// gh-91321: Very basic C++ test extension to check that the Python C API is // compatible with C++ and does not emit C++ compiler warnings. // Always enable assertions #undef NDEBUG #include "Python.h" #if __cplusplus >= 201103 # define NAME _testcpp11ext #else # define NAME _testcpp03ext #endif #define _STR(NAME) #NAME #define STR(NAME) _STR(NAME) PyDoc_STRVAR(_testcppext_add_doc, "add(x, y)\n" "\n" "Return the sum of two integers: x + y."); static PyObject * _testcppext_add(PyObject *Py_UNUSED(module), PyObject *args) { long i, j; if (!PyArg_ParseTuple(args, "ll:foo", &i, &j)) { return _Py_NULL; } long res = i + j; return PyLong_FromLong(res); } // Class to test operator casting an object to PyObject* class StrongRef { public: StrongRef(PyObject *obj) : m_obj(obj) { Py_INCREF(this->m_obj); } ~StrongRef() { Py_DECREF(this->m_obj); } // Cast to PyObject*: get a borrowed reference inline operator PyObject*() const { return this->m_obj; } private: PyObject *m_obj; // Strong reference }; static PyObject * test_api_casts(PyObject *Py_UNUSED(module), PyObject *Py_UNUSED(args)) { PyObject *obj = Py_BuildValue("(ii)", 1, 2); if (obj == _Py_NULL) { return _Py_NULL; } Py_ssize_t refcnt = Py_REFCNT(obj); assert(refcnt >= 1); // gh-92138: For backward compatibility, functions of Python C API accepts // "const PyObject*". Check that using it does not emit C++ compiler // warnings. const PyObject *const_obj = obj; Py_INCREF(const_obj); Py_DECREF(const_obj); PyTypeObject *type = Py_TYPE(const_obj); assert(Py_REFCNT(const_obj) == refcnt); assert(type == &PyTuple_Type); assert(PyTuple_GET_SIZE(const_obj) == 2); PyObject *one = PyTuple_GET_ITEM(const_obj, 0); assert(PyLong_AsLong(one) == 1); // gh-92898: StrongRef doesn't inherit from PyObject but has an operator to // cast to PyObject*. StrongRef strong_ref(obj); assert(Py_TYPE(strong_ref) == &PyTuple_Type); assert(Py_REFCNT(strong_ref) == (refcnt + 1)); Py_INCREF(strong_ref); Py_DECREF(strong_ref); // gh-93442: Pass 0 as NULL for PyObject* Py_XINCREF(0); Py_XDECREF(0); #if __cplusplus >= 201103 // Test nullptr passed as PyObject* Py_XINCREF(nullptr); Py_XDECREF(nullptr); #endif Py_DECREF(obj); Py_RETURN_NONE; } static PyObject * test_unicode(PyObject *Py_UNUSED(module), PyObject *Py_UNUSED(args)) { PyObject *str = PyUnicode_FromString("abc"); if (str == _Py_NULL) { return _Py_NULL; } assert(PyUnicode_Check(str)); assert(PyUnicode_GET_LENGTH(str) == 3); // gh-92800: test PyUnicode_READ() const void* data = PyUnicode_DATA(str); assert(data != _Py_NULL); int kind = PyUnicode_KIND(str); assert(kind == PyUnicode_1BYTE_KIND); assert(PyUnicode_READ(kind, data, 0) == 'a'); // gh-92800: test PyUnicode_READ() casts const void* const_data = PyUnicode_DATA(str); unsigned int ukind = static_cast(kind); assert(PyUnicode_READ(ukind, const_data, 2) == 'c'); assert(PyUnicode_READ_CHAR(str, 1) == 'b'); Py_DECREF(str); Py_RETURN_NONE; } /* Test a `new`-allocated object with a virtual method. * (https://github.com/python/cpython/issues/94731) */ class VirtualPyObject : public PyObject { public: VirtualPyObject(); virtual ~VirtualPyObject() { delete [] internal_data; --instance_count; } virtual void set_internal_data() { internal_data[0] = 1; } static void dealloc(PyObject* o) { delete static_cast(o); } // Number of "living" instances static int instance_count; private: // buffer that can get corrupted int* internal_data; }; int VirtualPyObject::instance_count = 0; PyType_Slot VirtualPyObject_Slots[] = { {Py_tp_free, (void*)VirtualPyObject::dealloc}, {0, _Py_NULL}, }; PyType_Spec VirtualPyObject_Spec = { /* .name */ STR(NAME) ".VirtualPyObject", /* .basicsize */ sizeof(VirtualPyObject), /* .itemsize */ 0, /* .flags */ Py_TPFLAGS_DEFAULT, /* .slots */ VirtualPyObject_Slots, }; VirtualPyObject::VirtualPyObject() { // Create a temporary type (just so we don't need to store it) PyObject *type = PyType_FromSpec(&VirtualPyObject_Spec); // no good way to signal failure from a C++ constructor, so use assert // for error handling assert(type); assert(PyObject_Init(this, (PyTypeObject *)type)); Py_DECREF(type); internal_data = new int[50]; ++instance_count; } static PyObject * test_virtual_object(PyObject *Py_UNUSED(module), PyObject *Py_UNUSED(args)) { VirtualPyObject* obj = new VirtualPyObject(); obj->set_internal_data(); Py_DECREF(obj); if (VirtualPyObject::instance_count != 0) { return PyErr_Format( PyExc_AssertionError, "instance_count should be 0, got %d", VirtualPyObject::instance_count); } Py_RETURN_NONE; } static PyMethodDef _testcppext_methods[] = { {"add", _testcppext_add, METH_VARARGS, _testcppext_add_doc}, {"test_api_casts", test_api_casts, METH_NOARGS, _Py_NULL}, {"test_unicode", test_unicode, METH_NOARGS, _Py_NULL}, {"test_virtual_object", test_virtual_object, METH_NOARGS, _Py_NULL}, // Note: _testcppext_exec currently runs all test functions directly. // When adding a new one, add a call there. {_Py_NULL, _Py_NULL, 0, _Py_NULL} /* sentinel */ }; static int _testcppext_exec(PyObject *module) { if (PyModule_AddIntMacro(module, __cplusplus) < 0) { return -1; } PyObject *result; result = PyObject_CallMethod(module, "test_api_casts", ""); if (!result) return -1; Py_DECREF(result); result = PyObject_CallMethod(module, "test_unicode", ""); if (!result) return -1; Py_DECREF(result); result = PyObject_CallMethod(module, "test_virtual_object", ""); if (!result) return -1; Py_DECREF(result); return 0; } static PyModuleDef_Slot _testcppext_slots[] = { {Py_mod_exec, reinterpret_cast(_testcppext_exec)}, {0, _Py_NULL} }; PyDoc_STRVAR(_testcppext_doc, "C++ test extension."); static struct PyModuleDef _testcppext_module = { PyModuleDef_HEAD_INIT, // m_base STR(NAME), // m_name _testcppext_doc, // m_doc 0, // m_size _testcppext_methods, // m_methods _testcppext_slots, // m_slots _Py_NULL, // m_traverse _Py_NULL, // m_clear _Py_NULL, // m_free }; #define _FUNC_NAME(NAME) PyInit_ ## NAME #define FUNC_NAME(NAME) _FUNC_NAME(NAME) PyMODINIT_FUNC FUNC_NAME(NAME)(void) { return PyModuleDef_Init(&_testcppext_module); }