto empty; lz->result = result; for (i=0; i < npools; i++) { pool = PyTuple_GET_ITEM(pools, i); if (PyTuple_GET_SIZE(pool) == 0) goto empty; elem = PyTuple_GET_ITEM(pool, 0); Py_INCREF(elem); PyTuple_SET_ITEM(result, i, elem); } } else { Py_ssize_t *indices = lz->indices; /* Copy the previous result tuple or re-use it if available */ if (Py_REFCNT(result) > 1) { PyObject *old_result = result; result = _PyTuple_FromArray(_PyTuple_ITEMS(old_result), npools); if (result == NULL) goto empty; lz->result = result; Py_DECREF(old_result); } // bpo-42536: The GC may have untracked this result tuple. Since we're // recycling it, make sure it's tracked again: else if (!_PyObject_GC_IS_TRACKED(result)) { _PyObject_GC_TRACK(result); } /* Now, we've got the only copy so we can update it in-place */ assert (npools==0 || Py_REFCNT(result) == 1); /* Update the pool indices right-to-left. Only advance to the next pool when the previous one rolls-over */ for (i=npools-1 ; i >= 0 ; i--) { pool = PyTuple_GET_ITEM(pools, i); indices[i]++; if (indices[i] == PyTuple_GET_SIZE(pool)) { /* Roll-over and advance to next pool */ indices[i] = 0; elem = PyTuple_GET_ITEM(pool, 0); Py_INCREF(elem); oldelem = PyTuple_GET_ITEM(result, i); PyTuple_SET_ITEM(result, i, elem); Py_DECREF(oldelem); } else { /* No rollover. Just increment and stop here. */ elem = PyTuple_GET_ITEM(pool, indices[i]); Py_INCREF(elem); oldelem = PyTuple_GET_ITEM(result, i); PyTuple_SET_ITEM(result, i, elem); Py_DECREF(oldelem); break; } } /* If i is negative, then the indices have all rolled-over and we're done. */ if (i < 0) goto empty; } return Py_NewRef(result); empty: lz->stopped = 1; return NULL; } static PyMethodDef product_methods[] = { {"__sizeof__", (PyCFunction)product_sizeof, METH_NOARGS, sizeof_doc}, {NULL, NULL} /* sentinel */ }; PyDoc_STRVAR(product_doc, "product(*iterables, repeat=1)\n\ --\n\ \n\ Cartesian product of input iterables. Equivalent to nested for-loops.\n\n\ For example, product(A, B) returns the same as: ((x,y) for x in A for y in B).\n\ The leftmost iterators are in the outermost for-loop, so the output tuples\n\ cycle in a manner similar to an odometer (with the rightmost element changing\n\ on every iteration).\n\n\ To compute the product of an iterable with itself, specify the number\n\ of repetitions with the optional repeat keyword argument. For example,\n\ product(A, repeat=4) means the same as product(A, A, A, A).\n\n\ product('ab', range(3)) --> ('a',0) ('a',1) ('a',2) ('b',0) ('b',1) ('b',2)\n\ product((0,1), (0,1), (0,1)) --> (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) ..."); static PyType_Slot product_slots[] = { {Py_tp_dealloc, product_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)product_doc}, {Py_tp_traverse, product_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, product_next}, {Py_tp_methods, product_methods}, {Py_tp_new, product_new}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec product_spec = { .name = "itertools.product", .basicsize = sizeof(productobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = product_slots, }; /* combinations object *******************************************************/ typedef struct { PyObject_HEAD PyObject *pool; /* input converted to a tuple */ Py_ssize_t *indices; /* one index per result element */ PyObject *result; /* most recently returned result tuple */ Py_ssize_t r; /* size of result tuple */ int stopped; /* set to 1 when the iterator is exhausted */ } combinationsobject; /*[clinic input] @classmethod itertools.combinations.__new__ iterable: object r: Py_ssize_t Return successive r-length combinations of elements in the iterable. combinations(range(4), 3) --> (0,1,2), (0,1,3), (0,2,3), (1,2,3) [clinic start generated code]*/ static PyObject * itertools_combinations_impl(PyTypeObject *type, PyObject *iterable, Py_ssize_t r) /*[clinic end generated code: output=87a689b39c40039c input=06bede09e3da20f8]*/ { combinationsobject *co; Py_ssize_t n; PyObject *pool = NULL; Py_ssize_t *indices = NULL; Py_ssize_t i; pool = PySequence_Tuple(iterable); if (pool == NULL) goto error; n = PyTuple_GET_SIZE(pool); if (r < 0) { PyErr_SetString(PyExc_ValueError, "r must be non-negative"); goto error; } indices = PyMem_New(Py_ssize_t, r); if (indices == NULL) { PyErr_NoMemory(); goto error; } for (i=0 ; itp_alloc(type, 0); if (co == NULL) goto error; co->pool = pool; co->indices = indices; co->result = NULL; co->r = r; co->stopped = r > n ? 1 : 0; return (PyObject *)co; error: if (indices != NULL) PyMem_Free(indices); Py_XDECREF(pool); return NULL; } static void combinations_dealloc(combinationsobject *co) { PyTypeObject *tp = Py_TYPE(co); PyObject_GC_UnTrack(co); Py_XDECREF(co->pool); Py_XDECREF(co->result); if (co->indices != NULL) PyMem_Free(co->indices); tp->tp_free(co); Py_DECREF(tp); } static PyObject * combinations_sizeof(combinationsobject *co, void *unused) { size_t res = _PyObject_SIZE(Py_TYPE(co)); res += (size_t)co->r * sizeof(Py_ssize_t); return PyLong_FromSize_t(res); } static int combinations_traverse(combinationsobject *co, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(co)); Py_VISIT(co->pool); Py_VISIT(co->result); return 0; } static PyObject * combinations_next(combinationsobject *co) { PyObject *elem; PyObject *oldelem; PyObject *pool = co->pool; Py_ssize_t *indices = co->indices; PyObject *result = co->result; Py_ssize_t n = PyTuple_GET_SIZE(pool); Py_ssize_t r = co->r; Py_ssize_t i, j, index; if (co->stopped) return NULL; if (result == NULL) { /* On the first pass, initialize result tuple using the indices */ result = PyTuple_New(r); if (result == NULL) goto empty; co->result = result; for (i=0; i 1) { PyObject *old_result = result; result = _PyTuple_FromArray(_PyTuple_ITEMS(old_result), r); if (result == NULL) goto empty; co->result = result; Py_DECREF(old_result); } // bpo-42536: The GC may have untracked this result tuple. Since we're // recycling it, make sure it's tracked again: else if (!_PyObject_GC_IS_TRACKED(result)) { _PyObject_GC_TRACK(result); } /* Now, we've got the only copy so we can update it in-place * CPython's empty tuple is a singleton and cached in * PyTuple's freelist. */ assert(r == 0 || Py_REFCNT(result) == 1); /* Scan indices right-to-left until finding one that is not at its maximum (i + n - r). */ for (i=r-1 ; i >= 0 && indices[i] == i+n-r ; i--) ; /* If i is negative, then the indices are all at their maximum value and we're done. */ if (i < 0) goto empty; /* Increment the current index which we know is not at its maximum. Then move back to the right setting each index to its lowest possible value (one higher than the index to its left -- this maintains the sort order invariant). */ indices[i]++; for (j=i+1 ; jstopped = 1; return NULL; } static PyMethodDef combinations_methods[] = { {"__sizeof__", (PyCFunction)combinations_sizeof, METH_NOARGS, sizeof_doc}, {NULL, NULL} /* sentinel */ }; static PyType_Slot combinations_slots[] = { {Py_tp_dealloc, combinations_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)itertools_combinations__doc__}, {Py_tp_traverse, combinations_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, combinations_next}, {Py_tp_methods, combinations_methods}, {Py_tp_new, itertools_combinations}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec combinations_spec = { .name = "itertools.combinations", .basicsize = sizeof(combinationsobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = combinations_slots, }; /* combinations with replacement object **************************************/ /* Equivalent to: def combinations_with_replacement(iterable, r): "combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC" # number items returned: (n+r-1)! / r! / (n-1)! pool = tuple(iterable) n = len(pool) indices = [0] * r yield tuple(pool[i] for i in indices) while 1: for i in reversed(range(r)): if indices[i] != n - 1: break else: return indices[i:] = [indices[i] + 1] * (r - i) yield tuple(pool[i] for i in indices) def combinations_with_replacement2(iterable, r): 'Alternate version that filters from product()' pool = tuple(iterable) n = len(pool) for indices in product(range(n), repeat=r): if sorted(indices) == list(indices): yield tuple(pool[i] for i in indices) */ typedef struct { PyObject_HEAD PyObject *pool; /* input converted to a tuple */ Py_ssize_t *indices; /* one index per result element */ PyObject *result; /* most recently returned result tuple */ Py_ssize_t r; /* size of result tuple */ int stopped; /* set to 1 when the cwr iterator is exhausted */ } cwrobject; /*[clinic input] @classmethod itertools.combinations_with_replacement.__new__ iterable: object r: Py_ssize_t Return successive r-length combinations of elements in the iterable allowing individual elements to have successive repeats. combinations_with_replacement('ABC', 2) --> ('A','A'), ('A','B'), ('A','C'), ('B','B'), ('B','C'), ('C','C') [clinic start generated code]*/ static PyObject * itertools_combinations_with_replacement_impl(PyTypeObject *type, PyObject *iterable, Py_ssize_t r) /*[clinic end generated code: output=48b26856d4e659ca input=1dc58e82a0878fdc]*/ { cwrobject *co; Py_ssize_t n; PyObject *pool = NULL; Py_ssize_t *indices = NULL; Py_ssize_t i; pool = PySequence_Tuple(iterable); if (pool == NULL) goto error; n = PyTuple_GET_SIZE(pool); if (r < 0) { PyErr_SetString(PyExc_ValueError, "r must be non-negative"); goto error; } indices = PyMem_New(Py_ssize_t, r); if (indices == NULL) { PyErr_NoMemory(); goto error; } for (i=0 ; itp_alloc(type, 0); if (co == NULL) goto error; co->pool = pool; co->indices = indices; co->result = NULL; co->r = r; co->stopped = !n && r; return (PyObject *)co; error: if (indices != NULL) PyMem_Free(indices); Py_XDECREF(pool); return NULL; } static void cwr_dealloc(cwrobject *co) { PyTypeObject *tp = Py_TYPE(co); PyObject_GC_UnTrack(co); Py_XDECREF(co->pool); Py_XDECREF(co->result); if (co->indices != NULL) PyMem_Free(co->indices); tp->tp_free(co); Py_DECREF(tp); } static PyObject * cwr_sizeof(cwrobject *co, void *unused) { size_t res = _PyObject_SIZE(Py_TYPE(co)); res += (size_t)co->r * sizeof(Py_ssize_t); return PyLong_FromSize_t(res); } static int cwr_traverse(cwrobject *co, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(co)); Py_VISIT(co->pool); Py_VISIT(co->result); return 0; } static PyObject * cwr_next(cwrobject *co) { PyObject *elem; PyObject *oldelem; PyObject *pool = co->pool; Py_ssize_t *indices = co->indices; PyObject *result = co->result; Py_ssize_t n = PyTuple_GET_SIZE(pool); Py_ssize_t r = co->r; Py_ssize_t i, index; if (co->stopped) return NULL; if (result == NULL) { /* On the first pass, initialize result tuple with pool[0] */ result = PyTuple_New(r); if (result == NULL) goto empty; co->result = result; if (n > 0) { elem = PyTuple_GET_ITEM(pool, 0); for (i=0; i 1) { PyObject *old_result = result; result = _PyTuple_FromArray(_PyTuple_ITEMS(old_result), r); if (result == NULL) goto empty; co->result = result; Py_DECREF(old_result); } // bpo-42536: The GC may have untracked this result tuple. Since we're // recycling it, make sure it's tracked again: else if (!_PyObject_GC_IS_TRACKED(result)) { _PyObject_GC_TRACK(result); } /* Now, we've got the only copy so we can update it in-place CPython's empty tuple is a singleton and cached in PyTuple's freelist. */ assert(r == 0 || Py_REFCNT(result) == 1); /* Scan indices right-to-left until finding one that is not * at its maximum (n-1). */ for (i=r-1 ; i >= 0 && indices[i] == n-1; i--) ; /* If i is negative, then the indices are all at their maximum value and we're done. */ if (i < 0) goto empty; /* Increment the current index which we know is not at its maximum. Then set all to the right to the same value. */ index = indices[i] + 1; assert(index < n); elem = PyTuple_GET_ITEM(pool, index); for ( ; istopped = 1; return NULL; } static PyMethodDef cwr_methods[] = { {"__sizeof__", (PyCFunction)cwr_sizeof, METH_NOARGS, sizeof_doc}, {NULL, NULL} /* sentinel */ }; static PyType_Slot cwr_slots[] = { {Py_tp_dealloc, cwr_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)itertools_combinations_with_replacement__doc__}, {Py_tp_traverse, cwr_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, cwr_next}, {Py_tp_methods, cwr_methods}, {Py_tp_new, itertools_combinations_with_replacement}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec cwr_spec = { .name = "itertools.combinations_with_replacement", .basicsize = sizeof(cwrobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = cwr_slots, }; /* permutations object ******************************************************** def permutations(iterable, r=None): # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC # permutations(range(3)) --> 012 021 102 120 201 210 pool = tuple(iterable) n = len(pool) r = n if r is None else r if r > n: return indices = list(range(n)) cycles = list(range(n, n-r, -1)) yield tuple(pool[i] for i in indices[:r]) while n: for i in reversed(range(r)): cycles[i] -= 1 if cycles[i] == 0: indices[i:] = indices[i+1:] + indices[i:i+1] cycles[i] = n - i else: j = cycles[i] indices[i], indices[-j] = indices[-j], indices[i] yield tuple(pool[i] for i in indices[:r]) break else: return */ typedef struct { PyObject_HEAD PyObject *pool; /* input converted to a tuple */ Py_ssize_t *indices; /* one index per element in the pool */ Py_ssize_t *cycles; /* one rollover counter per element in the result */ PyObject *result; /* most recently returned result tuple */ Py_ssize_t r; /* size of result tuple */ int stopped; /* set to 1 when the iterator is exhausted */ } permutationsobject; /*[clinic input] @classmethod itertools.permutations.__new__ iterable: object r as robj: object = None Return successive r-length permutations of elements in the iterable. permutations(range(3), 2) --> (0,1), (0,2), (1,0), (1,2), (2,0), (2,1) [clinic start generated code]*/ static PyObject * itertools_permutations_impl(PyTypeObject *type, PyObject *iterable, PyObject *robj) /*[clinic end generated code: output=296a72fa76d620ea input=57d0170a4ac0ec7a]*/ { permutationsobject *po; Py_ssize_t n; Py_ssize_t r; PyObject *pool = NULL; Py_ssize_t *indices = NULL; Py_ssize_t *cycles = NULL; Py_ssize_t i; pool = PySequence_Tuple(iterable); if (pool == NULL) goto error; n = PyTuple_GET_SIZE(pool); r = n; if (robj != Py_None) { if (!PyLong_Check(robj)) { PyErr_SetString(PyExc_TypeError, "Expected int as r"); goto error; } r = PyLong_AsSsize_t(robj); if (r == -1 && PyErr_Occurred()) goto error; } if (r < 0) { PyErr_SetString(PyExc_ValueError, "r must be non-negative"); goto error; } indices = PyMem_New(Py_ssize_t, n); cycles = PyMem_New(Py_ssize_t, r); if (indices == NULL || cycles == NULL) { PyErr_NoMemory(); goto error; } for (i=0 ; itp_alloc(type, 0); if (po == NULL) goto error; po->pool = pool; po->indices = indices; po->cycles = cycles; po->result = NULL; po->r = r; po->stopped = r > n ? 1 : 0; return (PyObject *)po; error: if (indices != NULL) PyMem_Free(indices); if (cycles != NULL) PyMem_Free(cycles); Py_XDECREF(pool); return NULL; } static void permutations_dealloc(permutationsobject *po) { PyTypeObject *tp = Py_TYPE(po); PyObject_GC_UnTrack(po); Py_XDECREF(po->pool); Py_XDECREF(po->result); PyMem_Free(po->indices); PyMem_Free(po->cycles); tp->tp_free(po); Py_DECREF(tp); } static PyObject * permutations_sizeof(permutationsobject *po, void *unused) { size_t res = _PyObject_SIZE(Py_TYPE(po)); res += (size_t)PyTuple_GET_SIZE(po->pool) * sizeof(Py_ssize_t); res += (size_t)po->r * sizeof(Py_ssize_t); return PyLong_FromSize_t(res); } static int permutations_traverse(permutationsobject *po, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(po)); Py_VISIT(po->pool); Py_VISIT(po->result); return 0; } static PyObject * permutations_next(permutationsobject *po) { PyObject *elem; PyObject *oldelem; PyObject *pool = po->pool; Py_ssize_t *indices = po->indices; Py_ssize_t *cycles = po->cycles; PyObject *result = po->result; Py_ssize_t n = PyTuple_GET_SIZE(pool); Py_ssize_t r = po->r; Py_ssize_t i, j, k, index; if (po->stopped) return NULL; if (result == NULL) { /* On the first pass, initialize result tuple using the indices */ result = PyTuple_New(r); if (result == NULL) goto empty; po->result = result; for (i=0; i 1) { PyObject *old_result = result; result = _PyTuple_FromArray(_PyTuple_ITEMS(old_result), r); if (result == NULL) goto empty; po->result = result; Py_DECREF(old_result); } // bpo-42536: The GC may have untracked this result tuple. Since we're // recycling it, make sure it's tracked again: else if (!_PyObject_GC_IS_TRACKED(result)) { _PyObject_GC_TRACK(result); } /* Now, we've got the only copy so we can update it in-place */ assert(r == 0 || Py_REFCNT(result) == 1); /* Decrement rightmost cycle, moving leftward upon zero rollover */ for (i=r-1 ; i>=0 ; i--) { cycles[i] -= 1; if (cycles[i] == 0) { /* rotatation: indices[i:] = indices[i+1:] + indices[i:i+1] */ index = indices[i]; for (j=i ; jstopped = 1; return NULL; } static PyMethodDef permuations_methods[] = { {"__sizeof__", (PyCFunction)permutations_sizeof, METH_NOARGS, sizeof_doc}, {NULL, NULL} /* sentinel */ }; static PyType_Slot permutations_slots[] = { {Py_tp_dealloc, permutations_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)itertools_permutations__doc__}, {Py_tp_traverse, permutations_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, permutations_next}, {Py_tp_methods, permuations_methods}, {Py_tp_new, itertools_permutations}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec permutations_spec = { .name = "itertools.permutations", .basicsize = sizeof(permutationsobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = permutations_slots, }; /* accumulate object ********************************************************/ typedef struct { PyObject_HEAD PyObject *total; PyObject *it; PyObject *binop; PyObject *initial; itertools_state *state; } accumulateobject; /*[clinic input] @classmethod itertools.accumulate.__new__ iterable: object func as binop: object = None * initial: object = None Return series of accumulated sums (or other binary function results). [clinic start generated code]*/ static PyObject * itertools_accumulate_impl(PyTypeObject *type, PyObject *iterable, PyObject *binop, PyObject *initial) /*[clinic end generated code: output=66da2650627128f8 input=c4ce20ac59bf7ffd]*/ { PyObject *it; accumulateobject *lz; /* Get iterator. */ it = PyObject_GetIter(iterable); if (it == NULL) return NULL; /* create accumulateobject structure */ lz = (accumulateobject *)type->tp_alloc(type, 0); if (lz == NULL) { Py_DECREF(it); return NULL; } if (binop != Py_None) { lz->binop = Py_XNewRef(binop); } lz->total = NULL; lz->it = it; lz->initial = Py_XNewRef(initial); lz->state = find_state_by_type(type); return (PyObject *)lz; } static void accumulate_dealloc(accumulateobject *lz) { PyTypeObject *tp = Py_TYPE(lz); PyObject_GC_UnTrack(lz); Py_XDECREF(lz->binop); Py_XDECREF(lz->total); Py_XDECREF(lz->it); Py_XDECREF(lz->initial); tp->tp_free(lz); Py_DECREF(tp); } static int accumulate_traverse(accumulateobject *lz, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(lz)); Py_VISIT(lz->binop); Py_VISIT(lz->it); Py_VISIT(lz->total); Py_VISIT(lz->initial); return 0; } static PyObject * accumulate_next(accumulateobject *lz) { PyObject *val, *newtotal; if (lz->initial != Py_None) { lz->total = lz->initial; lz->initial = Py_NewRef(Py_None); return Py_NewRef(lz->total); } val = (*Py_TYPE(lz->it)->tp_iternext)(lz->it); if (val == NULL) return NULL; if (lz->total == NULL) { lz->total = Py_NewRef(val); return lz->total; } if (lz->binop == NULL) newtotal = PyNumber_Add(lz->total, val); else newtotal = PyObject_CallFunctionObjArgs(lz->binop, lz->total, val, NULL); Py_DECREF(val); if (newtotal == NULL) return NULL; Py_INCREF(newtotal); Py_SETREF(lz->total, newtotal); return newtotal; } static PyType_Slot accumulate_slots[] = { {Py_tp_dealloc, accumulate_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)itertools_accumulate__doc__}, {Py_tp_traverse, accumulate_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, accumulate_next}, {Py_tp_new, itertools_accumulate}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec accumulate_spec = { .name = "itertools.accumulate", .basicsize = sizeof(accumulateobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = accumulate_slots, }; /* compress object ************************************************************/ /* Equivalent to: def compress(data, selectors): "compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F" return (d for d, s in zip(data, selectors) if s) */ typedef struct { PyObject_HEAD PyObject *data; PyObject *selectors; } compressobject; /*[clinic input] @classmethod itertools.compress.__new__ data as seq1: object selectors as seq2: object Return data elements corresponding to true selector elements. Forms a shorter iterator from selected data elements using the selectors to choose the data elements. [clinic start generated code]*/ static PyObject * itertools_compress_impl(PyTypeObject *type, PyObject *seq1, PyObject *seq2) /*[clinic end generated code: output=7e67157212ed09e0 input=79596d7cd20c77e5]*/ { PyObject *data=NULL, *selectors=NULL; compressobject *lz; data = PyObject_GetIter(seq1); if (data == NULL) goto fail; selectors = PyObject_GetIter(seq2); if (selectors == NULL) goto fail; /* create compressobject structure */ lz = (compressobject *)type->tp_alloc(type, 0); if (lz == NULL) goto fail; lz->data = data; lz->selectors = selectors; return (PyObject *)lz; fail: Py_XDECREF(data); Py_XDECREF(selectors); return NULL; } static void compress_dealloc(compressobject *lz) { PyTypeObject *tp = Py_TYPE(lz); PyObject_GC_UnTrack(lz); Py_XDECREF(lz->data); Py_XDECREF(lz->selectors); tp->tp_free(lz); Py_DECREF(tp); } static int compress_traverse(compressobject *lz, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(lz)); Py_VISIT(lz->data); Py_VISIT(lz->selectors); return 0; } static PyObject * compress_next(compressobject *lz) { PyObject *data = lz->data, *selectors = lz->selectors; PyObject *datum, *selector; PyObject *(*datanext)(PyObject *) = *Py_TYPE(data)->tp_iternext; PyObject *(*selectornext)(PyObject *) = *Py_TYPE(selectors)->tp_iternext; int ok; while (1) { /* Steps: get datum, get selector, evaluate selector. Order is important (to match the pure python version in terms of which input gets a chance to raise an exception first). */ datum = datanext(data); if (datum == NULL) return NULL; selector = selectornext(selectors); if (selector == NULL) { Py_DECREF(datum); return NULL; } ok = PyObject_IsTrue(selector); Py_DECREF(selector); if (ok > 0) return datum; Py_DECREF(datum); if (ok < 0) return NULL; } } static PyType_Slot compress_slots[] = { {Py_tp_dealloc, compress_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)itertools_compress__doc__}, {Py_tp_traverse, compress_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, compress_next}, {Py_tp_new, itertools_compress}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec compress_spec = { .name = "itertools.compress", .basicsize = sizeof(compressobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = compress_slots, }; /* filterfalse object ************************************************************/ typedef struct { PyObject_HEAD PyObject *func; PyObject *it; } filterfalseobject; /*[clinic input] @classmethod itertools.filterfalse.__new__ function as func: object iterable as seq: object / Return those items of iterable for which function(item) is false. If function is None, return the items that are false. [clinic start generated code]*/ static PyObject * itertools_filterfalse_impl(PyTypeObject *type, PyObject *func, PyObject *seq) /*[clinic end generated code: output=55f87eab9fc0484e input=2d684a2c66f99cde]*/ { PyObject *it; filterfalseobject *lz; /* Get iterator. */ it = PyObject_GetIter(seq); if (it == NULL) return NULL; /* create filterfalseobject structure */ lz = (filterfalseobject *)type->tp_alloc(type, 0); if (lz == NULL) { Py_DECREF(it); return NULL; } lz->func = Py_NewRef(func); lz->it = it; return (PyObject *)lz; } static void filterfalse_dealloc(filterfalseobject *lz) { PyTypeObject *tp = Py_TYPE(lz); PyObject_GC_UnTrack(lz); Py_XDECREF(lz->func); Py_XDECREF(lz->it); tp->tp_free(lz); Py_DECREF(tp); } static int filterfalse_traverse(filterfalseobject *lz, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(lz)); Py_VISIT(lz->it); Py_VISIT(lz->func); return 0; } static PyObject * filterfalse_next(filterfalseobject *lz) { PyObject *item; PyObject *it = lz->it; long ok; PyObject *(*iternext)(PyObject *); iternext = *Py_TYPE(it)->tp_iternext; for (;;) { item = iternext(it); if (item == NULL) return NULL; if (lz->func == Py_None || lz->func == (PyObject *)&PyBool_Type) { ok = PyObject_IsTrue(item); } else { PyObject *good; good = PyObject_CallOneArg(lz->func, item); if (good == NULL) { Py_DECREF(item); return NULL; } ok = PyObject_IsTrue(good); Py_DECREF(good); } if (ok == 0) return item; Py_DECREF(item); if (ok < 0) return NULL; } } static PyType_Slot filterfalse_slots[] = { {Py_tp_dealloc, filterfalse_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)itertools_filterfalse__doc__}, {Py_tp_traverse, filterfalse_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, filterfalse_next}, {Py_tp_new, itertools_filterfalse}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec filterfalse_spec = { .name = "itertools.filterfalse", .basicsize = sizeof(filterfalseobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = filterfalse_slots, }; /* count object ************************************************************/ typedef struct { PyObject_HEAD Py_ssize_t cnt; PyObject *long_cnt; PyObject *long_step; } countobject; /* Counting logic and invariants: fast_mode: when cnt an integer < PY_SSIZE_T_MAX and no step is specified. assert(cnt != PY_SSIZE_T_MAX && long_cnt == NULL && long_step==PyLong(1)); Advances with: cnt += 1 When count hits PY_SSIZE_T_MAX, switch to slow_mode. slow_mode: when cnt == PY_SSIZE_T_MAX, step is not int(1), or cnt is a float. assert(cnt == PY_SSIZE_T_MAX && long_cnt != NULL && long_step != NULL); All counting is done with python objects (no overflows or underflows). Advances with: long_cnt += long_step Step may be zero -- effectively a slow version of repeat(cnt). Either long_cnt or long_step may be a float, Fraction, or Decimal. */ /*[clinic input] @classmethod itertools.count.__new__ start as long_cnt: object(c_default="NULL") = 0 step as long_step: object(c_default="NULL") = 1 Return a count object whose .__next__() method returns consecutive values. Equivalent to: def count(firstval=0, step=1): x = firstval while 1: yield x x += step [clinic start generated code]*/ static PyObject * itertools_count_impl(PyTypeObject *type, PyObject *long_cnt, PyObject *long_step) /*[clinic end generated code: output=09a9250aebd00b1c input=d7a85eec18bfcd94]*/ { countobject *lz; int fast_mode; Py_ssize_t cnt = 0; long step; if ((long_cnt != NULL && !PyNumber_Check(long_cnt)) || (long_step != NULL && !PyNumber_Check(long_step))) { PyErr_SetString(PyExc_TypeError, "a number is required"); return NULL; } fast_mode = (long_cnt == NULL || PyLong_Check(long_cnt)) && (long_step == NULL || PyLong_Check(long_step)); /* If not specified, start defaults to 0 */ if (long_cnt != NULL) { if (fast_mode) { assert(PyLong_Check(long_cnt)); cnt = PyLong_AsSsize_t(long_cnt); if (cnt == -1 && PyErr_Occurred()) { PyErr_Clear(); fast_mode = 0; } } } else { cnt = 0; long_cnt = _PyLong_GetZero(); } Py_INCREF(long_cnt); /* If not specified, step defaults to 1 */ if (long_step == NULL) { long_step = _PyLong_GetOne(); } Py_INCREF(long_step); assert(long_cnt != NULL && long_step != NULL); /* Fast mode only works when the step is 1 */ if (fast_mode) { assert(PyLong_Check(long_step)); step = PyLong_AsLong(long_step); if (step != 1) { fast_mode = 0; if (step == -1 && PyErr_Occurred()) PyErr_Clear(); } } if (fast_mode) Py_CLEAR(long_cnt); else cnt = PY_SSIZE_T_MAX; assert((cnt != PY_SSIZE_T_MAX && long_cnt == NULL && fast_mode) || (cnt == PY_SSIZE_T_MAX && long_cnt != NULL && !fast_mode)); assert(!fast_mode || (PyLong_Check(long_step) && PyLong_AS_LONG(long_step) == 1)); /* create countobject structure */ lz = (countobject *)type->tp_alloc(type, 0); if (lz == NULL) { Py_XDECREF(long_cnt); Py_DECREF(long_step); return NULL; } lz->cnt = cnt; lz->long_cnt = long_cnt; lz->long_step = long_step; return (PyObject *)lz; } static void count_dealloc(countobject *lz) { PyTypeObject *tp = Py_TYPE(lz); PyObject_GC_UnTrack(lz); Py_XDECREF(lz->long_cnt); Py_XDECREF(lz->long_step); tp->tp_free(lz); Py_DECREF(tp); } static int count_traverse(countobject *lz, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(lz)); Py_VISIT(lz->long_cnt); Py_VISIT(lz->long_step); return 0; } static PyObject * count_nextlong(countobject *lz) { PyObject *long_cnt; PyObject *stepped_up; long_cnt = lz->long_cnt; if (long_cnt == NULL) { /* Switch to slow_mode */ long_cnt = PyLong_FromSsize_t(PY_SSIZE_T_MAX); if (long_cnt == NULL) return NULL; } assert(lz->cnt == PY_SSIZE_T_MAX && long_cnt != NULL); stepped_up = PyNumber_Add(long_cnt, lz->long_step); if (stepped_up == NULL) return NULL; lz->long_cnt = stepped_up; return long_cnt; } static PyObject * count_next(countobject *lz) { #ifndef Py_GIL_DISABLED if (lz->cnt == PY_SSIZE_T_MAX) return count_nextlong(lz); return PyLong_FromSsize_t(lz->cnt++); #else // free-threading version // fast mode uses compare-exchange loop // slow mode uses a critical section PyObject *returned; Py_ssize_t cnt; cnt = _Py_atomic_load_ssize_relaxed(&lz->cnt); for (;;) { if (cnt == PY_SSIZE_T_MAX) { Py_BEGIN_CRITICAL_SECTION(lz); returned = count_nextlong(lz); Py_END_CRITICAL_SECTION(); return returned; } if (_Py_atomic_compare_exchange_ssize(&lz->cnt, &cnt, cnt + 1)) { return PyLong_FromSsize_t(cnt); } } #endif } static PyObject * count_repr(countobject *lz) { if (lz->cnt != PY_SSIZE_T_MAX) return PyUnicode_FromFormat("%s(%zd)", _PyType_Name(Py_TYPE(lz)), lz->cnt); if (PyLong_Check(lz->long_step)) { long step = PyLong_AsLong(lz->long_step); if (step == -1 && PyErr_Occurred()) { PyErr_Clear(); } if (step == 1) { /* Don't display step when it is an integer equal to 1 */ return PyUnicode_FromFormat("%s(%R)", _PyType_Name(Py_TYPE(lz)), lz->long_cnt); } } return PyUnicode_FromFormat("%s(%R, %R)", _PyType_Name(Py_TYPE(lz)), lz->long_cnt, lz->long_step); } static PyType_Slot count_slots[] = { {Py_tp_dealloc, count_dealloc}, {Py_tp_repr, count_repr}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)itertools_count__doc__}, {Py_tp_traverse, count_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, count_next}, {Py_tp_new, itertools_count}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec count_spec = { .name = "itertools.count", .basicsize = sizeof(countobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = count_slots, }; /* repeat object ************************************************************/ typedef struct { PyObject_HEAD PyObject *element; Py_ssize_t cnt; } repeatobject; static PyObject * repeat_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { repeatobject *ro; PyObject *element; Py_ssize_t cnt = -1, n_args; static char *kwargs[] = {"object", "times", NULL}; n_args = PyTuple_GET_SIZE(args); if (kwds != NULL) n_args += PyDict_GET_SIZE(kwds); if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|n:repeat", kwargs, &element, &cnt)) return NULL; /* Does user supply times argument? */ if (n_args == 2 && cnt < 0) cnt = 0; ro = (repeatobject *)type->tp_alloc(type, 0); if (ro == NULL) return NULL; ro->element = Py_NewRef(element); ro->cnt = cnt; return (PyObject *)ro; } static void repeat_dealloc(repeatobject *ro) { PyTypeObject *tp = Py_TYPE(ro); PyObject_GC_UnTrack(ro); Py_XDECREF(ro->element); tp->tp_free(ro); Py_DECREF(tp); } static int repeat_traverse(repeatobject *ro, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(ro)); Py_VISIT(ro->element); return 0; } static PyObject * repeat_next(repeatobject *ro) { if (ro->cnt == 0) return NULL; if (ro->cnt > 0) ro->cnt--; return Py_NewRef(ro->element); } static PyObject * repeat_repr(repeatobject *ro) { if (ro->cnt == -1) return PyUnicode_FromFormat("%s(%R)", _PyType_Name(Py_TYPE(ro)), ro->element); else return PyUnicode_FromFormat("%s(%R, %zd)", _PyType_Name(Py_TYPE(ro)), ro->element, ro->cnt); } static PyObject * repeat_len(repeatobject *ro, PyObject *Py_UNUSED(ignored)) { if (ro->cnt == -1) { PyErr_SetString(PyExc_TypeError, "len() of unsized object"); return NULL; } return PyLong_FromSize_t(ro->cnt); } PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it))."); static PyMethodDef repeat_methods[] = { {"__length_hint__", (PyCFunction)repeat_len, METH_NOARGS, length_hint_doc}, {NULL, NULL} /* sentinel */ }; PyDoc_STRVAR(repeat_doc, "repeat(object [,times]) -> create an iterator which returns the object\n\ for the specified number of times. If not specified, returns the object\n\ endlessly."); static PyType_Slot repeat_slots[] = { {Py_tp_dealloc, repeat_dealloc}, {Py_tp_repr, repeat_repr}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)repeat_doc}, {Py_tp_traverse, repeat_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, repeat_next}, {Py_tp_methods, repeat_methods}, {Py_tp_new, repeat_new}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec repeat_spec = { .name = "itertools.repeat", .basicsize = sizeof(repeatobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = repeat_slots, }; /* ziplongest object *********************************************************/ typedef struct { PyObject_HEAD Py_ssize_t tuplesize; Py_ssize_t numactive; PyObject *ittuple; /* tuple of iterators */ PyObject *result; PyObject *fillvalue; } ziplongestobject; static PyObject * zip_longest_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { ziplongestobject *lz; Py_ssize_t i; PyObject *ittuple; /* tuple of iterators */ PyObject *result; PyObject *fillvalue = Py_None; Py_ssize_t tuplesize; if (kwds != NULL && PyDict_CheckExact(kwds) && PyDict_GET_SIZE(kwds) > 0) { fillvalue = NULL; if (PyDict_GET_SIZE(kwds) == 1) { fillvalue = PyDict_GetItemWithError(kwds, &_Py_ID(fillvalue)); } if (fillvalue == NULL) { if (!PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "zip_longest() got an unexpected keyword argument"); } return NULL; } } /* args must be a tuple */ assert(PyTuple_Check(args)); tuplesize = PyTuple_GET_SIZE(args); /* obtain iterators */ ittuple = PyTuple_New(tuplesize); if (ittuple == NULL) return NULL; for (i=0; i < tuplesize; i++) { PyObject *item = PyTuple_GET_ITEM(args, i); PyObject *it = PyObject_GetIter(item); if (it == NULL) { Py_DECREF(ittuple); return NULL; } PyTuple_SET_ITEM(ittuple, i, it); } /* create a result holder */ result = PyTuple_New(tuplesize); if (result == NULL) { Py_DECREF(ittuple); return NULL; } for (i=0 ; i < tuplesize ; i++) { Py_INCREF(Py_None); PyTuple_SET_ITEM(result, i, Py_None); } /* create ziplongestobject structure */ lz = (ziplongestobject *)type->tp_alloc(type, 0); if (lz == NULL) { Py_DECREF(ittuple); Py_DECREF(result); return NULL; } lz->ittuple = ittuple; lz->tuplesize = tuplesize; lz->numactive = tuplesize; lz->result = result; lz->fillvalue = Py_NewRef(fillvalue); return (PyObject *)lz; } static void zip_longest_dealloc(ziplongestobject *lz) { PyTypeObject *tp = Py_TYPE(lz); PyObject_GC_UnTrack(lz); Py_XDECREF(lz->ittuple); Py_XDECREF(lz->result); Py_XDECREF(lz->fillvalue); tp->tp_free(lz); Py_DECREF(tp); } static int zip_longest_traverse(ziplongestobject *lz, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(lz)); Py_VISIT(lz->ittuple); Py_VISIT(lz->result); Py_VISIT(lz->fillvalue); return 0; } static PyObject * zip_longest_next(ziplongestobject *lz) { Py_ssize_t i; Py_ssize_t tuplesize = lz->tuplesize; PyObject *result = lz->result; PyObject *it; PyObject *item; PyObject *olditem; if (tuplesize == 0) return NULL; if (lz->numactive == 0) return NULL; if (Py_REFCNT(result) == 1) { Py_INCREF(result); for (i=0 ; i < tuplesize ; i++) { it = PyTuple_GET_ITEM(lz->ittuple, i); if (it == NULL) { item = Py_NewRef(lz->fillvalue); } else { item = PyIter_Next(it); if (item == NULL) { lz->numactive -= 1; if (lz->numactive == 0 || PyErr_Occurred()) { lz->numactive = 0; Py_DECREF(result); return NULL; } else { item = Py_NewRef(lz->fillvalue); PyTuple_SET_ITEM(lz->ittuple, i, NULL); Py_DECREF(it); } } } olditem = PyTuple_GET_ITEM(result, i); PyTuple_SET_ITEM(result, i, item); Py_DECREF(olditem); } // bpo-42536: The GC may have untracked this result tuple. Since we're // recycling it, make sure it's tracked again: if (!_PyObject_GC_IS_TRACKED(result)) { _PyObject_GC_TRACK(result); } } else { result = PyTuple_New(tuplesize); if (result == NULL) return NULL; for (i=0 ; i < tuplesize ; i++) { it = PyTuple_GET_ITEM(lz->ittuple, i); if (it == NULL) { item = Py_NewRef(lz->fillvalue); } else { item = PyIter_Next(it); if (item == NULL) { lz->numactive -= 1; if (lz->numactive == 0 || PyErr_Occurred()) { lz->numactive = 0; Py_DECREF(result); return NULL; } else { item = Py_NewRef(lz->fillvalue); PyTuple_SET_ITEM(lz->ittuple, i, NULL); Py_DECREF(it); } } } PyTuple_SET_ITEM(result, i, item); } } return result; } PyDoc_STRVAR(zip_longest_doc, "zip_longest(*iterables, fillvalue=None)\n\ --\n\ \n\ Return a zip_longest object whose .__next__() method returns a tuple where\n\ the i-th element comes from the i-th iterable argument. The .__next__()\n\ method continues until the longest iterable in the argument sequence\n\ is exhausted and then it raises StopIteration. When the shorter iterables\n\ are exhausted, the fillvalue is substituted in their place. The fillvalue\n\ defaults to None or can be specified by a keyword argument.\n\ "); static PyType_Slot ziplongest_slots[] = { {Py_tp_dealloc, zip_longest_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)zip_longest_doc}, {Py_tp_traverse, zip_longest_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, zip_longest_next}, {Py_tp_new, zip_longest_new}, {Py_tp_free, PyObject_GC_Del}, {0, NULL}, }; static PyType_Spec ziplongest_spec = { .name = "itertools.zip_longest", .basicsize = sizeof(ziplongestobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE), .slots = ziplongest_slots, }; /* module level code ********************************************************/ PyDoc_STRVAR(module_doc, "Functional tools for creating and using iterators.\n\ \n\ Infinite iterators:\n\ count(start=0, step=1) --> start, start+step, start+2*step, ...\n\ cycle(p) --> p0, p1, ... plast, p0, p1, ...\n\ repeat(elem [,n]) --> elem, elem, elem, ... endlessly or up to n times\n\ \n\ Iterators terminating on the shortest input sequence:\n\ accumulate(p[, func]) --> p0, p0+p1, p0+p1+p2\n\ batched(p, n) --> [p0, p1, ..., p_n-1], [p_n, p_n+1, ..., p_2n-1], ...\n\ chain(p, q, ...) --> p0, p1, ... plast, q0, q1, ...\n\ chain.from_iterable([p, q, ...]) --> p0, p1, ... plast, q0, q1, ...\n\ compress(data, selectors) --> (d[0] if s[0]), (d[1] if s[1]), ...\n\ dropwhile(predicate, seq) --> seq[n], seq[n+1], starting when predicate fails\n\ groupby(iterable[, keyfunc]) --> sub-iterators grouped by value of keyfunc(v)\n\ filterfalse(predicate, seq) --> elements of seq where predicate(elem) is False\n\ islice(seq, [start,] stop [, step]) --> elements from\n\ seq[start:stop:step]\n\ pairwise(s) --> (s[0],s[1]), (s[1],s[2]), (s[2], s[3]), ...\n\ starmap(fun, seq) --> fun(*seq[0]), fun(*seq[1]), ...\n\ tee(it, n=2) --> (it1, it2 , ... itn) splits one iterator into n\n\ takewhile(predicate, seq) --> seq[0], seq[1], until predicate fails\n\ zip_longest(p, q, ...) --> (p[0], q[0]), (p[1], q[1]), ...\n\ \n\ Combinatoric generators:\n\ product(p, q, ... [repeat=1]) --> cartesian product\n\ permutations(p[, r])\n\ combinations(p, r)\n\ combinations_with_replacement(p, r)\n\ "); static int itertoolsmodule_traverse(PyObject *mod, visitproc visit, void *arg) { itertools_state *state = get_module_state(mod); Py_VISIT(state->accumulate_type); Py_VISIT(state->batched_type); Py_VISIT(state->chain_type); Py_VISIT(state->combinations_type); Py_VISIT(state->compress_type); Py_VISIT(state->count_type); Py_VISIT(state->cwr_type); Py_VISIT(state->cycle_type); Py_VISIT(state->dropwhile_type); Py_VISIT(state->filterfalse_type); Py_VISIT(state->groupby_type); Py_VISIT(state->_grouper_type); Py_VISIT(state->islice_type); Py_VISIT(state->pairwise_type); Py_VISIT(state->permutations_type); Py_VISIT(state->product_type); Py_VISIT(state->repeat_type); Py_VISIT(state->starmap_type); Py_VISIT(state->takewhile_type); Py_VISIT(state->tee_type); Py_VISIT(state->teedataobject_type); Py_VISIT(state->ziplongest_type); return 0; } static int itertoolsmodule_clear(PyObject *mod) { itertools_state *state = get_module_state(mod); Py_CLEAR(state->accumulate_type); Py_CLEAR(state->batched_type); Py_CLEAR(state->chain_type); Py_CLEAR(state->combinations_type); Py_CLEAR(state->compress_type); Py_CLEAR(state->count_type); Py_CLEAR(state->cwr_type); Py_CLEAR(state->cycle_type); Py_CLEAR(state->dropwhile_type); Py_CLEAR(state->filterfalse_type); Py_CLEAR(state->groupby_type); Py_CLEAR(state->_grouper_type); Py_CLEAR(state->islice_type); Py_CLEAR(state->pairwise_type); Py_CLEAR(state->permutations_type); Py_CLEAR(state->product_type); Py_CLEAR(state->repeat_type); Py_CLEAR(state->starmap_type); Py_CLEAR(state->takewhile_type); Py_CLEAR(state->tee_type); Py_CLEAR(state->teedataobject_type); Py_CLEAR(state->ziplongest_type); return 0; } static void itertoolsmodule_free(void *mod) { (void)itertoolsmodule_clear((PyObject *)mod); } #define ADD_TYPE(module, type, spec) \ do { \ type = (PyTypeObject *)PyType_FromModuleAndSpec(module, spec, NULL); \ if (type == NULL) { \ return -1; \ } \ if (PyModule_AddType(module, type) < 0) { \ return -1; \ } \ } while (0) static int itertoolsmodule_exec(PyObject *mod) { itertools_state *state = get_module_state(mod); ADD_TYPE(mod, state->accumulate_type, &accumulate_spec); ADD_TYPE(mod, state->batched_type, &batched_spec); ADD_TYPE(mod, state->chain_type, &chain_spec); ADD_TYPE(mod, state->combinations_type, &combinations_spec); ADD_TYPE(mod, state->compress_type, &compress_spec); ADD_TYPE(mod, state->count_type, &count_spec); ADD_TYPE(mod, state->cwr_type, &cwr_spec); ADD_TYPE(mod, state->cycle_type, &cycle_spec); ADD_TYPE(mod, state->dropwhile_type, &dropwhile_spec); ADD_TYPE(mod, state->filterfalse_type, &filterfalse_spec); ADD_TYPE(mod, state->groupby_type, &groupby_spec); ADD_TYPE(mod, state->_grouper_type, &_grouper_spec); ADD_TYPE(mod, state->islice_type, &islice_spec); ADD_TYPE(mod, state->pairwise_type, &pairwise_spec); ADD_TYPE(mod, state->permutations_type, &permutations_spec); ADD_TYPE(mod, state->product_type, &product_spec); ADD_TYPE(mod, state->repeat_type, &repeat_spec); ADD_TYPE(mod, state->starmap_type, &starmap_spec); ADD_TYPE(mod, state->takewhile_type, &takewhile_spec); ADD_TYPE(mod, state->tee_type, &tee_spec); ADD_TYPE(mod, state->teedataobject_type, &teedataobject_spec); ADD_TYPE(mod, state->ziplongest_type, &ziplongest_spec); Py_SET_TYPE(state->teedataobject_type, &PyType_Type); return 0; } static struct PyModuleDef_Slot itertoolsmodule_slots[] = { {Py_mod_exec, itertoolsmodule_exec}, {Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED}, {Py_mod_gil, Py_MOD_GIL_NOT_USED}, {0, NULL} }; static PyMethodDef module_methods[] = { ITERTOOLS_TEE_METHODDEF {NULL, NULL} /* sentinel */ }; static struct PyModuleDef itertoolsmodule = { .m_base = PyModuleDef_HEAD_INIT, .m_name = "itertools", .m_doc = module_doc, .m_size = sizeof(itertools_state), .m_methods = module_methods, .m_slots = itertoolsmodule_slots, .m_traverse = itertoolsmodule_traverse, .m_clear = itertoolsmodule_clear, .m_free = itertoolsmodule_free, }; PyMODINIT_FUNC PyInit_itertools(void) { return PyModuleDef_Init(&itertoolsmodule); }