/*[clinic input] preserve [clinic start generated code]*/ PyDoc_STRVAR(cmath_acos__doc__, "acos($module, z, /)\n" "--\n" "\n" "Return the arc cosine of z."); #define CMATH_ACOS_METHODDEF \ {"acos", (PyCFunction)cmath_acos, METH_O, cmath_acos__doc__}, static Py_complex cmath_acos_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_acos(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; Py_complex _return_value; if (!PyArg_Parse(arg, "D:acos", &z)) goto exit; /* modifications for z */ errno = 0; PyFPE_START_PROTECT("complex function", goto exit); _return_value = cmath_acos_impl(module, z); PyFPE_END_PROTECT(_return_value); if (errno == EDOM) { PyErr_SetString(PyExc_ValueError, "math domain error"); goto exit; } else if (errno == ERANGE) { PyErr_SetString(PyExc_OverflowError, "math range error"); goto exit; } else { return_value = PyComplex_FromCComplex(_return_value); } exit: return return_value; } PyDoc_STRVAR(cmath_acosh__doc__, "acosh($module, z, /)\n" "--\n" "\n" "Return the inverse hyperbolic cosine of z."); #define CMATH_ACOSH_METHODDEF \ {"acosh", (PyCFunction)cmath_acosh, METH_O, cmath_acosh__doc__}, static Py_complex cmath_acosh_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_acosh(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; Py_complex _return_value; if (!PyArg_Parse(arg, "D:acosh", &z)) goto exit; /* modifications for z */ errno = 0; PyFPE_START_PROTECT("complex function", goto exit); _return_value = cmath_acosh_impl(module, z); PyFPE_END_PROTECT(_return_value); if (errno == EDOM) { PyErr_SetString(PyExc_ValueError, "math domain error"); goto exit; } else if (errno == ERANGE) { PyErr_SetString(PyExc_OverflowError, "math range error"); goto exit; } else { return_value = PyComplex_FromCComplex(_return_value); } exit: return return_value; } PyDoc_STRVAR(cmath_asin__doc__, "asin($module, z, /)\n" "--\n" "\n" "Return the arc sine of z."); #define CMATH_ASIN_METHODDEF \ {"asin", (PyCFunction)cmath_asin, METH_O, cmath_asin__doc__}, static Py_complex cmath_asin_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_asin(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; Py_complex _return_value; if (!PyArg_Parse(arg, "D:asin", &z)) goto exit; /* modifications for z */ errno = 0; PyFPE_START_PROTECT("complex function", goto exit); _return_value = cmath_asin_impl(module, z); PyFPE_END_PROTECT(_return_value); if (errno == EDOM) { PyErr_SetString(PyExc_ValueError, "math domain error"); goto exit; } else if (errno == ERANGE) { PyErr_SetString(PyExc_OverflowError, "math range error"); goto exit; } else { return_value = PyComplex_FromCComplex(_return_value); } exit: return return_value; } PyDoc_STRVAR(cmath_asinh__doc__, "asinh($module, z, /)\n" "--\n" "\n" "Return the inverse hyperbolic sine of z."); #define CMATH_ASINH_METHODDEF \ {"asinh", (PyCFunction)cmath_asinh, METH_O, cmath_asinh__doc__}, static Py_complex cmath_asinh_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_asinh(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; Py_complex _return_value; if (!PyArg_Parse(arg, "D:asinh", &z)) goto exit; /* modifications for z */ errno = 0; PyFPE_START_PROTECT("complex function", goto exit); _return_value = cmath_asinh_impl(module, z); PyFPE_END_PROTECT(_return_value); if (errno == EDOM) { PyErr_SetString(PyExc_ValueError, "math domain error"); goto exit; } else if (errno == ERANGE) { PyErr_SetString(PyExc_OverflowError, "math range error"); goto exit; } else { return_value = PyComplex_FromCComplex(_return_value); } exit: return return_value; } PyDoc_STRVAR(cmath_atan__doc__, "atan($module, z, /)\n" "--\n" "\n" "Return the arc tangent of z."); #define CMATH_ATAN_METHODDEF \ {"atan", (PyCFunction)cmath_atan, METH_O, cmath_atan__doc__}, static Py_complex cmath_atan_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_atan(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; Py_complex _return_value; if (!PyArg_Parse(arg, "D:atan", &z)) goto exit; /* modifications for z */ errno = 0; PyFPE_START_PROTECT("complex function", goto exit); _return_value = cmath_atan_impl(module, z); PyFPE_END_PROTECT(_return_value); if (errno == EDOM) { PyErr_SetString(PyExc_ValueError, "math domain error"); goto exit; } else if (errno == ERANGE) { PyErr_SetString(PyExc_OverflowError, "math range error"); goto exit; } else { return_value = PyComplex_FromCComplex(_return_value); } exit: return return_value; } PyDoc_STRVAR(cmath_atanh__doc__, "atanh($module, z, /)\n" "--\n" "\n" "Return the inverse hyperbolic tangent of z."); #define CMATH_ATANH_METHODDEF \ {"atanh", (PyCFunction)cmath_atanh, METH_O, cmath_atanh__doc__}, static Py_complex cmath_atanh_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_atanh(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; Py_complex _return_value; if (!PyArg_Parse(arg, "D:atanh", &z)) goto exit; /* modifications for z */ errno = 0; PyFPE_START_PROTECT("complex function", goto exit); _return_value = cmath_atanh_impl(module, z); PyFPE_END_PROTECT(_return_value); if (errno == EDOM) { PyErr_SetString(PyExc_ValueError, "math domain error"); goto exit; } else if (errno == ERANGE) { PyErr_SetString(PyExc_OverflowError, "math range error"); goto exit; } else { return_value = PyComplex_FromCComplex(_return_value); } exit: return return_value; } PyDoc_STRVAR(cmath_cos__doc__, "cos($module, z, /)\n" "--\n" "\n" "Return the cosine of z."); #define CMATH_COS_METHODDEF \ {"cos", (PyCFunction)cmath_cos, METH_O, cmath_cos__doc__}, static Py_complex cmath_cos_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_cos(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; Py_complex _return_value; if (!PyArg_Parse(arg, "D:cos", &z)) goto exit; /* modifications for z */ errno = 0; PyFPE_START_PROTECT("complex function", goto exit); _return_value = cmath_cos_impl(module, z); PyFPE_END_PROTECT(_return_value); if (errno == EDOM) { PyErr_SetString(PyExc_ValueError, "math domain error"); goto exit; } else if (errno == ERANGE) { PyErr_SetString(PyExc_OverflowError, "math range error"); goto exit; } else { return_value = PyComplex_FromCComplex(_return_value); } exit: return return_value; } PyDoc_STRVAR(cmath_cosh__doc__, "cosh($module, z, /)\n" "--\n" "\n" "Return the hyperbolic cosine of z."); #define CMATH_COSH_METHODDEF \ {"cosh", (PyCFunction)cmath_cosh, METH_O, cmath_cosh__doc__}, static Py_complex cmath_cosh_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_cosh(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; Py_complex _return_value; if (!PyArg_Parse(arg, "D:cosh", &z)) goto exit; /* modifications for z */ errno = 0; PyFPE_START_PROTECT("complex function", goto exit); _return_value = cmath_cosh_impl(module, z); PyFPE_END_PROTECT(_return_value); if (errno == EDOM) { PyErr_SetString(PyExc_ValueError, "math domain error"); goto exit; } else if (errno == ERANGE) { PyErr_SetString(PyExc_OverflowError, "math range error"); goto exit; } else { return_value = PyComplex_FromCComplex(_return_value); } exit: return return_value; } PyDoc_STRVAR(cmath_exp__doc__, "exp($module, z, /)\n" "--\n" "\n" "Return the exponential value e**z."); #define CMATH_EXP_METHODDEF \ {"exp", (PyCFunction)cmath_exp, METH_O, cmath_exp__doc__}, static Py_complex cmath_exp_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_exp(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; Py_complex _return_value; if (!PyArg_Parse(arg, "D:exp", &z)) goto exit; /* modifications for z */ errno = 0; PyFPE_START_PROTECT("complex function", goto exit); _return_value = cmath_exp_impl(module, z); PyFPE_END_PROTECT(_return_value); if (errno == EDOM) { PyErr_SetString(PyExc_ValueError, "math domain error"); goto exit; } else if (errno == ERANGE) { PyErr_SetString(PyExc_OverflowError, "math range error"); goto exit; } else { return_value = PyComplex_FromCComplex(_return_value); } exit: return return_value; } PyDoc_STRVAR(cmath_log10__doc__, "log10($module, z, /)\n" "--\n" "\n" "Return the base-10 logarithm of z."); #define CMATH_LOG10_METHODDEF \ {"log10", (PyCFunction)cmath_log10, METH_O, cmath_log10__doc__}, static Py_complex cmath_log10_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_log10(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; Py_complex _return_value; if (!PyArg_Parse(arg, "D:log10", &z)) goto exit; /* modifications for z */ errno = 0; PyFPE_START_PROTECT("complex function", goto exit); _return_value = cmath_log10_impl(module, z); PyFPE_END_PROTECT(_return_value); if (errno == EDOM) { PyErr_SetString(PyExc_ValueError, "math domain error"); goto exit; } else if (errno == ERANGE) { PyErr_SetString(PyExc_OverflowError, "math range error"); goto exit; } else { return_value = PyComplex_FromCComplex(_return_value); } exit: return return_value; } PyDoc_STRVAR(cmath_sin__doc__, "sin($module, z, /)\n" "--\n" "\n" "Return the sine of z."); #define CMATH_SIN_METHODDEF \ {"sin", (PyCFunction)cmath_sin, METH_O, cmath_sin__doc__}, static Py_complex cmath_sin_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_sin(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; Py_complex _return_value; if (!PyArg_Parse(arg, "D:sin", &z)) goto exit; /* modifications for z */ errno = 0; PyFPE_START_PROTECT("complex function", goto exit); _return_value = cmath_sin_impl(module, z); PyFPE_END_PROTECT(_return_value); if (errno == EDOM) { PyErr_SetString(PyExc_ValueError, "math domain error"); goto exit; } else if (errno == ERANGE) { PyErr_SetString(PyExc_OverflowError, "math range error"); goto exit; } else { return_value = PyComplex_FromCComplex(_return_value); } exit: return return_value; } PyDoc_STRVAR(cmath_sinh__doc__, "sinh($module, z, /)\n" "--\n" "\n" "Return the hyperbolic sine of z."); #define CMATH_SINH_METHODDEF \ {"sinh", (PyCFunction)cmath_sinh, METH_O, cmath_sinh__doc__}, static Py_complex cmath_sinh_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_sinh(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; Py_complex _return_value; if (!PyArg_Parse(arg, "D:sinh", &z)) goto exit; /* modifications for z */ errno = 0; PyFPE_START_PROTECT("complex function", goto exit); _return_value = cmath_sinh_impl(module, z); PyFPE_END_PROTECT(_return_value); if (errno == EDOM) { PyErr_SetString(PyExc_ValueError, "math domain error"); goto exit; } else if (errno == ERANGE) { PyErr_SetString(PyExc_OverflowError, "math range error"); goto exit; } else { return_value = PyComplex_FromCComplex(_return_value); } exit: return return_value; } PyDoc_STRVAR(cmath_sqrt__doc__, "sqrt($module, z, /)\n" "--\n" "\n" "Return the square root of z."); #define CMATH_SQRT_METHODDEF \ {"sqrt", (PyCFunction)cmath_sqrt, METH_O, cmath_sqrt__doc__}, static Py_complex cmath_sqrt_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_sqrt(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; Py_complex _return_value; if (!PyArg_Parse(arg, "D:sqrt", &z)) goto exit; /* modifications for z */ errno = 0; PyFPE_START_PROTECT("complex function", goto exit); _return_value = cmath_sqrt_impl(module, z); PyFPE_END_PROTECT(_return_value); if (errno == EDOM) { PyErr_SetString(PyExc_ValueError, "math domain error"); goto exit; } else if (errno == ERANGE) { PyErr_SetString(PyExc_OverflowError, "math range error"); goto exit; } else { return_value = PyComplex_FromCComplex(_return_value); } exit: return return_value; } PyDoc_STRVAR(cmath_tan__doc__, "tan($module, z, /)\n" "--\n" "\n" "Return the tangent of z."); #define CMATH_TAN_METHODDEF \ {"tan", (PyCFunction)cmath_tan, METH_O, cmath_tan__doc__}, static Py_complex cmath_tan_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_tan(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; Py_complex _return_value; if (!PyArg_Parse(arg, "D:tan", &z)) goto exit; /* modifications for z */ errno = 0; PyFPE_START_PROTECT("complex function", goto exit); _return_value = cmath_tan_impl(module, z); PyFPE_END_PROTECT(_return_value); if (errno == EDOM) { PyErr_SetString(PyExc_ValueError, "math domain error"); goto exit; } else if (errno == ERANGE) { PyErr_SetString(PyExc_OverflowError, "math range error"); goto exit; } else { return_value = PyComplex_FromCComplex(_return_value); } exit: return return_value; } PyDoc_STRVAR(cmath_tanh__doc__, "tanh($module, z, /)\n" "--\n" "\n" "Return the hyperbolic tangent of z."); #define CMATH_TANH_METHODDEF \ {"tanh", (PyCFunction)cmath_tanh, METH_O, cmath_tanh__doc__}, static Py_complex cmath_tanh_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_tanh(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; Py_complex _return_value; if (!PyArg_Parse(arg, "D:tanh", &z)) goto exit; /* modifications for z */ errno = 0; PyFPE_START_PROTECT("complex function", goto exit); _return_value = cmath_tanh_impl(module, z); PyFPE_END_PROTECT(_return_value); if (errno == EDOM) { PyErr_SetString(PyExc_ValueError, "math domain error"); goto exit; } else if (errno == ERANGE) { PyErr_SetString(PyExc_OverflowError, "math range error"); goto exit; } else { return_value = PyComplex_FromCComplex(_return_value); } exit: return return_value; } PyDoc_STRVAR(cmath_log__doc__, "log($module, x, y_obj=None, /)\n" "--\n" "\n" "The logarithm of z to the given base.\n" "\n" "If the base not specified, returns the natural logarithm (base e) of z."); #define CMATH_LOG_METHODDEF \ {"log", (PyCFunction)cmath_log, METH_VARARGS, cmath_log__doc__}, static PyObject * cmath_log_impl(PyModuleDef *module, Py_complex x, PyObject *y_obj); static PyObject * cmath_log(PyModuleDef *module, PyObject *args) { PyObject *return_value = NULL; Py_complex x; PyObject *y_obj = NULL; if (!PyArg_ParseTuple(args, "D|O:log", &x, &y_obj)) goto exit; return_value = cmath_log_impl(module, x, y_obj); exit: return return_value; } PyDoc_STRVAR(cmath_phase__doc__, "phase($module, z, /)\n" "--\n" "\n" "Return argument, also known as the phase angle, of a complex."); #define CMATH_PHASE_METHODDEF \ {"phase", (PyCFunction)cmath_phase, METH_O, cmath_phase__doc__}, static PyObject * cmath_phase_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_phase(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; if (!PyArg_Parse(arg, "D:phase", &z)) goto exit; return_value = cmath_phase_impl(module, z); exit: return return_value; } PyDoc_STRVAR(cmath_polar__doc__, "polar($module, z, /)\n" "--\n" "\n" "Convert a complex from rectangular coordinates to polar coordinates.\n" "\n" "r is the distance from 0 and phi the phase angle."); #define CMATH_POLAR_METHODDEF \ {"polar", (PyCFunction)cmath_polar, METH_O, cmath_polar__doc__}, static PyObject * cmath_polar_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_polar(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; if (!PyArg_Parse(arg, "D:polar", &z)) goto exit; return_value = cmath_polar_impl(module, z); exit: return return_value; } PyDoc_STRVAR(cmath_rect__doc__, "rect($module, r, phi, /)\n" "--\n" "\n" "Convert from polar coordinates to rectangular coordinates."); #define CMATH_RECT_METHODDEF \ {"rect", (PyCFunction)cmath_rect, METH_VARARGS, cmath_rect__doc__}, static PyObject * cmath_rect_impl(PyModuleDef *module, double r, double phi); static PyObject * cmath_rect(PyModuleDef *module, PyObject *args) { PyObject *return_value = NULL; double r; double phi; if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi)) goto exit; return_value = cmath_rect_impl(module, r, phi); exit: return return_value; } PyDoc_STRVAR(cmath_isfinite__doc__, "isfinite($module, z, /)\n" "--\n" "\n" "Return True if both the real and imaginary parts of z are finite, else False."); #define CMATH_ISFINITE_METHODDEF \ {"isfinite", (PyCFunction)cmath_isfinite, METH_O, cmath_isfinite__doc__}, static PyObject * cmath_isfinite_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_isfinite(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; if (!PyArg_Parse(arg, "D:isfinite", &z)) goto exit; return_value = cmath_isfinite_impl(module, z); exit: return return_value; } PyDoc_STRVAR(cmath_isnan__doc__, "isnan($module, z, /)\n" "--\n" "\n" "Checks if the real or imaginary part of z not a number (NaN)."); #define CMATH_ISNAN_METHODDEF \ {"isnan", (PyCFunction)cmath_isnan, METH_O, cmath_isnan__doc__}, static PyObject * cmath_isnan_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_isnan(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; if (!PyArg_Parse(arg, "D:isnan", &z)) goto exit; return_value = cmath_isnan_impl(module, z); exit: return return_value; } PyDoc_STRVAR(cmath_isinf__doc__, "isinf($module, z, /)\n" "--\n" "\n" "Checks if the real or imaginary part of z is infinite."); #define CMATH_ISINF_METHODDEF \ {"isinf", (PyCFunction)cmath_isinf, METH_O, cmath_isinf__doc__}, static PyObject * cmath_isinf_impl(PyModuleDef *module, Py_complex z); static PyObject * cmath_isinf(PyModuleDef *module, PyObject *arg) { PyObject *return_value = NULL; Py_complex z; if (!PyArg_Parse(arg, "D:isinf", &z)) goto exit; return_value = cmath_isinf_impl(module, z); exit: return return_value; } /*[clinic end generated code: output=274f59792cf4f418 input=a9049054013a1b77]*/